PhD Qualifying Exam in Numerical Analysis

Spring, 2025

- 1. Consider a linear system Ax=b by where $A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.
 - (i) (4 pts) Construct the associated Krylov space given an initial guess $x_0 = [0\ 0\ 0]^T$.
 - (ii) (8 pts) Solve the linear system by using the Arnoldi iteration.
 - (iii) (8 pts) It can be shown that the number of Arnoldi iteration required equals

4 when $b = \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}$. Explain the reason why the number of iterations is less

than 4 in (ii) by finding the minimal polynomial p, p(0) = 1, such that p(A)b = 0.

2. (20 pts) Suppose that f has a continuous second derivative on [0,1]. Show that there is a point $\eta \in (0,1)$ such that

$$\int_0^1 x f(x) dx = \frac{1}{2} f\left(\frac{2}{3}\right) + \frac{1}{72} f''(\eta).$$

Hint: using Gauss quadrature

$$\int_0^1 f(x)w(x)dx - \sum_{i=0}^n w_i f(x_i) = K_n f^{(2n+2)}(\eta),$$

here x_i and w_i , $i=0\cdots n$, are quadrature points and weights, respectively.

- 3. (20 pts) Suppose a cubic spline s(x) is constructed to approximate $f(x) = x^3$ for $x \in [0,1]$. Let $\sigma_i = s''(x_i)$, for $i = 0 \cdots m$, $m \ge 2$. Show that $s(x) \ne f(x)$ if natural spline boundary conditions are applied. On the other hand, if $\sigma_0 = f''(0)$ and $\sigma_m = f''(1)$, then s(x) = f(x).
- 4. (20 pts) Consider a model ordinary differential equation

$$\begin{cases} y' = \lambda y \\ y(0) = 1 \end{cases}$$

here $t \in (0, \infty)$ and $\lambda \in (-\infty, 0)$. Suppose the equation is numerically solved by the RK method defined by the following Butcher tableau

$$\begin{array}{c|cccc}
0 & & & \\
\frac{1}{2} & \frac{1}{2} & & \\
\hline
1 & -1 & 2 & \\
\hline
\frac{1}{6} & \frac{2}{3} & \frac{1}{6}
\end{array}$$

- (i) (10 pts) Show that the numerical method is absolute stable when the time step h satisfies $-2.5 < h\lambda < 0$.
- (ii) (10 pts) Check the consistency and determine the order of convergence of the method.
- 5. (20 pts) Consider the following boundary-value problem

$$\begin{cases} -\varepsilon u'' + u' = f(x), & \text{for } x \in [0,1] \\ u(0) = 0, \ u(1) = 1 \end{cases}$$

where ε is a constant and f is continuous on [0,1]. Suppose we solve the equation by the Galerkin finite element method where the solution is piecewise

linear on a uniform mesh with mesh size $h = \frac{1}{n}$ for some $n \in \mathbb{N}$. Let $u_h =$

 $(u_0, u_1 \dots u_n)^T$ be the finite element solution with $u_0 = 0, u_n = 1$. The finite element solution satisfies the discrete equation

$$A_h u_h = f_h$$

- (i) (8 pts) Derive the matrix A_h and f_h after the boundary conditions are applied for the case n=3.
- (ii) (6 pts) Prove that $||(u u_h)'|| \le \gamma ||u|||$, here $||\cdot||$ is the usual square integrable norm, i.e. the $L^2([0,1])$ norm.
- (iii) (6 pts) For the case $\varepsilon = 0.1$ and f(x) = 0, find the exact solution and compare with u_h with n=3. From your observation, do you think the error estimation is useful? Justify your answer.