105 學年度第一學期博士班資格考

分 析

- 1. Let (X, \mathcal{B}, μ) be a measure space. Assume that $\{f_n\}$ is a sequence of measurable functions which are finite a.e. Prove or disprove the following statements:
- (a) (10%) If $f_n \to f$ in measure, then $f_n \to f$ in L^1 norm.
- (b) (10%) If $\mu(X) < \infty$ and $f_n \to f$ a.e. (pointwise), then $f_n \to f$ in measure.
- (c) (10%) The restriction $\mu(X) < \infty$ of (b) is not necessary. Namely, for any (X, \mathcal{B}, μ) , $f_n \to f$ a.e. implies $f_n \to f$ in measure.
- 2. Let H be a Hilbert space with a complete orthonormal basis $\{e_j\}$.
- (a) (10%) Assume that $\{f_k\}$ is a bounded sequence in H and $f \in H$. If, for any j, $(f_k, e_j) \to (f, e_j)$ as $k \to \infty$, then $f_k \to f$ weakly, where (\cdot, \cdot) is the inner product in H.
- (b) (10%) Does the statement (a) remain true for any sequence (may be unbounded) $\{f_k\}$ in H?
- 3.(10%) Let F be a nonempty closed subset of (0,1). For $x \in (0,1)$, define $d(x) = \operatorname{dist}(x,F)$, the distance of x to F. Let

$$M(x; F) = \int_0^1 [-\log d(y)]^{-1} |x - y|^{-1} dy,$$

prove that for $x \in (0,1)$

$$M(x; F)$$

$$\begin{cases} = +\infty & \text{if } x \notin F, \\ < +\infty & \text{for almost all } x \in F. \end{cases}$$

4. Let $\{f_n\}$ be a sequence of measurable functions on X. Assume that

$$|f_n(x)| \le g(x)$$
 for some integrable function g . (1)

- (a) (5%) Show $\limsup \int f_n d\mu \leq \int_X \limsup f_n d\mu$.
- (b) (10%) Is (a) still true if the condition (1) is dropped?
- **5**. Let f be a real-valued function on \mathbb{R} .
- (a) (10%) If f is Lebesgue measurable, then for any $a \in \mathbb{R}$, $f^{-1}(a)$ is a measurable set.
- (b) (15%) Does the converse of (a) hold true? That is, if for any $a \in \mathbb{R}$, $f^{-1}(a)$ is measurable, then f is a measurable function.