NYCU Qualifying Exam: Partial Differential Equations, September 13, 2023

Instruction :Please answer all of the following problems. Each answer which you give should be supported by rigorous mathematical arguments.**Time allowed: 4 hours**

Problem 1. Let $\lambda > 0$ be a prescribed constant. Consider the linear operator

$$\mathcal{L}: C^2(\Omega) \to C^0(\Omega) \tag{0.1}$$

which is given by

$$\mathcal{L}u = \Delta u + \lambda u, \tag{0.2}$$

in which Ω can be any domain in \mathbb{R}^3 .

Part (a)(10 points)Let O = (0, 0, 0) be the origin in the Euclidean space \mathbb{R}^3 . Consider $w \in C^2(\mathbb{R}^3 - \{O\})$ be a solution to the equation $\mathcal{L}w = 0$ on $\mathbb{R}^3 - \{O\}$ which is radially symmetric in that w can be written in the form of w(x) = F(|x|), for all $x \in \mathbb{R}^3 - \{O\}$. Find the most general expression of w, and give your answer in terms of functions of |x|. (**Hint**: You can use the fact that a solution ψ to the O.D.E. $\psi''(r) + \lambda\psi(r) = 0$ can always be written as a linear combination of $\cos(\sqrt{\lambda}r)$ and $\sin(\sqrt{\lambda}r)$).

Part (b)(10 points) Find a function $K \in C^2(\mathbb{R}^3 - \{O\}) \cap L^1_{loc}(\mathbb{R}^3)$ which satisfies the following relation for all test functions $\phi \in C^{\infty}_c(\mathbb{R}^3)$

$$\int_{\mathbb{R}^3} K(x) \triangle \phi(x) \mathrm{d}x + \lambda \int_{\mathbb{R}^3} K(x) \phi(x) \mathrm{d}x = \phi(0).$$
(0.3)

(**Hint**: Such a function K can be chosen to be radially symmetric, and you may rely on your work in **Part** (a)).

Problem 2.Take $N \geq 1$ be an integer. Let $f \in C^0(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$. Consider the function $u: (0, \infty) \times \mathbb{R}^N \to \mathbb{R}$ which is given by

$$u(t,x) = \frac{1}{(4\pi t)^{\frac{N}{2}}} \int_{\mathbb{R}^N} e^{\frac{-|x-y|^2}{4t}} f(y) \mathrm{d}y, \qquad (0.4)$$

for all $(t, x) \in (0, \infty) \times \mathbb{R}^N$. It is well-known that the function u as given by (0.4) is a solution to the heat equation $\partial_t u - \Delta u = 0$ on $(0, \infty) \times \mathbb{R}^N$.

Part (a) (12 points) In this problem, prove that the following relation holds for each $x_0 \in \mathbb{R}^N$.

$$\lim_{(t,x)\to(0,x_0)} u(t,x) = f(x_0)$$

Part (b) (12 points) Here, we specialize to the case of N = 1, and suppose that f satisfies the stronger condition $f \in L^2(\mathbb{R}) \cap C^0(\mathbb{R}) \cap L^\infty(\mathbb{R})$, prove that there exists some absolute constant $C_0 > 0$, such that the function u as given by (0.4) satisfies the following gradient-estimate

$$\int_{\mathbb{R}} \left| \frac{\partial u}{\partial x}(t,x) \right|^2 \mathrm{d}x \le \frac{C_0}{t} \left\| f \right\|_{L^2(\mathbb{R})}^2, \tag{0.5}$$

for all t > 0.

Problem 3.(14 points) Here, we consider the closed cube $[-1,1] \times [-1,1] = \{(x,y) : |x| \le 1, |y| \le 1\}$ in \mathbb{R}^2 . Consider a function $u \in C^2([-1,1] \times [-1,1])$ which satisfies the following conditions.

