ANRS

COMBINATORIA

VOLUME TWENTY-THREE.

JUNE: 1987

WATERLOO, CANADA

On latin cubes with prescribed intersections

Hung-Lin Fu

1. Introduction

A latin cube C of order v is a v-tuple $(L_1, L_2, ..., L_v)$ of pairwise disjoint latin squares of order v. Let $C = (L_1, L_2, ..., L_v)$ and $D = (M_1, M_2, ..., M_v)$ be two latin cubes of order v (with the same entries), then the intersection of C and D is defined to be the number $|C \cap D| = \sum_{i=1}^{v} |L_i \cap M_i|$, where $|L_i \cap M_i|$ is the number of common entries of L_i and M_i . Moreover, we define J[v] as the set of positive integers k such that there exist two latin cubes of order v with intersection k, and we define $I[v] = \{0,1,2,...,v^3-14\} \cup \{v^3-12,v^3-8,v^3\}$.

In [3] results on J[v] were used in solving the intersection problem for Steiner quadruple systems of order 4v, where v is the order of a Steiner quadruple system, and $v \geq 10$. Some of the results concerning J[v] which were obtained in that paper are the following:

- (1) $J[10] \supseteq I[10] \setminus \{10^3 21, 10^3 14\}.$
- (2) $J[v] \supseteq I[v] \setminus \{v^3 21, v^3 14\}$ for every even v > 20.

In this paper we prove that J[v]=I[v] for every $v\geq 24$ and $J[v]\supseteq I[v]\backslash\{v^3-14\}$ when $20\leq v\leq 23$.

2. Main theorems

It is easy to show that the intersection of two latin squares of order v cannot be v^2-5 , v^2-3 , v^2-2 , and v^2-1 . Hence we have the following lemma.

Lemma 2.1. $J[v] \subseteq I[v]$ for every order v.

Proof. It is well known that a latin cube is equivalent to a 3-quasigroup Q [2], and the set $\{(x,y,z) | (z,y,z \in Q)\}$, with one component fixed, corresponds to a latin square. Since the intersections of two latin squares cannot be v^2-5 , v^2-3 , v^2-2 , and v^2-1 , we conclude that the intersections of two latin cubes of order v cannot be $v^3-13,v^3-11,v^3-10,v^3-9,v^3-7,...,v^3-1$. This implies that $J[v] \subseteq I[v]$.

Lemma 2.2. $v^3-21 \in J[v]$ for every $v \ge 6$.

Proof. It is well known [1] that the partial latin square A of order 3 (Figure 2.1) can be embedded in a latin square $L = [\ell_{i,j}]$ of order $v \ge 6$. Let $M = [m_{i,j}]$ be a latin square of order v containing the subsquare B (Figure 2.1) in the upper-left corner. We construct a latin cube $C = (L_1, L_2, ..., L_v)$ by letting $L_1 = L$, $L_t = [\ell_{i,j}^t]$, t = 2,3,...,v, $\binom{m_{1,1}m_{1,2}\cdots m_{1,v}}{m_{t,1}m_{t,2}\cdots m_{t,v}}$. It is easy to see that C is a latin cube which contains the partial latin cube D (Figure 2.2) in the upper-left corner of L_1, L_2, L_3 . We can replace D by D' (Figure 2.2), and denote the new latin cube as C'. The theorem then follows as $|C \cap C'| = v^3 - 21$.

	1	2			1	2	3
A =	2	3	1	B =	2	3	1
		1	3	4	3	1	2

Figure 2.1

	1	2				2	1	
	2	3	$\cdot 1$		ŀ	1	2	3
		1	3		ŀ		3	1
l								
	2	3			[3	2	
D =	3	1	2	D' =	- [2	3	1
		2	1		1		1	2
,								
	3	1		•		1	3	
	1	2	3			3	1	2
		3	2				2	3

Figure 2.2

Lemma 2.3. $v^3-14 \in J[v], v \ge 24.$

Proof. Since the partial latin cube E (Figure 2.3) can be embedded in a latin cube L of order 12 (Figure 2.4), and a latin cube of order n can be embedded in a latin cube of order $m \geq 2n$ [3], then the partial latin cube E can be embedded in a latin cube of any order $v \geq 24$. We can replace E by E' (Figure 2.3), this concludes the proof.

