.::  回首頁 | 陽明交通大學 | 意見回饋 | 網站地圖 | 手機板 | English  ::.
國立陽明交通大學 陽明交通大學應數系 陽明交通大學應數系
最新消息 系所介紹 師資人員 學術研究 招生入學 修業規章 學生專區 系友會 FAQ

  • 課程介紹
  • 規章表單下載
  • 雙聯學位
  • 大學部
  • 修業規定
  • 必修課程
  • 當學期課程
  • 領域課程
  • 學程介紹
  • 跨域學程
  • 研究所
  • 碩班修業規定
  • 博班修業規定
  • 基本課程介紹
  • 當學期課程
  • 交清共同課程

  • e-Campus 平台
  • 課務組

必修課程介紹

《機器學習》
  • 預備知識:Mathematical analysis Linear algebra Probability
  • 適合年級: 研究生
  • 課程簡介:

We introduce the concept of machine learning and several useful learning methods including linear models, nonlinear models, margin-based approaches, structured models, dimension reduction, unsupervised learning (Clustering), ensemble classifiers. Also some special topics and applications will be discussed.

  • 課程大綱:
  1. Introduction to Machine Learning
  2. Fundamental of Mathematics Background
  3. Three Fundamental Learning Algorithms
  4. k-Nearest Neighbor Algorithm
  5. Naive Bayes Algorithm
  6. The Perceptron Algorithm
  7. Evaluating what’s been Learned
  8. Confusion Matrix: False Positive, False Negative
  9. Receiver Operating Characteristic (roc) Curve
  10. k-fold Cross Validation
  11. Pairwise t-test
  12. Support Vector Machines
  13. Generalization Theory
  14. Bias vs. Variance
  15. VC-dimension
  16. Ensemble Learning
  17. Adaboosting
  18. Online Learning
  19. Unsupervised Learning
  20. k-means Algorithm
  21. Mixture of Gaussians
  22. EM algorithm
  23. Dimension Reduction
  24. Large Scale Machine Learning
  • 參考書目:
  1. Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin (2012). Learning From Data. AMLbook.com
  2. Ethem Alpaydın (2004) Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT Press, ISBN 0262012111
  3. Christopher M. Bishop (2006) Pattern Recognition and Machine Learning, Springer ISBN 0-387-31073-8.
  4. Bishop, C. M. (1995). Neural Networks for Pattern Recognition, Oxford University Press. ISBN 0-19-853864-2.
  5. Richard O. Duda, Peter E. Hart, David G. Stork (2001) Pattern classification (2nd edition), Wiley, New York, ISBN 0-471-05669-3.
  6. Huang T.-M., Kecman V., Kopriva I. (2006), Kernel Based Algorithms for Mining Huge Data Sets, Supervised, Semi-supervised, and Unsupervised Learning, Springer-Verlag, Berlin, Heidelberg, 260 pp. 96 illus., Hardcover, ISBN 3-540-31681-7.
  7. MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms, Cambridge University Press. ISBN 0-521-64298-1.
  8. Mitchell, T. (1997). Machine Learning, McGraw Hill. ISBN 0-07-042807-7.
  9. Ian H. Witten and Eibe Frank Data Mining: Practical machine learning tools and techniques Morgan Kaufmann ISBN 0-12-088407-0.
  10. Trevor Hastie, Robert Tibshirani and Jerome Friedman (2001). The Elements of Statistical Learning, Springer. ISBN 0387952845.
  11. Vladimir Vapnik (1998). Statistical Learning Theory. Wiley-Interscience, ISBN 0471030031.
返回go back





  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •    
  • English Version|
  • 意見回饋|
  • Go Top
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         

本網站著作權屬於國立陽明交通大學 應用數學系  © 2025

地址: 300 新竹市大學路1001號 科學一館2樓

系辦電話:(03)5722088     傳真:(03) 5724679     電子郵件:lcchang607@nycu.edu.tw

︱本系網站資訊開放宣告︱ 本系個人資料保護暨資訊安全宣言︱

最後更新:2024-12-16 03:40:00 PM (CST)