- $\triangle u = 0$ holds on $(-1, 1) \times (-1, 1) = \{(x, y) : |x| < 1, |y| < 1\}.$
- u(1, y) = u(-1, y) = 0 holds for all $y \in [-1, 1]$.
- $\frac{\partial u}{\partial x}(x,1) = \frac{\partial u}{\partial y}(x,1)$ and $\frac{\partial u}{\partial x}(x,-1) = \frac{\partial u}{\partial y}(x,-1)$ holds for all $x \in [-1,1]$.

Prove that u = 0 holds on $[-1, 1] \times [-1, 1]$.

(**Hint**: You may start with the identity $0 = \int_{[-1,1]\times[-1,1]} u(x,y) \Delta u(x,y) dx dy$, and try to perform integration by parts by using the prescribed boundary conditions)

Problem 4. Part (a) (10 points) Take an integer $N \geq 2$. Let Ω be a bounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$. Consider a function $u \in C^1(\overline{\Omega}) \cap C^{\infty}(\Omega)$ which is harmonic on Ω . Prove that the following relation holds.

$$\max_{\overline{\Omega}} |\nabla u| = \max_{\partial \Omega} |\nabla u|. \tag{0.6}$$

Part (b)(12 points) In particular, take N = 2, and we consider the open ball $B_0(1) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ in \mathbb{R}^2 . Consider a function $u \in C^1(\overline{B_0(1)}) \cap C^\infty(B_0(1))$ which is harmonic on $B_0(1)$. Suppose that there are two functions $\Psi_1, \Psi_2 \in C^1(\overline{B_0(1)}) \cap C^2(B_0(1))$ satisfying the following properties.

• $\Delta \Psi_1 \leq 0$ and $\Delta \Psi_2 \geq 0$ hold on $B_0(1)$. Moreover, $\Psi_1 = u = \Psi_2$ holds on $\partial B_0(1)$. Prove that the following relation holds:

$$\max_{\overline{B_0(1)}} |\nabla u| \le \max \Big\{ \max_{\partial B_0(1)} |\nabla \Psi_1|, \max_{\partial B_0(1)} |\nabla \Psi_2| \Big\}.$$

Problem 5 (10 points) Take an integer $N \ge 2$. Let Ω be a bounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$. For a prescribed T > 0, define the space-time region $\Omega_T = (0, T] \times \Omega$, and also $\Gamma_T = \overline{\Omega_T} - \Omega_T$. (note that $\overline{\Omega_T} = [0, T] \times \overline{\Omega}$). Consider a function $u \in C^2(\overline{\Omega_T})$ which satisfies the following properties.

- $\partial_t^2 u \Delta u = 0$ holds on Ω_T . That is, u solves the wave equation on Ω_T .
- u(t,x) = 0 holds for all $(t,x) \in \Gamma_T$.
- $\partial_t u(0, x) = 0$ holds for all $x \in \Omega$.

Use energy method or otherwise to prove that u(t, x) = 0 holds for all $(t, x) \in \Omega_T$.

Problem 6 (10 points) Consider the piece-wise linear, continuous function $\Phi : \mathbb{R} \to [0,\infty)$ which is given by $\Phi(x) = x\chi_{\{x>0\}}$ for all $x \in \mathbb{R}$. (Note that equivalently, we have $\Phi(x) = 0$, for all $x \leq 0$. While $\Phi(x) = x$ for all x > 0). Consider now the region

$$\Omega = \left\{ (x, y) \in \mathbb{R}^2 : y > \Phi(x) \right\}$$

$$(0.7)$$

Let $g \in C^{\infty}((0,\infty))$ be prescribed. Use the method of characteristics or otherwise to find an explicit expression for the solution $u \in C^1(\overline{\Omega} - \{(0,0)\})$ to the equation

$$x\frac{\partial u}{\partial y}(x,y) - y\frac{\partial u}{\partial x}(x,y) = u(x,y)$$

on Ω , which satisfies the prescribed boundary condition u(x, x) = g(x) for all x > 0.