.:: 回首頁 | 陽明交通大學 | 意見回饋 | 網站地圖 | 手機板 | English  ::.
國立陽明交通大學 回陽明交通大學 回本系應數首頁
最新消息 系所介紹 師資人員 學術研究 招生入學 修業規章 學生專區 系友會 FAQ

  • 招生與徵聘
  • 系所公告
  • 獎勵與補助
  • 工讀與就業
  • 學生活動
  • 其他消息

  • 演講公告月份查詢
  • 論文研討
  • 演講
  • 研討會

    • 微積分教學小組
    • 相關學術網站
    • 校內相關單位
    • 陽明交通大學
    • 意見回饋

演講公告

新聞標題: ( 2016-11-07 )

  • 演講主題:From algebraic to differential-algebraic functions in combinatorics

  • 主講人:Cyril Banderier 博士 (CNRS, University of Paris Nord)

  • 演講日期:2016年11月22日(星期二) 下午2:20 –3:20

  • 演講地點:(光復校區) 科學一館223室

  • 茶會時間:當天下午3:20 (科學一館205室)

  • 摘要內容:

    Abstract. Asymptotics of recurrences is the key to get the typical properties of combinatorial structures, and thus the complexity of many algorithms relying on these structures. The associated generating function often follows a linear differential equation: we are here in the so-called "D-finite" world. For the matters of asymptotics, this case of linear recurrences (with polynomial coefficients) is well covered by the "Analytic Combinatorics" book of Flajolet and Sedgewick (though the computations of constants is still a challenge, related to the theory of Kontsevich-Zagier periods and evaluation of G-functions and E-functions). At the border of this D-finite world, lies "algebraic-differential functions". The terminology is not yet fixed and similar terms are used, up to a permutation, by several authors: let dz^m be the m-th derivative of F(z), the function is said "algebraic-differential" if there a exists a polynomial P such that P(z,F,F',..., dz^m F)=0. For all these worlds, having some positive (integer) coefficients leads to some strong constraints on the asymptotics (these is now well understood for algebraic function), and we try to see what happens in a more general setting.
    We will give examples of such functions (motivated by some combinatorial problems), and show how a symbolic combinatorics approach can help for automatic asymptotics of their coefficients, and some open related open questions/challenges for computer algebra (joint works with Michael Drmota and Hsien-Kuei Hwang)

返回go back





  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •    
  • English Version|
  • 意見回饋|
  • Go Top
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         

本網站著作權屬於國立陽明交通大學 應用數學系  © 2023

地址: 300 新竹市大學路1001號 科學一館2樓

系辦電話 (03)5722088 傳真 (03) 5724679 電子郵件:lcchang@math.nctu.edu.tw

本系網站資訊開放宣告

本系個人資料保護暨資訊安全宣言

最後更新:2018-03-1 05:31:24 PM (CST)