NATIONAL YANG MING CHIAO TUNG UNIVERSITY 2024 Ordinary Differential Equations Ph.D. Qualifying Exam

Academic Year 112-2

1. (10%) Find the stable, unstable and center subspaces E^{s}, E^{u} and E^{c} of $\dot{\mathbf{x}}=A \mathbf{x}$, where

$$
\mathbf{A}=\left(\begin{array}{ccc}
-1 & -3 & 0 \\
0 & 2 & 0 \\
5 & 7 & -1
\end{array}\right)
$$

2. (15%) Solve the nonhomogeneous ODE:

$$
\dot{\mathbf{x}}=\mathbf{A}(t) \mathbf{x}+\mathbf{B}(t), t>1, \quad \mathbf{x}(1)=\binom{1}{1}
$$

where $\mathbf{x} \in \mathbb{R}^{2}$ and

$$
\mathbf{A}(t)=\left(\begin{array}{cc}
0 & 1 \\
2 / t^{2} & -2 / t
\end{array}\right), \quad \mathbf{B}(t)=\binom{6 t}{9 / t^{4}} .
$$

3. (15%) Consider the following prey-predator system

$$
(\mathbf{P})\left\{\begin{array}{l}
\dot{x}=r x\left(1-\frac{x}{K}\right)-\alpha x y \\
\dot{y}=y(c x-d) \\
x(0)>0, \quad y(0)>0
\end{array}\right.
$$

where $r, K, \alpha, c, d>0$.
(a) (7%) Prove that the solution of (\mathbf{P}) exists and is unique for $t>0$.
(b) (8%) Prove that the solution of (\mathbf{P}) is positive and bounded for all $t>0$.
4. (25%) Consider the following system

$$
\text { (Q) }\left\{\begin{array}{l}
\dot{x}=x-y-2 x^{3}-3 x y^{2}, \\
\dot{y}=x+y-2 x^{2} y-3 y^{3} .
\end{array}\right.
$$

(a) (5 \%) State the Poincaré-Bendixon Theorem for autonomous systems $\dot{\mathbf{x}}=f(\mathbf{x})$ where $\mathrm{x} \in \mathbb{R}^{2}$.
(b) (5%) State Dulac's Criteria for autonomous systems $\dot{\mathbf{x}}=f(\mathbf{x})$ where $\mathbf{x} \in \mathbb{R}^{2}$.
(c) (10%) Prove that there exists a periodic solution for (\mathbf{Q}) in an annulus.
(d) (5%) Prove or disprove the uniqueness of the periodic solution for (Q).
5. (20%) Consider the second-order differential equation

$$
\ddot{x}+f(x) \dot{x}+g(x)=0
$$

for some f and g are smooth real-valued functions defined in a neighborhood of the origin.
(a) (5%) Rewrite the equation as

$$
\left\{\begin{array}{l}
\dot{u}=v-F(u), \\
\dot{v}=-g(u)
\end{array}\right.
$$

for some F.
(b) (5 \%) State the definition of Lyapunov function for autonomous systems $\dot{\mathbf{x}}=f(\mathbf{x})$ where $\mathbf{x} \in \mathbb{R}^{2}$.
(c) (10%) Let $G(u):=\int_{0}^{u} g(s) d s$. Assume that $G(u)>0$ and $g(u) F(u)>0$ in a deleted neighborhood of the origin. Prove or disprove that the origin is asymptotically stable.
6. (15%) Consider the linear system $\dot{\mathbf{x}}=A(t) \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^{n}, A(t) \in \mathbb{R}^{n \times n}$ is a continuous, periodic matrix with periodic $T>0$. Let $\Phi(t)$ be a fundamental matrix of $\dot{\mathbf{x}}=A(t) \mathbf{x}$.
(a) (5%) Prove that $\Phi(t+T)$ is also a fundamental matrix of $\dot{\mathbf{x}}=A(t) \mathbf{x}$.
(b) (10\%) Prove that there exists a periodic nonsingular matrix $P(t)$ of period T and a constant matrix R such that $\Phi(t)=P(t) e^{t R}$.

