NATIONAL YANG MING CHIAO TUNG UNIVERSITY

2025 Ordinary Differential Equations Ph.D. Qualifying Exam Academic Year 113-2

1. (a) (10%) Show that the solution of the initial value problem

$$y' = \sqrt{|y|}, \quad y(t_0) = 0$$
 (1)

exists, but is not unique by producing two linearly independent solutions.

- (b) (5 %) Does this contradict the Fundamental Existence and Uniqueness theorem? Please state the fundamental existence and uniqueness theorem for ODE.
- (c) (5 %) What can you say about the following perturbations of the above system:

$$y' = \sqrt{|y|} + 0.1, \quad y(t_0) = 0$$
 (2)

2. (20 %) Suppose that square matrix A has a negative eigenvalue. Show that the linear system

$$\dot{x} = Ax$$

has at least one nontrivial solution x(t) that satisfies

$$\lim_{t \to \infty} x(t) = 0.$$

3. (20 %) Use Lyapunov's method to study the stability of the zero solution for the planar system of equations

$$x' = y^2 - x^3$$
, $y' = -y - 2xy$.

4. Consider a Lotka-Volterra two species competition model

$$x_{1}' = \gamma_{1}x_{1}(1 - \frac{x_{1}}{K_{1}}) - \alpha_{1}x_{1}x_{2}$$

$$x_{2}' = \gamma_{2}x_{2}(1 - \frac{x_{2}}{K_{2}}) - \alpha_{2}x_{1}x_{2}$$
(3)

where $\gamma_1, \gamma_2, \alpha_1, \alpha_2, K_1, K_2$ are positive constants and $\frac{\gamma_1}{\alpha_1} < K_1, \frac{\gamma_2}{\alpha_2} < K_2$.

- (a) (5 %) Classify the equilibria
- (b) (5 %) Sketch the phase portrait
- (c) (5 %) Determine the stable and unstable manifolds around each saddle point
- (d) (5 %) What can you say about the global asymptotic behavior of the nonlinear system?
- 5. Consider the system in polar coordinates

$$r' = 2r^2 - r^3 + \mu r$$

$$\theta' = 1$$
 (4)

- (a) (10 %) Identify all equilibria and limit cycles and classify their existence and stability as they depend on parameter μ
- (b) (10 %) Sketch sample phase portraits for different values of μ