.:: 回首頁 | 陽明交通大學 | 意見回饋 | 網站地圖 | 手機板 | English  ::.
國立陽明交通大學 回陽明交通大學 回本系應數首頁
最新消息 系所介紹 師資人員 學術研究 招生入學 修業規章 學生專區 系友會 FAQ

  • 招生與徵聘
  • 系所公告
  • 獎勵與補助
  • 工讀與就業
  • 學生活動
  • 其他消息

  • 演講公告月份查詢
  • 論文研討
  • 演講
  • 研討會

    • 微積分教學小組
    • 相關學術網站
    • 校內相關單位
    • 陽明交通大學
    • 意見回饋

演講公告

新聞標題: ( 2010-03-30 )

  • 演講主題:Computational Continuum to Quantum Mechanics by Meshfree Methods

  • 主講人:陳俊賢教授 (美國加州大學洛杉磯分校)(Chancellor's Professor & Department Chair)

  • 演講日期:99年3月16日(星期二)<br> 下午2:00 –3:00

  • 演講地點:(光復校區)科學一館223室

  • 茶會時間:當天下午1:30科學一館205室

  • 摘要內容:

    Mechanics at different length scales exhibit diverse characteristics that require proper regularity in the construction of numerical formulation. Strong and weak discontinuities, topological change in geometry, and singularities are a few examples that render difficulty in the construction of approximation functions with desirable regularity in solving mechanics problems at different length scales. We first review a few finite element and meshfree approximation methods to address these issues. Through three classes of problems at continuum macro-scale, meso-scale, and quantum-scale, we demonstrate the convergence properties of Galerkin meshfree approach and how it can be constructed to alleviate the numerical difficulties associated with the standard finite element methods. The examples include large deformation and fragment impact problems, modeling of microstructure evolution, and solution of Schrodinger equation in quantum mechanics. We then discuss the possibility of introducing meshfree approximation under the strong form collocation framework, including the local moving least squares reproducing kernel and the nonlocal radial basis collocation methods. We show how to combine the advantages of radial basis function and reproducing kernel function to yield a local approximation that is better conditioned than that of the radial basis collocation method, while at the same time offers a higher rate of convergence than that of Galerkin type reproducing kernel method.

  • 相關檔案:演講990316.doc


返回go back





  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •    
  • English Version|
  • 意見回饋|
  • Go Top
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         

本網站著作權屬於國立陽明交通大學 應用數學系  © 2023

地址: 300 新竹市大學路1001號 科學一館2樓

系辦電話 (03)5722088 傳真 (03) 5724679 電子郵件:lcchang@math.nctu.edu.tw

本系網站資訊開放宣告

本系個人資料保護暨資訊安全宣言

最後更新:2018-03-1 05:31:24 PM (CST)