.:: 回首頁 | 陽明交通大學 | 意見回饋 | 網站地圖 | 手機板 | English  ::.
國立陽明交通大學 回陽明交通大學 回本系應數首頁
最新消息 系所介紹 師資人員 學術研究 招生入學 修業規章 學生專區 系友會 FAQ

  • 師資
  • 參訪人員
  • 博士後人員
  • 行政技術人員

  • 相關學術網站
  • 陽明交通大學

石至文(Chih-Wen Shih)教授

聯絡方式
  • Email: cwshih@math.nctu.edu.tw
  • 電話: 03-571-2121 ext. 56409
  • 傳真: 03-572-4679
  • 地址: 新竹市大學路1001號 陽明交通大學 應用數學系
  • 相關網站:    
近兩學期教授課程
  • 111 學年度第一學期:
    • 常微分方程(一)
    • 微積分甲(一)

  • 111 學年度第二學期:
    • 微積分甲(二)
履歷
  • 學歷
    • 紐約州立大學水牛城分校 數學研究所 博 士
    • 紐約州立大學水牛城分校 數學研究所 碩 士
    • 國立交通大學應用數學系 學 士
  • 學術專長暨研究領域
    • 微分方程
    • 動態系統
    • 生物數學
  • 學術經歷與榮譽
      • 國家理論科學中心中心科學家(2009-2015)
      • 國立交通大學應用數學系系主任 (2005/08 - 2007/07 )
      • 國立交通大學應用數學系教授 (2000/08 - )
      • 國立交通大學應用數學系副教授 (1990/08 - 2000/07)
      • Visiting Scientist, School of Mathematics and Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology (1997-1998)
      • Visiting Scientist, Department of Mathematics, UCLA (2002 Spring)
      • Visiting Scholar, Mathematical Biosciences Institute, Ohio State University (2007-2008)

  • 近五年研究計劃
    • 神經場模型的數學研究 (109-2115-M-009-002-MY2)
    • 耦合系統之鎖相解 (107-2115-M-009-003-MY2)
    • 生物律動之數學模型及分析(101-2115-M-009-002-MY2)
    • 延遲性耦合震盪系統(98-2115-M-009-012-MY3)
    • 延遲型方程的穩定性與分歧性分析(95-2115-M-009-016-MY3)
    • 類神經網路的數學研究(3/3)(94-2115-M-009-001-)

研究趣向

  • 近期的研究興趣主要在於一些生物現象的數學模型分析;包含細胞分化(cell differentiation)、骨節生成(somitogenesis)、基因調控(gene regulation)、神經系統(nerval system)、生態系統(ecological system)。探討將動態學理論應用於對這些數學模型方程式的了解。另有研究興趣為有關類神經網路 (neural networks) 之數學理論。各種類神經網路之數學模式一般可以描述為連續時間之動態系統(微分方程)或離散時間之動態系統。所以,可以說研究的內容是探討某種形式的動態系統解的行為與性質。其中,最基本的問題是探討系統中解的收歛性(convergence of dynamics)。亦即,在何種條件下,解一定會趨近於一平衡態。其次,同感興趣的是混沌動態行為的探測。由於類神經網路之模式多為高維度空間之動態系統,如何知道在各種神經元間之耦合係數與不同的threshold條件下,解行為的特性,是重要的研究課題。 
  • 類神經網路在各種科學領域中已有很廣泛的應用。如圖形辨識(pattern recognition),訊號處理(signal processing),計算方法(computations),組合最優化問題(combinatorial optimization problem),電路理論(circuit theory)等。這許多的應用事實上是建立在幾個神經網路模式之基本理論上的。

著作選集

    (A)   Refereed Papers:

