.:: 回首頁 | 陽明交通大學 | 意見回饋 | 網站地圖 | 手機板 | English  ::.
國立陽明交通大學 回陽明交通大學 回本系應數首頁
最新消息 系所介紹 師資人員 學術研究 招生入學 修業規章 學生專區 系友會 FAQ

  • 招生與徵聘
  • 系所公告
  • 獎勵與補助
  • 工讀與就業
  • 學生活動
  • 其他消息

  • 演講公告月份查詢
  • 論文研討
  • 演講
  • 研討會

    • 微積分教學小組
    • 相關學術網站
    • 校內相關單位
    • 陽明交通大學
    • 意見回饋

演講公告

新聞標題: ( 2023-02-14 )

  • 演講主題:Unrolling Parsimonious Features for A Novel Boosting Strategy in Financial Trading

  • 主講人:彭冠舉教授 (中興大學應數系)

  • 演講日期:2023年2月21日(星期二) 14:00 – 15:00

  • 演講地點:(光復校區) 科學一館223室

  • 摘要內容:

    Abstract
    Deriving informative features from noisy signals delivered by the markets is consequential to applying machine learning in trading tasks. Using technical indicators introduced by financial engineering or signal processing as the features fail to fit into the target task data due to their deterministic calculating methods. Learning feature descriptors from data may dictate relevant features, but the noise within the fetched signals can misguide the learning procedure and thus hinder the application's performance. To solve this problem, we proposed to obtain the features using the parsimonious representations of input signals, which were proven promising regarding de-noising images and audio. Deriving such representations is formulated as the convolutional sparse coding (CSC) with the L0 regularization function. Then, we unroll a non-convex, non-smooth proximal splitting algorithm that solves the CSC to construct a recurrent neural network as the feature descriptor. In addition, we proposed a novel boosting method named profit boost that ensembles multiple machine learning models to enhance the performances of trading tasks further. We also proposed a general learning framework that allows our feature descriptor and boosting method to consider numerous input signals from different sources. The experimental results demonstrate that the trading strategy provided by the proposed methods significantly outperforms the prior ones derived using machine learning regarding trading profits and stability.

  • 相關檔案:Talk_1120221.pdf


返回go back





  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •    
  • English Version|
  • 意見回饋|
  • Go Top
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         

本網站著作權屬於國立陽明交通大學 應用數學系  © 2023

地址: 300 新竹市大學路1001號 科學一館2樓

系辦電話 (03)5722088 傳真 (03) 5724679 電子郵件:lcchang@math.nctu.edu.tw

本系網站資訊開放宣告

本系個人資料保護暨資訊安全宣言

最後更新:2018-03-1 05:31:24 PM (CST)