NATIONAL YANG MING CHIAO TUNG UNIVERSITY 2023 Ordinary Differential Equations Ph.D. Qualifying Exam

Academic Year 112-1, 2023

1. (10 \%) Define

$$
A=\left(\begin{array}{ccc}
1 & 2 & -3 \\
1 & 1 & 2 \\
1 & -1 & 4
\end{array}\right)
$$

Solve the initial value problem

$$
\dot{\mathbf{x}}=A \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

2. (20 \%) Let f be real-valued and continuous on $D:=\{(t, x) \mid 0 \leq t \leq a,-\infty<x<\infty\}$ for some $a>0$. Suppose that \hat{x} is a solution of $\dot{x}=f(t, x)$ with $\hat{x}(0)=x_{0} \in \mathbb{R}$ defined for $0 \leq t<\tau$ for some $\tau \in(0, a)$.
(a) (10\%) Prove that either \hat{x} can be extended as a solution beyond τ, or $|\hat{x}(t)| \rightarrow \infty$ as $t \rightarrow \tau^{-}$.
(b) (10\%) Suppose that there exists a continuous function $\phi(r)$ defined in $0 \leq r<\infty$ such that $|f(t, x)|<\phi(|x|)$ in D and for some $K \in[0, \infty), \int_{K}^{\infty} \frac{d r}{\phi(r)}=\infty$. Prove or disprove that the solution \hat{x} exists on $[0, a]$.
3. (20%) Consider the following system

$$
\left\{\begin{array}{l}
\dot{x}=5 x(1-x-2 y), \\
\dot{y}=2 y(1-y-3 x),
\end{array}\right.
$$

where $x(t)$ and $y(t)$ represent the population size of two interacting species at time t, respectively.
(a) (5%) Find all equilibria with nonnegative components.
(b) (10\%) Do the local stability analysis (asymptotically stable/stable/unstable) at each equilibrium and classify them as center, spiral, node or saddle. Also, please explain why Hartman-Grobman theorem is needed.
(c) (5 \%) Predict the global asymptotic behavior of $(x(t), y(t))$ when $x(0)>0$ and $y(0)>0$. Please write down your reasons as thoroughly as possible.
4. (18 \%) Consider the system

$$
\left\{\begin{array}{l}
\dot{x}=2 x+2 y-x\left(2 x^{2}+y^{2}\right), \\
\dot{y}=-2 x+2 y-y\left(2 x^{2}+y^{2}\right) .
\end{array}\right.
$$

(a) (6%) Rewrite the system in polar coordinates (r, θ).
(b) (12 \%) Prove or disprove that the system admits a limit cycle on the phase plane.
5. (12 \%) Let $n \times n$ matrix $A(t)$ and $n \times 1$ vector $b(t)$ be continuous on \mathbb{R}, and periodic of period $T>0$. That is,

$$
A(t+T)=A(t), \quad b(t+T)=b(t) \quad \forall t .
$$

Prove that if the differential system $\dot{\mathbf{x}}=A(t) \mathbf{x}$ has no periodic solution of period T other than the trivial solution $\mathbf{x} \equiv \mathbf{0}$, then the differential system $\dot{\mathbf{x}}=A(t) \mathbf{x}+b(t)$ has a unique periodic solution of period T.
6. (20%) Consider the system

$$
\left\{\begin{array}{l}
\dot{x}=x^{2}+y-y^{2}, \\
\dot{y}=-x-2 x y
\end{array}\right.
$$

(a) (5 \%) Prove that the system is a Hamiltonian system and find the Hamiltonian $H(x, y)$.
(b) (5 \%) Prove that the trajectories lie on the contours defined by $H(x, y)=C$, where C is a constant.
(c) (5%) Prove or disprove that $(0,0)$ is asymptotically stable.
(d) (5%) Sketch the phase portraits including the stable and unstable manifolds at all equilibria.

