.::  回首頁 | 陽明交通大學 | 意見回饋 | 網站地圖 | 手機板 | English  ::.
國立陽明交通大學 陽明交通大學應數系 陽明交通大學應數系
最新消息 系所介紹 師資人員 學術研究 招生入學 修業規章 學生專區 系友會 FAQ

  • 招生與徵聘
  • 系所公告
  • 獎勵與補助
  • 工讀與就業
  • 學生活動
  • 其他消息

  • 論文研討
  • 演講
  • 研討會

    • 微積分教學小組
    • 相關學術網站

演講公告

新聞標題: ( 2025-03-26 )

  • 演講主題:Critical point for oriented percolation

  • 主講人:Dr. Noe Kawamoto (NCTS)

  • 演講日期:2025年4月1日(二) 14:00–15:00

  • 演講地點:(光復校區) 科學一館213室

  • 摘要內容:

    Abstract. We consider nearest-neighbor oriented percolation defined on the product space of a multi-dimensional integer lattice and the set of positive integers.

    A point in the product space is described by a vector, where the first component (space component) is a point of the lattice and the second component (time component) is a positive integer.

    For a pair of points, where the space components are neighbors and the difference in their time component is 1, we can define a bond, which is independently open with probability p/2d with 0 ≤ p ≤ 2d, regardless of the other bonds. It is well known that oriented percolation exhibits a phase transition as the parameter p varies around a critical point pc which is model-dependent. As the dimension tends to infinity, pc coverges to 1.

    However, the best estimate for pc provided by Cox and Durret (Math. Proc. Camb. Phil. Soc. (1983)) give upper and lower bounds, but do not yield an explicit expression for pc.

    In this talk, we investigate the explicit expression for pc when d > 4, in a way that pc = 1 + C1d^{-2} + C2d^{-3} + C3d^{-4}+ O(d−5), where C1 to C3 are constants. The proof relies on the lace expansion, which is one of the most powerful tool to analyze the mean-field behavior of statistical-mechanical models in high dimensions. We focus less on the details of the proof and more on the background related to the topic.

返回go back





  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •    
  • English Version|
  • 意見回饋|
  • Go Top
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         

本網站著作權屬於國立陽明交通大學 應用數學系  © 2025

地址: 300 新竹市大學路1001號 科學一館2樓

系辦電話:(03)5722088     傳真:(03) 5724679     電子郵件:lcchang607@nycu.edu.tw

︱本系網站資訊開放宣告︱ 本系個人資料保護暨資訊安全宣言︱

最後更新:2024-12-13 07:20:22 PM (CST)