NYCU Qualifying Exam: Partial Differential Equations, September 13, 2023

Instruction :Please answer all of the following problems. Each answer which you give should be supported by rigorous mathematical arguments. Time allowed: 4 hours

Problem 1. Let $\lambda>0$ be a prescribed constant. Consider the linear operator

$$
\begin{equation*}
\mathcal{L}: C^{2}(\Omega) \rightarrow C^{0}(\Omega) \tag{0.1}
\end{equation*}
$$

which is given by

$$
\begin{equation*}
\mathcal{L} u=\triangle u+\lambda u, \tag{0.2}
\end{equation*}
$$

in which Ω can be any domain in \mathbb{R}^{3}.
Part (a) (10 points)Let $O=(0,0,0)$ be the origin in the Euclidean space \mathbb{R}^{3}. Consider $w \in C^{2}\left(\mathbb{R}^{3}-\{O\}\right)$ be a solution to the equation $\mathcal{L} w=0$ on $\mathbb{R}^{3}-\{O\}$ which is radially symmetric in that w can be written in the form of $w(x)=F(|x|)$, for all $x \in \mathbb{R}^{3}-\{O\}$. Find the most general expression of w, and give your answer in terms of functions of $|x|$. (Hint : You can use the fact that a solution ψ to the O.D.E. $\psi^{\prime \prime}(r)+\lambda \psi(r)=0$ can always be written as a linear combination of $\cos (\sqrt{\lambda} r)$ and $\sin (\sqrt{\lambda} r))$.

Part (b)(10 points) Find a function $K \in C^{2}\left(\mathbb{R}^{3}-\{O\}\right) \cap L_{l o c}^{1}\left(\mathbb{R}^{3}\right)$ which satisfies the following relation for all test functions $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} K(x) \triangle \phi(x) \mathrm{d} x+\lambda \int_{\mathbb{R}^{3}} K(x) \phi(x) \mathrm{d} x=\phi(0) . \tag{0.3}
\end{equation*}
$$

(Hint : Such a function K can be chosen to be radially symmetric, and you may rely on your work in Part (a)).

Problem 2.Take $N \geq 1$ be an integer. Let $f \in C^{0}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$. Consider the function $u:(0, \infty) \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ which is given by

$$
\begin{equation*}
u(t, x)=\frac{1}{(4 \pi t)^{\frac{N}{2}}} \int_{\mathbb{R}^{N}} e^{\frac{-|x-y|^{2}}{4 t}} f(y) \mathrm{d} y, \tag{0.4}
\end{equation*}
$$

for all $(t, x) \in(0, \infty) \times \mathbb{R}^{N}$. It is well-known that the function u as given by (0.4) is a solution to the heat equation $\partial_{t} u-\triangle u=0$ on $(0, \infty) \times \mathbb{R}^{N}$.
Part (a) (12 points) In this problem, prove that the following relation holds for each $x_{0} \in \mathbb{R}^{N}$.

$$
\lim _{(t, x) \rightarrow\left(0, x_{0}\right)} u(t, x)=f\left(x_{0}\right)
$$

Part (b) (12 points) Here, we specialize to the case of $N=1$, and suppose that f satisfies the stronger condition $f \in L^{2}(\mathbb{R}) \cap C^{0}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, prove that there exists some absolute constant $C_{0}>0$, such that the function u as given by (0.4) satisfies the following gradient-estimate

$$
\begin{equation*}
\int_{\mathbb{R}}\left|\frac{\partial u}{\partial x}(t, x)\right|^{2} \mathrm{~d} x \leq \frac{C_{0}}{t}\|f\|_{L^{2}(\mathbb{R})}^{2}, \tag{0.5}
\end{equation*}
$$

for all $t>0$.

Problem 3. $(14$ points) Here, we consider the closed cube $[-1,1] \times[-1,1]=\{(x, y)$: $|x| \leq 1,|y| \leq 1\}$ in \mathbb{R}^{2}. Consider a function $u \in C^{2}([-1,1] \times[-1,1])$ which satisfies the following conditions.

