NATIONAL CHIAO TUNG UNIVERSITY

2019 Real Analysis Spring Ph.D. Qualifying Exam

- 1. Let $f, f_k : [0, 1] \longrightarrow \mathbb{R}$ be Lebesgue measurable functions such that $\lim_{k \to \infty} \int_0^1 |f_k(x) f(x)| dx = 0$ and that $\sup_{k \in \mathbb{N}} \int_0^1 |f_k(x)|^4 dx < \infty$.
 - (a) (5 %) Show that $\int_0^1 |f(x)|^4 dx < \infty$.
 - (b) i. (5 %) Show that $\int_0^1 |f_k(x)|^2 dx < \infty$ for all $k \in \mathbb{N}$ and that $\int_0^1 |f(x)|^2 dx < \infty$. ii. (5 %) Furthermore, show that $\lim_{k \to \infty} \int_0^1 |f_k(x) - f(x)|^2 dx = 0$
- 2. (11 %) Prove or disprove that if $f_k:[0,1] \longrightarrow \mathbb{R}$ are continuous functions for all $k \in \mathbb{N}$ and if $\lim_{k \to \infty} f_k(x) = 0$ for all $x \in [0,1]$, then $\lim_{k \to 0} \int_0^1 f_k(x) \, dx = 0$.
- 3. Write |A| as the Lebesgue measure of a Lebesgue measurable set $A \subset \mathbb{R}$. Let $\{f_k\}_{k \in \mathbb{N}}$ be a sequence of Lebesgue integrable functions defined on \mathbb{R} and suppose that $\lim_{k \to \infty} \int_{\mathbb{R}} |f_k(x)| dx = 0$. For any $\lambda > 0$, let $E_k(\lambda) = \{x \in \mathbb{R} \mid |f_k(x)| \ge \lambda\}$. Prove or disprove the following statements.
 - (a) (6 %) There is a Lebesgue measurable subset $E \subset \mathbb{R}$ such that |E| = 0, and that $\lim_{k \to \infty} f_k(x) = 0$, for every $x \notin E$.
 - (b) (6 %) For any $\lambda > 0$, $\lim_{k \to \infty} \sqrt{\lambda} |E_k(\lambda)| = 0$.
 - (c) (6 %) $\lim_{k \to \infty} \frac{|E_k(\frac{1}{k})|}{k} = 0.$
 - (d) (6 %) $\lim_{k \to \infty} \frac{|E_k(\frac{1}{k})|}{\sqrt{k}} = 0.$
- 4. Write $|A|_e$ as the outer measure of a set $A \subset \mathbb{R}^n$. Prove or disprove the following statements.
 - (a) (10 %) Let E_k be a monotonic sequence of sets in \mathbb{R}^n with each $|E_k|_e < +\infty$, then

$$|\lim_{k\to\infty} E_k|_e = \lim_{k\to\infty} |E_k|_e.$$

- (b) (10 %) Two sets $A, B \subset \mathbb{R}^n$ have measurable union $A \cup B$ and $|A \cup B| = |A|_e + |B|_e$. Then A and B are both measurable.
- 5. (15%) Let $f: \mathbb{R} \cup \{\pm \infty\} \longrightarrow \mathbb{R}$ be an increasing function on the real line \mathbb{R} with $f(-\infty) = 0$ and $f(\infty) = 1$. Prove that f is absolutely continuous on every closed finite interval if and only if

$$\int_{\mathbb{R}} f'(x) \, dx = 1$$

6. (15 %) Suppose
$$f \in L^1(0,1)$$
. Find

$$\lim_{k \to \infty} \int_0^1 k \ln \left(1 + \frac{|f(x)|^2}{k^2} \right) dx$$

Hint: You may need to prove the elementary inequality $\ln(1+t) \le at^b$ for some a, b > 0 and for t > 0.