- Prerequisite:Mathematical analysis
Linear algebra
Probability
- Recommended for: graduate students
- Introduction:
We introduce the concept of machine learning and several useful learning methods including linear models, nonlinear models, margin-based approaches, structured models, dimension reduction, unsupervised learning (Clustering), ensemble classifiers. Also some special topics and applications will be discussed.
- Introduction to Machine Learning
-
Fundamental of Mathematics Background
-
Three Fundamental Learning Algorithms
-
k-Nearest Neighbor Algorithm
-
Naive Bayes Algorithm
-
The Perceptron Algorithm
-
Evaluating what’s been Learned
-
Confusion Matrix: False Positive, False Negative
-
Receiver Operating Characteristic (roc) Curve
-
k-fold Cross Validation
-
Pairwise t-test
-
Support Vector Machines
-
Generalization Theory
-
Bias vs. Variance
-
VC-dimension
-
Ensemble Learning
-
Adaboosting
-
Online Learning
-
Unsupervised Learning
-
k-means Algorithm
-
Mixture of Gaussians
-
EM algorithm
-
Dimension Reduction
-
Large Scale Machine Learning
- Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin (2012). Learning From Data. AMLbook.com
-
Ethem Alpaydın (2004) Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT Press, ISBN 0262012111
-
Christopher M. Bishop (2006) Pattern Recognition and Machine Learning, Springer ISBN 0-387-31073-8.
-
Bishop, C. M. (1995). Neural Networks for Pattern Recognition, Oxford University Press. ISBN 0-19-853864-2.
-
Richard O. Duda, Peter E. Hart, David G. Stork (2001) Pattern classification (2nd edition), Wiley, New York, ISBN 0-471-05669-3.
-
Huang T.-M., Kecman V., Kopriva I. (2006), Kernel Based Algorithms for Mining Huge Data Sets, Supervised, Semi-supervised, and Unsupervised Learning, Springer-Verlag, Berlin, Heidelberg, 260 pp. 96 illus., Hardcover, ISBN 3-540-31681-7.
-
MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms, Cambridge University Press. ISBN 0-521-64298-1.
-
Mitchell, T. (1997). Machine Learning, McGraw Hill. ISBN 0-07-042807-7.
-
Ian H. Witten and Eibe Frank Data Mining: Practical machine learning tools and techniques Morgan Kaufmann ISBN 0-12-088407-0.
-
Trevor Hastie, Robert Tibshirani and Jerome Friedman (2001). The Elements of Statistical Learning, Springer. ISBN 0387952845.
-
Vladimir Vapnik (1998). Statistical Learning Theory. Wiley-Interscience, ISBN 0471030031.
|