.:: 回首頁 | 陽明交通大學 | 意見回饋 | 網站地圖 | 手機板 | English  ::.
國立陽明交通大學 回陽明交通大學 回本系應數首頁
最新消息 系所介紹 師資人員 學術研究 招生入學 修業規章 學生專區 系友會 FAQ

  • 招生與徵聘
  • 系所公告
  • 獎勵與補助
  • 工讀與就業
  • 學生活動
  • 其他消息

  • 演講公告月份查詢
  • 論文研討
  • 演講
  • 研討會

    • 微積分教學小組
    • 相關學術網站
    • 校內相關單位
    • 陽明交通大學
    • 意見回饋

演講公告

新聞標題: ( 2018-12-12 )

  • 演講主題:Six Corelated Ways of Moving Mesh Adaptations for Nonlinear Kawarada Problems

  • 主講人:Qin Sheng 教授(貝勒大學太空物理與工程研究數學系和天體物理中心)

  • 演講日期:2018 年12月26日(星期三) 下午15:30 –16:20

  • 演講地點:(光復校區) 科學一館223室

  • 摘要內容:

    Abstract. It was during the last Banff International Research Station (BIRS) Workshop on Adaptive Numerical Methods for Partial Differential Equations with Applications, the topics of different adaptive finite difference procedures were seriously revisited, reevaluated and reinvested. Among various kinds of singular partial differential equation problems, Kawarada problems are particularly attractive to the participants due to their important theoretical and application features.

    In a traditional moving mesh approach, mesh adaptations are often configurated based on an equidistribution principle. In such a case, a new mesh is acquired via a monitor function that is equidistributed in some sense. Typical choices of such monitor functions involve the solution or one of its many derivatives. The strategy has been proven to be effective and easy-to-realize in multi-physical applications. However, identifications of optical core monitoring components are proven to be extremely difficult. To this end, in this talk, we consider six different designs of monitoring functions targeting at a highly vibrate nonlinear partial differential equation problem that exhibits both quenching-type and degeneracy singularities. While the first a few monitoring designs to be discussed are within the so-called direct regime, the rest belong to a newer category of the indirect type, which requires the priori-knowledge of certain important solution features or characteristics. Computational experiments will be presented to illustrate our research and conclusions. Continuing collaborations in the field with Taiwan colleagues and students will also be pursued.

  • 相關檔案:Talk_1071226.pdf


返回go back





  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •    
  • English Version|
  • 意見回饋|
  • Go Top
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         

本網站著作權屬於國立陽明交通大學 應用數學系  © 2023

地址: 300 新竹市大學路1001號 科學一館2樓

系辦電話 (03)5722088 傳真 (03) 5724679 電子郵件:lcchang607@nycu.edu.tw

本系網站資訊開放宣告

本系個人資料保護暨資訊安全宣言

最後更新:2018-03-1 05:31:24 PM (CST)