National Yang Ming Chiao Tung University Department of Applied Mathematics

Real Analysis Ph.D. Qualifying Exam, Spring 2024

> There are 7 question sets of total 100 points.
> Answer questions as carefully and completely as possible.
> Do not make formal arguments without mathematical justification. If you use a major theorem, mention it by name and check its hypotheses.

Setting: In the following problems, whenever not specified, the sets are assumed be Lebesgue measurable subsets of some Euclidean spaces \mathbb{R}^{n} and integrations are Lebesgue integrals. We write $m(E)$ to be the Lebesgue measure of a measurable set E in \mathbb{R}^{n}. The notation "a.e." stands for "almost everywhere".

1. (15%) Construct a measurable subset E of $[0,1]$ such that for every subinterval I, both $E \cap I$ and $I \backslash E$ have positive measure.
2. Let $E \subset \mathbb{R}^{n}$ be a measurable set, and we say that x is a point of Lebesgue density of E if

$$
\lim _{m(B) \rightarrow 0, x \in B} \frac{m(B \cap E)}{m(B)}=1,
$$

where B is a ball center at x. Show that
(a) (5 \%) Almost every point $x \in E$ is a point of density of E.
(b) (5%) Almost every point $x \notin E$ is not a point of density of E.
3. (15%) Show that the Borel σ-algebra \mathcal{B} in \mathbb{R}^{n} is the smallest σ-algebra containing the closed sets in \mathbb{R}^{n}.
4. (10%) Let f be a measurable function defined on E, and define $\omega_{f}(a):=m(x \in E: f(x)>a)$ for $-\infty<a<\infty$. If $f_{k} \nearrow f^{1}$, show that $\omega_{f_{k}} \nearrow \omega_{f}$.
5. (15%) Let $\left\{f_{k}\right\}$ be a sequence of nonnegative measurable functions defined on E. If $f_{k} \rightarrow f$ as $k \rightarrow \infty$ and $f_{k} \leq f$ a.e. on E. Show that $\int_{E} f_{k} \rightarrow \int_{E} f$ as $k \rightarrow \infty$.
6. (15%) Let f be measurable and finite a.e. on $[0,1]$. If $f(x)-f(y)$ is integrable over the square $0 \leq x \leq 1,0 \leq y \leq 1$. Show that f is integrable on $[0,1]$.
7. (20%) Use Fubini's theorem to prove that

$$
\int_{\mathbb{R}^{n}} e^{-|x|^{2}} d x=\pi^{n / 2}
$$

[^0]
[^0]: ${ }^{1}$ The notation is to denote $f_{k} \leq f_{k+1}$ for all $k \in \mathbb{N}$, and $f_{k} \rightarrow f$ a.e. as $k \rightarrow \infty$.

