陳子軒(Chi-Hin Chan)副教授
聯絡方式
- Email: cchan@math.nctu.edu.tw
- 電話: 03-571-2121 ext. 56464
- 傳真: 03-572-4679
- 地址: 新竹市大學路1001號 陽明交通大學 應用數學系 30010
- 相關網站:
近兩學期教授課程
- 113 學年度第一學期:
- 分析導論榮譽班(一)
- 拓樸學
- 112 學年度第二學期:
- 大域微分幾何
- 微積分甲(二)
履歷
- 學歷
- 美國德州奧斯汀大學數學博士 2008/05
- 美國加州柏克萊大學數學學士 2001/05
- 學術專長暨研究領域
- 黎曼流形上納維 - 斯托克斯方程式解之解析、幾何、拓墣等性質
- 不可壓縮納維 - 斯托克斯方程式解之正則性
- 擴散項以分數拉普拉斯表示之偏微分方程式的解之正則性
- 學術經歷與榮譽
- 國立交通大學應用數學系 助理教授,(2012/08 - )
- 香港中文大學 數學系暨數學科學研究所 博士後研究員,(2011年秋季至2012年春季)
- 美國明尼蘇達大學 數學系及應用研究所 博士後研究員,(2009年秋季至2011年春季)
- 美國德州奧斯汀大學 數學系講師,(2008年秋季至2009年春季)
- 近五年研究計劃
對以負曲率流形作背景空間之納維-斯托克斯方程之解之大範圍 (101-2115-M-009-016-MY2)
著作選集
- Chi Hin Chan, Alexis F. Vasseur. Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations. Methods Appl. Anal 14 (2007), no. 2, 197-212.
- Chi Hin Chan. Smoothness Criteria for Navier-Stokes equations in terrms of regularity along the streamlines. Method Appl. Anal. 17 (2010), no. 1, 081-104.
- Chi Hin Chan, Magdalena Czubak. Regularity of solutions for the critical N-dimensional Burgers' equation. Ann. Tnst. H. Poincare Anal. Non Lineaire. 27(2): 471-501,2010.
- Chi Hin Chan, Magdalena Czubak, and Luis Silvestre. Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete Contin. Dyn. Syst., 27(2):847-861, 2010.
- Luis Caffarelli, Chi Hin Chan, Alexis F. Vasseur. Regularity theory for parabolic nonlinear integral operators. J. Amer. Math. Soc. 24 (2011), no. 3, 849869.
- Chi Hin Chan, Magdalena Czubak. Non-uniqueness of the Leray-Hopf solutions in the hyperbolic setting. Dynamics of PDE, Vol 10, No1, 43-77, 2013.
- Chi Hin Chan, Tsuyoshi Yoneda. On possible isolated blow-up phenomena and regularity criterion of the 3D Navier-Stokes equation along the streamlines. Method and Applications of Analysis. Vol.19, No.3 pp.211-242, September 2012.
- Chi Hin Chan, Tsuyoshi Yoneda. On the stationary Navier-Stokes flow with isotropic streamlines in all latitudes on a sphere or a 2D hyperbolic space.Dynamics of PDE, Vol 10, No 3, 209-254, 2013.
- Chi Hin Chan, Magdalena Czubak. Remarks on the weak Formulation of the Navier- Stoker equations on the 2D hyperbolic space. Accepted for publication in Ann. Inst. H. Poincare Anal.Non Lineaire.
- Chi Hin Chan, Magdalena Czubak. Tsuyoshi Yoneda. An ODE for boundary layer separation on a sphere and a hyperbolic space. Phys. D 282 (2014), 34-38.
- Chi Hin Chan, Alexis F. Vasseur. De Giorgi techniques applied to the Holder regularity of solutions to Hamilton- Jacobi equations. ArXiv e-print, November 2014.
- Chi Hin Chan, Magdalena Czubak. Liouville Theorems for The Stationary Navier Stokes Equation On a Hyperbolic Space. ArXiv e-print January 2015.
- Chi Hin Chan, Che-Kai Chen, Magdalena Czubak, Asymptotic behavior of the steady Navier-Stokes equation on the hyperbolic plane, accepted for publication in Dynamics of P.D.E.
- Chi Hin Chan, Magdalena Czubak, Marcelo M. Disconzi. The formulation of the Navier- Stokes equations on Riemannian manifolds, Journal of Geometry and Physics 121(2017) 335-346.
- Chi Hin Chan, Magdalena Czubak, Antithesis of the Stokes paradox on the hyperbolic plane. ArXiv e-print, August, 2017
(A) Refereed Papers:
- Nonuniqueness of Leray-Hopf type solutions to the Navier-Stokes equation on 2 dimensional hyperbolic manifolds. Invited talk in the conference Workshop on Applied Analysis and Applied PDEs. University of Vicroria, July 12-July 15, 2011.
- Regularity theory for nonlinear integral operators. Invited talk in the conference Nonlocal operators and partial differential equations Bedlewo, June 27-July 3, 2010.
- Invited talk in the Special Session on Partial Differential Equations from Fluid Mechanics at the AMS Fall Southeastern Meeting in Boca Raton, FL, Oct 30-Nov 1, 2009.
- Invited talk in the Special Session on Nonlinear partial differential equations and applications at the AMS Spring Centeral Sectional Meeting in Urbana, IL, March 27-29, 2009.
(B) Conference Papers:
- Chi Hin Chan. The De Giorgi's Method as Applied to The Regularity Theory for Incompressible Navier Stokes Equations. Ph.D. thesis submitted to the graduate school of UT Austin. Thesis Advisor: Professor Alexis Vasseur.
(C) Dissertation:
go back