      • Chang-Yuan Cheng and Chih-Wen Shih*, 2005, “Pattern formations and spatial entropy for spatially discrete diffusion equations”, Physica D 204, 135-160. (SCI-Applied Math)
      • Liang Zhao, Ying-Cheng Lai* and Chih-Wen Shih, 2005, “Transition to intermittent chaotic Synchronization”, Phys. Rev. E 72, 036212. (SCI-Math-Physics)
      • Chang-Yuan Cheng, Kuang-Hui Lin and Chih-Wen Shih*, 2006, “Multistability in recurrent neural networks”, SIAM J. Applied Mathematics, Vol.66, 4 , 1301-1320 (SCI-Applied Math)  (NSC 94-2115-M-009-001-)
      • Chang-Yuan Cheng, Kuang-Hui Lin and Chih-Wen Shih*, 2007, “Multistability and convergence in delayed neural networks”, Physica D 225, 61-47. (SCI-Applied Math) (NSC 94-2115-M-009-001-)
      • Kuang-Hui Lin and Chih-Wen Shih*, 2007, “Multiple almost periodic solutions in nonautonomous delayed neural network”, Neural Computation, 19, 12, 3392-3420. (SCI -Artificial intelligence)  (NSC 95-2115-M-009-016-MY3)
      • Shyan-Shiou Chen and Chih-Wen Shih*, 2007, “Transiently chaotic neural networks with piecewise linear output functions” Chaos, Solitons and Fractals, 39, 717-730. (SCI- Math.-Interdisciplinary applications)
      • Chang-Yuan Cheng and Chih-Wen Shih*, 2008, “Complete stability in multistable delayed neural networks”, Neural Computation, 21, 719-740. (SCI-Artificial Intelligence) (NSC 95-2115-M-009-016-MY3)
      • Chih-Wen Shih* and Jui-Pin Tseng, 2008,“Convergent dynamics for multistable delayed neural networks”, Nonlinearity 21, 2361-2389.(SCI-Applied Math) (NSC 95-2115-M-009-016-MY3)
      • Chih-Wen Shih* and Jui-Pin Tseng, 2009, “Global consensus for discrete-time competitive systems”, Chaos, Solitons and Fractals, 41, 302-310. (SCI-Math-Interdisciplinary applications)
      • Avner Friedman, Chiu-Yen Kao, and Chih-Wen Shih*, 2009, “Asymptotic phases in a cell differentiation model”, J. Differential Equations 247, 736-769. (SCI-Math).
      • Chih-Wen Shih* and Jui-Pin Tseng, 2011, “Global synchronization and asymptotic phases for a ring of identical cells with delayed coupling”, SIAM J. Math. Anal., Vol. 43, 4, 1667-1697. (SCI-Applied Math) (NSC 98-2115-M-009-012-MY3)
      • Kang-Ling Liao, Chih-Wen Shih*, 2011,“Snapback repellers and homoclinic orbits for multi-dimensional maps”, J. Math. Anal. Appl., 386, 387-400. (SCI-Applied Math)
      • Avner Friedman, Chiu-Yen Kao, and Chih-Wen Shih*, 2012, “Asymptotic limit in a cell differentiation model with consideration of transcription”, J. Differential Equations 252, 5679-5711. (SCI-Math).
      • Kang-Ling Liao, Chih-Wen Shih* and Jui-Pin Tseng, 2012, “Synchronized oscillations in a mathematical model of segmentation in zebrafish”, Nonlinearity 25, 869–904. (SCI-Applied Math) (NSC 98-2115-M-009-012-MY3)
      • Kang-Ling Liao, Chih-Wen Shih*, 2012,“A lattice model on somitogenesis of zebrafish”, Discrete and Continuous Dynamical Systems –Series B, 17 (8), 2789-2814. (SCI-Applied Math) (NSC 98-2115-M-009-012-MY3)
      • Chih-Wen Shih*, Jui-Pin Tseng, 2013, “A general approach to synchronization of coupled cells”, SIAM J. Applied Dynamical Systems, Vol.12, No. 3, 1354-1393.
      • Kuang-Hui Lin, Yuan Lou, Chih-Wen Shih*, Tze-Hung Tsai, 2014, “Global dynamics for two-species competition in patchy environment”, Mathematical Biosciences and Engineering, Vol. 11, No. 4, 947-970.
      • Chang-Yuan Cheng, Kuang-Hui Lin, Chih-Wen Shih, Jui-Pin Tseng, 2015,“Multistability for delayed neural networks via sequential contracting”, IEEE Transactions on Neural Networks and Learning Systems, VOL.26, NO.12, 3109-3122.
      • Chiu-Yen Kao, Chih-Wen Shih, Chang-Hong Wu, 2016,“Absolute stability and synchronization in neural field models with transmission delays”, Physica D, 328-329, 21-33.
      • Kuan-Wei Chen, Kang-Ling Liao,Chih-Wen Shih, 2018, The kinetics in mathematical models on segmentation clock genes in zebrafish, J. Mathematical Biology, 76(1-2), 97-150
      • Kang-Ling Liao, Chih-Wen Shih, Chi-Jer Yu, 2018, The snapback repellers for chaos in multidimensional maps, J. Computational Dynamics, Vo. 5, No. 1, 81-92
      • Chang-Yuan Cheng, Kuang-Hui Lin, Chih-Wen Shih, 2019, Coexistence and extinction for two competing species in patchy environments, Mathematical Biosciences and Engineering, Vol. 16, No. 2, 909-946.
      • Chih-Wen Shih, Jui-Pin Tseng, 2020, From approximate synchronization to identical synchronization in coupled systems, DCDS-B, Vol. 25, No. 9, 3677-3714 
      • Kuan-Wei Chen, Chih-Wen Shih, 2021, Collective oscillations in coupled-cell systems, Bulletin of Mathematical Biology, 83:62, 1-60.
      • Chang-Yuan Cheng*, Kuang-Hui Lin, Chih-Wen Shih, “Intra- and Inter-specific competitions of two stage-structured species in a patchy environment”, 2022, J. Dynamics and Differential Equations, https://doi.org/10.1007/s10884-022-10229-z
      • Chih-Wen Shih*, Chia-Hsin Yang, “Hopf bifurcation analysis for models on genetic negative feedback loops”, 2022, J. Mathematical Analysis and Applications, 516, 126537

    (C)   Others:

    1. Shyan-Shiou Chen and Chih-Wen Shih*, Solving TSP via Neural Networks, in Traveling Salesman Problem, Editor: Federico Greco, I-Tech Education and Publishing, 2008.
    2. Kang-Ling Liao, Chih-Wen Shih* and Jui-Pin Tseng, Multidimensional Dynamics: From Simple to Complicated, In Discrete Time Systems, Editor: Mario Alberto Jordan, I-Tech Education and Publishing, April 2011

返回go back





  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •    
  • English Version|
  • 意見回饋|
  • Go Top
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         

本網站著作權屬於國立陽明交通大學 應用數學系  © 2023

地址: 300 新竹市大學路1001號 科學一館2樓

系辦電話 (03)5722088 傳真 (03) 5724679 電子郵件:lcchang@math.nctu.edu.tw

本系網站資訊開放宣告

本系個人資料保護暨資訊安全宣言

最後更新:2018-03-15 05:36:51 PM (CST)