Figure 2.3

	1	2	4	3	5	6		5	6	3	. 1	4	2
	2	1	3	5	6	4	- -	3	5	6	4	2	1
A_1	4	3	2	6	1	5	A_4	1	4	5	2	3	6
	3	5	6	1	4	2		4	2	1	5	6	3
	5	6	1	4	2	3		6	1	2	3	5	4
	6	4	5	2	3	1	-	2	3	4	6	1	5
	2	1	5	4	6	3		12	10	2	5	9	1
	1	3	2	6	4	5		6	4	7	2	5	9
A_2	6	2	3	1	5	4	A_5	3	5	1	4	6	2
	5	6	4	2	3	1		7	3	5	12	2	4
	. 3	4	6	5	1	2		1	8	4	6	3	5
	4	5	1	3	2	6		5	2	6	1	4	3

	3	5	1	6	2	4
	. 5	2	4	1	3	6
A_3	2	1	6	- 5	4	3
	6	4	2	3	1	5
	4	3	5	2	6	1
	1	6	3	4	5	2

	10	9	12	8	7	11
	4	12	. 11	9	1	8
A_6	11	6	10	3	8	7
	8	7	9	10	11	12
	2	11	3	1	10	6
	9	1	8	11	12	10

Figure 2.4

$$L = (L_1, L_2, \ldots, L_{12}), B_k(i,j) = \begin{cases} A_k(i,j) + n, & \text{if } A_k(i,j) \leq n, \\ A_k(i,j) - n, & \text{if } A_k(i,j) > n \end{cases}$$

Figure 2.4 (continued)

Lemma 2.4. $J[10] \supseteq I[10] \setminus \{10^3 - 14\}.$

Proof. By Lemma 2.2 and the results obtained in [3].

For convenience of the following lemma, we denote the set $\{a+b \mid a \in A \text{ and } b \in B\}$ by A+B.

Lemma 2.5. $J[v] \supseteq I[v] \setminus \{v^3 - 14\}$ for every $v, 20 \le v \le 39$.

Proof. Since a latin cube of order n can be embedded in a latin cube of order $m \geq 2n$ [3], let C be a latin cube of order v, $20 \leq v \leq 39$, containing a subcube B of order 10. B can, of course, be removed and replaced by any other latin cube on the same symbols. Now the following three parts of C can be permuted independently:

- (1) the entries 1,2,...,10 in the right-lower corner of $L_1,L_2,...,L_{10}$
- (2) the entries 1,2,...,10 but not in B or (1),
- (3) the entries 11,12,...,v.

By applying the permutation to (1), (2), and (3) independently, we have $J[v] \supseteq J[10] + \{0,10(v-10),20(v-10),...,80(v-10),100(v-10)\}$

 $+ \{0,(v-10)v,2(v-10)v,...,8(v-10)v,10(v-10)v\}$

 $+\{0,v^2,2v^2,...,(v-12)v^2,(v-10)v^2\}$. Since $20 \le v \le 39$, it follows by Lemma 2.4 that $J[v] \supseteq I[v] \setminus \{v^3-14\}$.

Lemma 2.6. If $J[v] \supseteq I[v] \setminus \{v^3-14\}$, then $J[2v] \supseteq I[2v] \setminus \{(2v)^3-14\}$, and $J[2v+1] \supseteq I[2v+1] \setminus \{(2v+1^3)-14\}$, for every $v \ge 10$.

Proof. It is similar to Lemma 2.5.

Lemma 2.7. $J[v] \supseteq I[v] \setminus \{v^3-14\}$ for every $v \ge 20$.

Proof. By Lemma 2.5, and 2.6.

Now we have the following theorem.

Theorem 2.8. J[v] = I[v] for every $v \ge 24$.

Proof. It is a direct result of Lemmas 2.3 and 2.7.

References

- T. Evans, Embedding incomplete latin squares, Amer. Math. Monthly 67 (1960), 958-961.
- [2] A. Cruse, On the finite completion of partial latin cubes, J. of Combinatorial Theory (A) 17 (1974) 112-119.
- [3] Hung-Lin Fu, Steiner quadruple systems of order 4v with prescribed intersections, Ars Combinatoria 21 (1986) 89-103.

Department of Algebra, Combinatorics and Analysis Auburn University Auburn, Alabama U.S.A.