PhD Qualifying Exam in Numerical Analysis

Fall, 2024

Please do any **FIVE** of the following problems. Each problem counts 20 points.

1. For the solution of the linear system $A\mathbf{x} = \mathbf{b}$ with $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$, consider the following iterative method $\mathbf{x}^{(k+1)} = B(\theta)\mathbf{x}^{(k)} + \mathbf{g}(\theta), \ k \ge 0$, with $\mathbf{x}^{(0)}$ given, where θ is a real parameter and

$$B(\theta) = \frac{1}{4} \begin{bmatrix} 2\theta^2 + 2\theta + 1 & -2\theta^2 + 2\theta + 1 \\ -2\theta^2 + 2\theta + 1 & 2\theta^2 + 2\theta + 1 \end{bmatrix}, \quad \mathbf{g}(\theta) = \begin{bmatrix} \frac{1}{4} - \theta \\ \frac{1}{4} - \theta \end{bmatrix}$$

- (a) Check that the method is consistent $\forall \theta \in \mathbb{R}$.
- (b) Determine that values of θ for which the method is convergent.
- (c) Compute the optimal value of θ that maximizes the convergence rate.
- 2. Let $f \in C^2([a,b])$, x_0, \ldots, x_n be n+1 distinct nodes of [a,b] with $a = x_0 < x_1 < \cdots < x_n = b$, and the function s(x) on the interval [a,b] be a spline of degree 3 relative to the nodes.
 - (a) Prove that $\int_{a}^{b} [s''(x)]^2 dx \le \int_{a}^{b} [f''(x)]^2 dx.$
 - (b) Verify the validity of part (a) in the case where the spline s satisfies conditions of the form s'(a) = f'(a), s'(b) = f'(b).

3. Given
$$\int_{-1}^{1} |x| e^{x^3} dx$$
.

- (a) Apply the midpoint, trapezoidal, and Cavalieri-Simpson composite rules to approximate the integral.
- (b) Discuss their convergence in (a) as a function of the size h of the subintervals.
- 4. Fix $0 < T < +\infty$. Given an initial-value problem (IVP): $y'(x) = f(x, y(x)), x \in I$ and $y(x_0) = y_0$, where f(x, y) is a continuous real-valued function in $I \times (-\infty, +\infty)$ and $I = (x_0, x_0 + T)$. For h > 0, let $x_n = x_0 + nh$, with $n = 0, 1, 2, \ldots, N_h$, be the sequence of discretization nodes of I into subintervals $I_n = [x_n, x_{n+1}]$, where N_h is maximum integer such that $x_{N_h} \leq x_0 + T$. Let u_j be the approximation at node x_j of the exact solution $y(x_j)$ of the IVP. Consider the following family of linear multistep methods,

$$u_{n+1} = u_n + h\left[\left(1 - \frac{\alpha}{2}\right)f(x_n, u_n) + \frac{\alpha}{2}f(x_{n+1}, u_{n+1})\right],$$

depending on the real parameter α .

- (a) Study their consistency as a function of α .
- (b) Use the corresponding method in (a) to solve the Cauchy problem: y'(x) = -10y(x) for x > 0 and y(0) = 1.
- (c) Determine the values of h in correspondence of which the method is absolutely stable.
- 5. Given a two-point boundary value problem (BVP): -u''(x) = f(x), 0 < x < 1 and u(0) = u(1) = 0, where $f \in C^0([0,1])$. Let a function G be defined in a piecewise linear function of s for fixed x, G(x,s) = s(1-x) if $0 \le s \le x$ and G(x,s) = x(1-s) if $x \le s \le 1$. Consider that the approximation to the solution u of the BVP is a finite sequence $\{u_j\}_{j=0}^n$ defined only at grid points $\{x_j\}_{j=0}^n$ (with the understanding that u_j approximates $u(x_j)$) by requiring that $-\frac{u_{j+1}-2u_j+u_{j-1}}{h^2} = f(x_j)$, for $j = 1, \ldots, n-1$ and $u_0 = u_n = 0$, where $n \ge 2$. h = 1/n and the grid points $\{x_s\}_{s=0}^n$ does not set of the solution of the grid points of x_s .

for j = 1, ..., n-1 and $u_0 = u_n = 0$, where $n \ge 2$, h = 1/n, and the grid points $\{x_j\}_{j=0}^n$ given by $x_j = jh$. Prove that $G^k(x_j) = hG(x_j, x_k)$, where G^k is a grid function for the grid point x_k and the solution to the following problem $L_h G^k = e^k$, where e^k is the discretization error grid function of the BVP (it satisfies $e^k(x_j) = \delta_{kj}, 1 \le j \le n-1$) and L_h is the operator defined by

$$(L_h u)(x_j) = -\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2}, \quad j = 1, \dots, n-1$$

6. Given a partial differential equation (PDE) with the solution u = u(x,t) for $x \in [0,1]$ and t > 0, $\frac{\partial u}{\partial t} + Lu = 0$, 0 < x < 1, t > 0, subject to the boundary conditions u(0,t) = u(1,t) = 0, t > 0 and the initial condition $u(x,0) = u_0(x)$ for $0 \le x \le 1$, where L is the differential operator defined as $Lu = -\nu \frac{\partial^2 u}{\partial x^2}$. First, for all t > 0, to multiply the PDE by a test function v = v(x) and integrate over (0,1). Then,

$$\int_0^1 \frac{\partial u(t)}{\partial t} v \, dx + a(u(t), v) = 0 \quad \forall v \in \mathrm{H}_0^1(0, 1) \text{ with } u(0) = u_0,$$

where $a(u(t), v) = \int_0^1 \nu(\partial u(t)/\partial x)(\partial v/\partial x) dx$ is the bilinear form with the elliptic operator L. Next, consider the semidiscretization (to get a Galerkin formulation), and apply the implicit Euler scheme for the temporal variable to the Galerkin problem, and obtain

$$\left(\frac{u_h^{k+1} - u_h^k}{\Delta t}, v_h\right) + a(u_h^{k+1}, v_h) = 0 \quad \forall v_h \in V_h,$$

where V_h is a suitable finite dimensional subspace of $H_0^1(0,1)$, $\Delta t > 0$, and $(u_h, v_h) = \int_0^1 u_h v_h dx$.

Prove that $\|u_h^{k+1}\|_{L^2(0,1)}^2 + 2\nu\Delta t \left\|\frac{\partial u_h^{k+1}}{\partial x}\right\|_{L^2(0,1)}^2 \le \|u_h^k\|_{L^2(0,1)}^2.$