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On latin cubes with prescribed intersections
Hung-Lin Fu

1. Introduction

A latin cube C of order v is a v-tuple (L,,L,...,L,) of pairwise dis-
joint latin = squares of order wv. Let C = (L,Ly,..L,) and
= (M,M,, ...,M,) be two latin cubes of order v (with the same
entrles) then the intersection of C' and D is defined to be the number

ICND|= E |L; N M; |, where |L; N M; | is the number of common entries
i=1

of L; and M;. Moreover, we define J[v] as the set of positive integers k
such that there exist two latin cubes of order v with intersection k, and we
define I[v] = {0,1,2,...,v°~14} U {v3-12,0°-8,v%}. :

In. [3] results on Jv] were used in solving the intersection problem
for Steiner quadruple systems of order 4v, where v is the order of a
Steiner quadruple system, and v > 10. Some of the results concerning J [v]
which were obtained in that paper are the following:

(1) J[10) D I[10]\{10°~21,10°~14}.
(2) J[v] D Iw]\{v®-21,0°~14} for every even v > 20.

In this paper we prove that J[v] = Ifv] for every v > 24 and
Jv] D Iv]\{+* —14} when 20 <wv <28

2. Main theorems

It is easy to show that the intersection of two latin squares of order
v cannot be v 25, v®-3, v*—2, and v>—1. Hence we have the following
lemma.

Lemma 2.1. J[v] C Iv] for every order v.

Proof. Tt is well known that a latin cube is equivalent to a 3-quasigroup
Q@ [2], and the set {(x,y,2)|(2,y,2€Q}, with one component fixed,
corresponds to a latin square. Since the intersections of two latin squares
cannot be v2—5, v2—3, v’—2, and v®>~1, we conclude that the intersections
of two latin cubes of order v cannot be
v3—13,0%-11,0°-10,0°-9,0°—7 ..., v>—1. This implies that Jv] C Iv].

Lemma 2.2. v*-21 € J[v] for every v > 6.
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Proof. It is well known [1] that the partial latin square A of order 3 (Fig-
ure 2.1) can be embedded in a latin square L = [£; ;] of order v > 6. Let
M = [m; ;] be a latin square of order v containing the subsquare B (Fig-
ure 2.1) in the upper-left corner. We construct a latin cube
O =(LyLywly) by Jletting Ly=L, Lo=1[{], t=23..,
MMy " My

. 3 . .
£ = (¢, ;)oy, and oy = MM Mag ) It is easy to see that C is a

latin cube which contains the partial latin cube D (Figure 2.2) in the
upper-left corner of Li,Lg,Ls. We can replace D by D' (Figure 2.2), and

denote the new latin cube as C'. The theorem then follows as
locnc!| = v®-21.

112 11213
A= 213 |1 B = 2 1
1 31112
Figure 2.1
1|2 211
3 1
113 311
213 312
D= 13 D'= |2 1
1 1
1 113
1 3 112
3 213
Figure 2.2

Lemma 2.3. v*—~14 € J[v], v > 24.
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Proof. Since the partial latin cube E (Figure 2.3) can be embedded in a
latin cube L of order 12 (Figure 2.4), and a latin cube of order n can be
embedded in a latin cube of order m > 2n [3], then the partial latin cube
E can be embedded in a latin cube of any order v > 24. We can replace
E by E' (Figure 2.3), this concludes the proof. ‘

1 1
E = 21113 E' = 113
2 213
1 1
113]2 113
213 2
Figure 2.3
1|1214]|3|5]6 5 6 |3 1|41 2
211|315 }|6]|14 3 516 41211
A |4]3]|]2]6|1]5 Ay 1 415 21316
: 3|65 |6|1}4]2 4 211 51613
5161|4213 6 1] 2 3151|4
6452|383 ¢}1 2 31|14 61|65
2]1|5|4]|]6]3 12 1 10 | 2 51911
1(3]2|6|4]65 6 4|7 21519
A, | 6123115144 Ag 3 511 4 161|2
5164|2311 7 31512214
3146|512 1 8| 4 63|65
415|1]3]21|6 5 216 11413
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3156 116|214 10 91 12 8 7111

512141 |3]|6 4 | 12| 11 9 1 8

A, (216543 Ag (11| 6|10 3| 8| 7

' 64|23 ]1]65 8 7 9110 | 11 ] 12

4 3|52 ]6]1 2111 3 1110 ‘ 6

1116|3452 9 1 811112 | 10
Figure 2.4

A

k(i7j)+nr if Ak(z)J) S n,

b= oo L) Bilid) = {Ak(i,j)—n, if Ay(i,5) > n

: Ap | By
L, =
By | A
: As | Bs
Lg =
Ag | Beg
: Ag | Be
Lg
< Ag | Bs
By | Ag
L=
Bg | Ag
Ly=
Bs | As
B, | A
Lyys
Ar | By

Figure 2.4 (continued)
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Lemma 2.4. J[10] D I[10)\{10°~14}.

‘Proof. By Lemma 2.2 and the results obtained in [3].

For convenience of the following lemma, we. denote the set
{a+bla€A and beB} by A + B.

Lemma 2.5. J[v] D Ifv]\{v®~14} for every v, 20 < v < 39,

Proof. Since a latin cube of order n can be embedded in a latin cube of
order m > 2n [3], let O be a latin cube of order v, 20 < v < 39, contain-
ing a subcube B of order 10. B can, of course, be removed and replaced
by any other latin cube on the same symbols. Now the following three
parts of C' can be permuted independently:

(1)  the entries 1,2,...,10 in the right-lower corner of L,,L,,...,Lyq,
(2) the entries 1,2,...,10 but not in B or (1),
(3) the entries 11,12,...,v

By applying the permutation to (1), (2), and (3) independently, we have
Jlv] 2 J[10] + {0,10(v—10),20(v—10),...,.80(v—10),100(v—10)}

+ {0,(v—10)v,2(v—10)v,...,8(v—10)v,10(v—10)v}

+ {0,0%20%... (v—12)v2(v—10)v%}. Since 20<w <39, it follows by
Lemma 2.4 that J[v] D I[v]\{v®-14}.

Lemma 2.8. If J[v] D I[v]\{v*-14}, then J[2v] D I[2v]\{(2v)*~14}, and
J[2v+1] D I2v+1)\{(2v+1°)—14}, for every v > 10.

Proof. It is similar to Lemma 2.5.
Lemma 2.7. J[v] D I[v]\{v®*~14} for every v > 20.

Proof. By Lemma 2.5, and 2.6.

Now we have the following theorem.
Theorem 2.8. J[v] = I[v] for every v > 24.

Proof. It is a direct result of Lemmas 2.3 and 2.7.
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