.::  HOME | NYCU | EMAIL | Sitemap | 中文版 ::.
AM LOGO NYCU HOME
Latest news About us Faculty Research Admission Academics Student area Alumni F.A.Q.

  • Programs
  • Undergraduates
  • Program Flowchart
  • Regulations
  • Required Courses
  • Current Courses
  • Field Courses
  • Connected Programs
  • Cross Disciplinary
  • Document Downloads
  • Graduates
  • Program Flowchart
  • M.S. Regulations
  • Ph.D. Regulations
  • Required Courses
  • Current Courses
  • Joint Graduate Courses
  • Document Downloads

  • Division of Curriculum
  • e-Campus

Course Introduction

《Machine Learning》
  • Prerequisite:Mathematical analysis Linear algebra Probability
  • Recommended for: graduate students
  • Introduction:

We introduce the concept of machine learning and several useful learning methods including linear models, nonlinear models, margin-based approaches, structured models, dimension reduction, unsupervised learning (Clustering), ensemble classifiers. Also some special topics and applications will be discussed.

  • Syllabus:
  1. Introduction to Machine Learning
  2. Fundamental of Mathematics Background
  3. Three Fundamental Learning Algorithms
  4. k-Nearest Neighbor Algorithm
  5. Naive Bayes Algorithm
  6. The Perceptron Algorithm
  7. Evaluating what’s been Learned
  8. Confusion Matrix: False Positive, False Negative
  9. Receiver Operating Characteristic (roc) Curve
  10. k-fold Cross Validation
  11. Pairwise t-test
  12. Support Vector Machines
  13. Generalization Theory
  14. Bias vs. Variance
  15. VC-dimension
  16. Ensemble Learning
  17. Adaboosting
  18. Online Learning
  19. Unsupervised Learning
  20. k-means Algorithm
  21. Mixture of Gaussians
  22. EM algorithm
  23. Dimension Reduction
  24. Large Scale Machine Learning
  • Reference:
  1. Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin (2012). Learning From Data. AMLbook.com
  2. Ethem Alpaydın (2004) Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT Press, ISBN 0262012111
  3. Christopher M. Bishop (2006) Pattern Recognition and Machine Learning, Springer ISBN 0-387-31073-8.
  4. Bishop, C. M. (1995). Neural Networks for Pattern Recognition, Oxford University Press. ISBN 0-19-853864-2.
  5. Richard O. Duda, Peter E. Hart, David G. Stork (2001) Pattern classification (2nd edition), Wiley, New York, ISBN 0-471-05669-3.
  6. Huang T.-M., Kecman V., Kopriva I. (2006), Kernel Based Algorithms for Mining Huge Data Sets, Supervised, Semi-supervised, and Unsupervised Learning, Springer-Verlag, Berlin, Heidelberg, 260 pp. 96 illus., Hardcover, ISBN 3-540-31681-7.
  7. MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms, Cambridge University Press. ISBN 0-521-64298-1.
  8. Mitchell, T. (1997). Machine Learning, McGraw Hill. ISBN 0-07-042807-7.
  9. Ian H. Witten and Eibe Frank Data Mining: Practical machine learning tools and techniques Morgan Kaufmann ISBN 0-12-088407-0.
  10. Trevor Hastie, Robert Tibshirani and Jerome Friedman (2001). The Elements of Statistical Learning, Springer. ISBN 0387952845.
  11. Vladimir Vapnik (1998). Statistical Learning Theory. Wiley-Interscience, ISBN 0471030031.
返回go back





  •      
  •      
  •      
  •      
  • 中文|
  • Contact|
  • Go Top

Department of Applied Mathematics National Yang Ming Chiao Tung University copyright © 2025

2F, Science Bld. 1, 1001 Ta Hsueh Road, Hsinchu, Taiwan 30010, ROC

TEL +886-3-572-2088 TEL +886-3-571-2121 ext. 56401 FAX +886-3-572-4679

Last updated:2025-03-18 10:26:28 AM (CST)