.:: 回首頁 | 陽明交通大學 | 意見回饋 | 網站地圖 | 手機板 | English  ::.
國立陽明交通大學 回陽明交通大學 回本系應數首頁
最新消息 系所介紹 師資人員 學術研究 招生入學 修業規章 學生專區 系友會 FAQ

  • 招生與徵聘
  • 系所公告
  • 獎勵與補助
  • 工讀與就業
  • 學生活動
  • 其他消息

  • 演講公告月份查詢
  • 論文研討
  • 演講
  • 研討會

    • 微積分教學小組
    • 相關學術網站
    • 校內相關單位
    • 陽明交通大學
    • 意見回饋

演講公告

新聞標題: ( 2018-09-14 )

  • 演講主題:Learning in Human and Robot Search : Subgoal, Submodularity and Sparsity

  • 主講人:曾國師教授(中央大學數學系)

  • 演講日期:2018年9月18日(星期二) 下午14:00 –15:00

  • 演講地點:(光復校區) 科學一館223室

  • 茶會時間:當天下午1:30 (科學一館205室)

  • 摘要內容:

    Abstract. Search is an essential technology for various robotic applications and it is also central to human daily activities. Searching for targets efficiently consists of NP-hard problems, but young children can search for targets very efficiently. How humans search for targets efficiently is still a mystery. Hence, two central questions are as follows: First, how do humans search for targets efficiently? Second, how can robots learn to search like humans? The central goal of this talk is to answer these two questions. This talk is organized in three parts–human search analysis, learning in robot search, and other potential applications.

    The key concepts of this talk are subgoal, submodularity, and sparsity. First, the human search analysis shows that humans' search motion can be represented by a few subgoals. Second, since the motion is divided into discrete subgoals and the objective functions have submodularity, the greedy algorithms generate near-optimal subgoals. Third, although learning submodular functions is a challenge, the sparsity in the Fourier domain makes it feasible. Hence, a robot can learn how to search for a target via these properties.

    The proposed algorithms generate near-optimal subgoals for both human and robot search experiments. Human experiments showed that the human search performance is improved with the assistance of subgoals. Robot experiments demonstrated that the robot can search for the target faster than any existing approaches. To the best of our knowledge, this is the first work that theorems and experiments prove that humans cannot outperform robots on search problems.

返回go back





  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •    
  • English Version|
  • 意見回饋|
  • Go Top
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         

本網站著作權屬於國立陽明交通大學 應用數學系  © 2023

地址: 300 新竹市大學路1001號 科學一館2樓

系辦電話 (03)5722088 傳真 (03) 5724679 電子郵件:lcchang@math.nctu.edu.tw

本系網站資訊開放宣告

本系個人資料保護暨資訊安全宣言

最後更新:2018-03-1 05:31:24 PM (CST)