.:: 回首頁 | 陽明交通大學 | 意見回饋 | 網站地圖 | 手機板 | English  ::.
國立陽明交通大學 回陽明交通大學 回本系應數首頁
最新消息 系所介紹 師資人員 學術研究 招生入學 修業規章 學生專區 系友會 FAQ

  • 招生與徵聘
  • 系所公告
  • 獎勵與補助
  • 工讀與就業
  • 學生活動
  • 其他消息

  • 演講公告月份查詢
  • 論文研討
  • 演講
  • 研討會

    • 微積分教學小組
    • 相關學術網站
    • 校內相關單位
    • 陽明交通大學
    • 意見回饋

演講公告

新聞標題: ( 2019-12-03 )

  • 演講主題:Probabilistic Structure Learning for EEG/MEG Source Imaging with Hierarchical Graph Prior

  • 主講人:Li Wang 教授 (University of Texas at Arlington, USA.)

  • 演講日期:2019 年12月17日(星期二) 14:20 –15:20

  • 演講地點:(光復校區) 科學一館223室

  • 茶會時間:2019 年12月17日14:10 (科學一館205室)

  • 摘要內容:

    Brain source imaging is an important method for noninvasively characterizing brain activity using Electroencephalogram (EEG) or Magnetoencephalography (MEG) recordings. Traditional EEG/MEG Source Imaging (ESI) methods usually assume that either source activities at different time points are unrelated, or that similar spatiotemporal patterns exist across an entire study period. The former assumption makes ESI analyses sensitive to noise, while the latter renders ESI analyses unable to account for time-varying patterns of activity. To effectively deal with noise while maintaining flexibility and continuity among brain activation patterns, we propose a novel probabilistic ESI model based on a hierarchical graph prior. In our method, a spanning tree constraint is imposed to ensure that activity patterns have spatiotemporal continuity. An efficient algorithm based on alternating convex search is presented to solve the proposed model and is provably convergent. Comprehensive numerical studies using synthetic data on a real brain model are conducted under different levels of signal-to-noise ratio (SNR) from both sensor and source spaces. We also examine the EEG/MEG data from two real applications, in which our ESI reconstructions are neurologically plausible. All results demonstrate significant improvements of the proposed algorithm over the benchmark methods in terms of source localization performance, especially at high noise levels.

  • 相關檔案:Talk_1081217.pdf


返回go back





  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •    
  • English Version|
  • 意見回饋|
  • Go Top
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         
  •         

本網站著作權屬於國立陽明交通大學 應用數學系  © 2023

地址: 300 新竹市大學路1001號 科學一館2樓

系辦電話 (03)5722088 傳真 (03) 5724679 電子郵件:lcchang@math.nctu.edu.tw

本系網站資訊開放宣告

本系個人資料保護暨資訊安全宣言

最後更新:2018-03-1 05:31:24 PM (CST)