- $\triangle u=0$ holds on $(-1,1) \times(-1,1)=\{(x, y):|x|<1,|y|<1\}$.
- $u(1, y)=u(-1, y)=0$ holds for all $y \in[-1,1]$.
- $\frac{\partial u}{\partial x}(x, 1)=\frac{\partial u}{\partial y}(x, 1)$ and $\frac{\partial u}{\partial x}(x,-1)=\frac{\partial u}{\partial y}(x,-1)$ holds for all $x \in[-1,1]$.

Prove that $u=0$ holds on $[-1,1] \times[-1,1]$.
(Hint : You may start with the identity $0=\int_{[-1,1] \times[-1,1]} u(x, y) \triangle u(x, y) \mathrm{d} x \mathrm{~d} y$, and try to perform integration by parts by using the prescribed boundary conditions)

Problem 4. Part (a) (10 points) Take an integer $N \geq 2$. Let Ω be a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$. Consider a function $u \in C^{1}(\bar{\Omega}) \cap C^{\infty}(\Omega)$ which is harmonic on Ω. Prove that the following relation holds.

$$
\begin{equation*}
\max _{\bar{\Omega}}|\nabla u|=\max _{\partial \Omega}|\nabla u| . \tag{0.6}
\end{equation*}
$$

Part (b)(12 points) In particular, take $N=2$, and we consider the open ball $B_{0}(1)=$ $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ in \mathbb{R}^{2}. Consider a function $u \in C^{1}\left(\overline{B_{0}(1)}\right) \cap C^{\infty}\left(B_{0}(1)\right)$ which is harmonic on $B_{0}(1)$. Suppose that there are two functions $\Psi_{1}, \Psi_{2} \in C^{1}\left(\overline{B_{0}(1)}\right) \cap C^{2}\left(B_{0}(1)\right)$ satisfying the following properties.

- $\triangle \Psi_{1} \leq 0$ and $\triangle \Psi_{2} \geq 0$ hold on $B_{0}(1)$. Moreover, $\Psi_{1}=u=\Psi_{2}$ holds on $\partial B_{0}(1)$.

Prove that the following relation holds:

$$
\frac{\max }{B_{0}(1)}|\nabla u| \leq \max \left\{\max _{\partial B_{0}(1)}\left|\nabla \Psi_{1}\right|, \max _{\partial B_{0}(1)}\left|\nabla \Psi_{2}\right|\right\} .
$$

Problem 5 ($\mathbf{1 0}$ points) Take an integer $N \geq 2$. Let Ω be a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$. For a prescribed $T>0$, define the space-time region $\Omega_{T}=(0, T] \times \Omega$, and also $\Gamma_{T}=\overline{\Omega_{T}}-\Omega_{T}$. (note that $\left.\overline{\Omega_{T}}=[0, T] \times \bar{\Omega}\right)$. Consider a function $u \in C^{2}\left(\overline{\Omega_{T}}\right)$ which satisfies the following properties.

- $\partial_{t}^{2} u-\Delta u=0$ holds on Ω_{T}. That is, u solves the wave equation on Ω_{T}.
- $u(t, x)=0$ holds for all $(t, x) \in \Gamma_{T}$.
- $\partial_{t} u(0, x)=0$ holds for all $x \in \Omega$.

Use energy method or otherwise to prove that $u(t, x)=0$ holds for all $(t, x) \in \Omega_{T}$.
Problem 6 (10 points) Consider the piece-wise linear, continuous function $\Phi: \mathbb{R} \rightarrow$ $[0, \infty)$ which is given by $\Phi(x)=x \chi_{\{x>0\}}$ for all $x \in \mathbb{R}$. (Note that equivalently, we have $\Phi(x)=0$, for all $x \leq 0$. While $\Phi(x)=x$ for all $x>0)$. Consider now the region

$$
\begin{equation*}
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: y>\Phi(x)\right\} \tag{0.7}
\end{equation*}
$$

Let $g \in C^{\infty}((0, \infty))$ be prescribed. Use the method of characteristics or otherwise to find an explicit expression for the solution $u \in C^{1}(\bar{\Omega}-\{(0,0)\})$ to the equation

$$
x \frac{\partial u}{\partial y}(x, y)-y \frac{\partial u}{\partial x}(x, y)=u(x, y)
$$

on Ω, which satisfies the prescribed boundary condition $u(x, x)=g(x)$ for all $x>0$.

