NATIONAL CHIAO TUNG UNIVERSITY

2020 Real Analysis Spring Ph.D. Qualifying Exam

- 1. (15 %) Prove the following statement: If $\{f_k\}_{k=1}^{\infty}$ is a sequence of measurable functions which converge to a real-valued function f a.e. on a measurable set Ω of finite measure, then, given $\eta > 0$, there is a subset $A \subset \Omega$ with $|A| < \eta$ such that f_k converges to f uniformly on $\Omega \setminus A$.
- 2. (15 %) Suppose $\{f_k\}_{k=1}^{\infty}$ is a sequence of measurable functions which converge to f in measure on a measurable set Ω and suppose there is an integrable function g satisfying $|f_k(x)| \leq g(x)$ for any k and $x \in \Omega$, prove f_k converges to f in $L^1(\Omega)$ space.
- 3. (5 %) Suppose $\alpha > 1$ and $\{x_k\}_{k=0}^{\infty}$ is a non-negative sequence satisfying

$$\begin{cases} x_0 \le 2^{\frac{-\alpha}{(\alpha - 1)^2}}, \\ x_{k+1} \le 2^{k\alpha} x_k^{\alpha} & \text{for any } k \ge 0, \end{cases}$$
 (1)

is the statement $\lim_{k\to\infty} x_k = 0$ true? Why?

4. (5 %) Suppose $f, g \in L^p([0,1]), p > 2, \ell > 1$, and

$$||f||_{L^p([0,1])}^2 + \ell ||f||_{L^2([0,1])}^2 \le ||fg||_{L^1([0,1])}.$$

Prove that there is a constant c independent of ℓ such that

$$||f||_{L^r([0,1])} \le c \ell^{\frac{-2(p-r)}{r(p-2)}} ||g||_{L^{r'}([0,1])}$$
 where $r \in [2,p]$ and $\frac{1}{r} + \frac{1}{r'} = 1$.

5. (10 %) Suppose $\delta > 0$ and $F \subset [0,1]^3$ is an open set, describe a procedure to produce a collection of disjoint dyadic subcubes $\{Q_k\}_{k=1}^{\infty}$ of $[0,1]^3$ satisfying

$$\begin{cases}
|F \cap \check{Q}_k| \le \delta |\check{Q}_k| \\
|F \cap Q_k| > \delta |Q_k| & \text{for } k \ge 1, \\
|F \setminus \bigcup_{k=1}^{\infty} Q_k| = 0
\end{cases}$$
(2)

where \check{Q}_k denotes the dyadic "parent" of Q_k (i.e., Q_k is one of the 2³ cubes obtained by bisecting the sides of \check{Q}_k).

- 6. (12 %) Let X be a normed linear space. Show that a linear functional T on X is bounded if and only if the kernel of T is closed.
- 7. (12 %) Let X be a Banach space and \mathcal{F} be a family of bounded linear operators from X to a normed space Y. Suppose that for each $x \in X$, there is a constant M_x such that

$$||Tx|| \le M_x$$
 for all $T \in \mathcal{F}$.

Show that there exists M such that

$$||T|| \le M$$
 for all $T \in \mathcal{F}$.

8. (14 %) Let S be a subspace of $L^2([0,1]) = \{f \mid f : \mathbb{R} \to \mathbb{R}, \int_0^1 |f|^2 dx < +\infty\}$. Suppose there is a constant K such that

$$|f(x)| \le K||f|| \quad \text{ for all } \quad x \in [0,1].$$

Show that he dimesion of S is at most K^2 .

9. (12 %) If $f \in L^2([0, 2\pi])$, show that

$$\lim_{k \to \infty} \int_0^{2\pi} f(x) \cos kx dx = 0.$$

Prove that the same is true if $f \in L^1[0, 2\pi]$