.:: 回首頁 | 陽明交通大學 | 意見回饋 | 網站地圖 | 手機板 | English  ::.
國立陽明交通大學 回陽明交通大學 回本系應數首頁
最新消息 系所介紹 師資人員 學術研究 招生入學 修業規章 學生專區 系友會 FAQ

  • 招生與徵聘
  • 系所公告
  • 獎勵與補助
  • 工讀與就業
  • 學生活動
  • 其他消息

  • 演講公告月份查詢
  • 論文研討
  • 演講
  • 研討會

    • 微積分教學小組
    • 相關學術網站
    • 校內相關單位
    • 陽明交通大學
    • 意見回饋

演講公告

新聞標題: ( 2010-03-30 )

  • 演講主題:Linear Algebra Algorithms as Dynamical Systems: Orthogonal Polynomials, Moments, Measure Deformation, Dynamical Systems, and SVD Algorithm

  • 主講人:朱天照 教授(北卡州立大學數學系)

  • 演講日期:99年3月30日(星期二)<br> 下午3:10 –4:00

  • 演講地點:(光復校區)科學一館223室

  • 茶會時間:當天下午1:30科學一館205室

  • 摘要內容:

    Abstract: Iterates generated from discrete dynamical systems such as the QR algorithm and the SVD algorithm are time-1 samples of solutions to the Toda lattice and the Lotka-Volterra equation, respectively. In this talk we present some recent discoveries that connect diverse topics such as soliton theory, integrable systems, continuous fractions, functions, orthogonal polynomials, Sylvester identity, moments, and Hankel determinants together. Of particular interest are the three facts that
    (a) Each of the Toda lattice and the Lotka-Volterra equation governs the evolution of a certain class of orthogonal polynomials whose orthogonality is determined by a specific time-dependent measure.
    (b) Since the measure deformation is explicitly known, moments can be calculated which, when properly assembled, lead to the abstract but literal conclusion that the iterates of the QR algorithm and the SVD algorithm can be expressed in closed-form!
    (c) Hankel determinantal solutions are too complicated to be useful. However, a “smart” integrabilitypreserving discretization of the Lotka-Volterra equation can yield a new SVD algorithm.

返回go back





  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •    
  • English Version|
  • 意見回饋|
  • Go Top
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         

本網站著作權屬於國立陽明交通大學 應用數學系  © 2023

地址: 300 新竹市大學路1001號 科學一館2樓

系辦電話 (03)5722088 傳真 (03) 5724679 電子郵件:lcchang@math.nctu.edu.tw

本系網站資訊開放宣告

本系個人資料保護暨資訊安全宣言

最後更新:2018-03-1 05:31:24 PM (CST)