Qualify Examination Design theory

- 1. A <u>t-(v,k, λ) design</u> is an ordered pair (**X,B**) where |**X**|=v, **B**={B₁,B₂,...,B_n} is a collection of k-subsets (blocks) of **X**, such that any t-subset of **X** appears in exactly λ blocks. The <u>block intersection number</u> $\lambda_{i,j}$ is the number of blocks B_k such that B_k \cap {1,...,i} = {1,...,j} for $j \le i$. Prove or disprove the existence of the following t-(v,k, λ) designs: (30%)
 - a. 2-(7,3,1),
 - b. 3-(8,4,1),
 - c. 4-(9,5,1),
 - d. 2-(7,4,2),
 - e. 2-(22,7,2),
 - f. 3-(10,4,1).
- 2. Let N_{11} be the set of integers modulo 11, $B_0 = \{1, 3, 4, 5, 9\}$, $B_i = (B_0 + i) \mod(11)$, $1 \le i \le 10$, $C_{i,} = N_{11} B_i$, $C_{i,j} = B_i \cup B_j B_i \cap B_j$, $B_{i,j} = N_{11} C_{i,j}$, $0 \le j < i \le 10$. (30%)
 - a. Prove that 11 blocks of 5-subsets $\{B_0,...,B_{10}\}$ form a 2-(11,5,2) design.
 - b. Prove that 66 blocks of 5-subsets $\{B_0,...,B_{10}, B_{i,j}, 0 \le j < i \le 10 \}$ form a 4-(11,5,1) design and find all $\lambda_{i,j}$.
 - c. Let $\mathbf{N} = \mathbf{N_{II}} \cup \{*\}$, where * is an element not in $\mathbf{N_{II}}$, $A_i = B_i \cup \{*\}$, $A_{i,j} = \{*\} \cup B_{i,j}$. Prove that 132 blocks of 6-subsets { A_i , C_i , $A_{i,j}$, $C_{i,j}$, $0 \le j < i \le 10$ } form a 5-(12,6,1) design and find $\lambda_{i,j}$ for all $0 \le j \le i \le 5$.
 - d. The 5-design constructed above is called the <u>small Witt</u> <u>design</u>. The well-known 5-(24,8,1) design is called <u>large</u> <u>Witt design</u>. Please find all λ_{i,j} for large Witt design.
 - e. Prove or disprove the size of the intersection of any two blocks of the small Witt design is 0, 2 or 4.
 - f. Try to construct 3-(22,6,1), 4-(23,7,1) designs.

- 3. Let $\mathbf{B} = \{B_1, B_2, ..., B_n\}$ be a collection of subsets of a finite set of size v. B is called a **2-disjunct system of order v** if $B_i \cup B_j$ is not contained in B_k for all distinct indices i,j,k. (20%)
 - a. Prove the size of a 2-disjunct system of order v is at least v(v-1)/6. (hint: consider a Steiner triple system).
 - b. Try to construct a 2-disjunct system of order 23 with size larger than 200.
- 4. Prove that you can explicitly construct all **Hadamard** matrices of order ≤ 80 . (20%)

92_2_algorithm_1.jpg