.:: 回首頁 | 陽明交通大學 | 意見回饋 | 網站地圖 | 手機板 | English  ::.
國立陽明交通大學 回陽明交通大學 回本系應數首頁
最新消息 系所介紹 師資人員 學術研究 招生入學 修業規章 學生專區 系友會 FAQ

  • 招生與徵聘
  • 系所公告
  • 獎勵與補助
  • 工讀與就業
  • 學生活動
  • 其他消息

  • 演講公告月份查詢
  • 論文研討
  • 演講
  • 研討會

    • 微積分教學小組
    • 相關學術網站
    • 校內相關單位
    • 陽明交通大學
    • 意見回饋

演講公告

新聞標題: ( 2015-05-26 )

  • 演講主題:【轉知】20150601 交通大學數學建模與科學計算研究中心學術演講

  • 主講人:

  • 演講日期:2015年06月01日

  • 演講地點:科學一館307室

  • 摘要內容:

    more detail please see the

    Speaker 1:
    Dr. Yu-Ting Lin (Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital)
    Title: The Modeling and Quantification of Rhythmic to Non-rhythmic 13:30-14:20pm

    Speaker 2:
    Prof. Hau-tieng Wu (Department of Mathematics, University of Toronto)
    Title: When manifold learning and time frequency analysis meet in medicine 14:30-15:20pm

    Abstract 1:
    Variations of instantaneous heart rate appear regularly
    oscillatory in deeper levels of anesthesia and less regular in lighter levels of anesthesia. It is impossible to observe this
    “rhythmic-to-non-rhythmic” phenomenon from raw electrocardiography waveform in current standard anesthesia monitors. To explore the possible clinical value, I proposed the adaptive harmonic model, which fits the descriptive property in physiology, and provides adequate mathematical conditions for the quantification. Based on the adaptive harmonic model,
    multitaper Synchrosqueezing transform was used to provide time-varying power spectrum, which facilitates to compute the quantitative index:
    “Non-rhythmic-to-Rhythmic Ratio” index (NRR index). I then used a clinical database to analyze the behavior of NRR index and understand its clinical value by comparing with other standard indices of anesthetic depth.

    Abstract 2:
    Explosive technological advances lead to current and
    future exponential growth of massive data-sets in medicine. To better understand such “big data” in the new era, we need innovations in data analysis. Of particular importance is adaptive acquisition of essential features and information hidden in the massive data-sets, for example, the hidden low dimensional dynamics hidden inside the high dimension data, the time-varying periodicity and trend intrinsic to the system. In addition,
    the robustness of the algorithm to different noises and computational efficiency should be taken care. In this presentation, I will show how to combine two modern adaptive signal processing techniques, diffusion maps and synchrosqueezing transform, to meet such needs. We will discuss direct application of our solution the sleep-depth detection problem from the polysomographic signal.

返回go back





  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •    
  • English Version|
  • 意見回饋|
  • Go Top
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         

本網站著作權屬於國立陽明交通大學 應用數學系  © 2023

地址: 300 新竹市大學路1001號 科學一館2樓

系辦電話 (03)5722088 傳真 (03) 5724679 電子郵件:lcchang@math.nctu.edu.tw

本系網站資訊開放宣告

本系個人資料保護暨資訊安全宣言

最後更新:2018-03-1 05:31:24 PM (CST)