

104 學年度第二學期博士班資格考

PhD Qualifying Exam in Numerical Analysis

Spring 2016

1. (15%) Let f be an $n + 1$ times continuously differentiable real-valued function on $[a, b]$ and let x_0, x_1, \dots, x_n be $n + 1$ distinct numbers in $[a, b]$.

(a) Prove that there exists a unique polynomial P_n of degree at most n such that

$$P_n(x_i) = f(x_i) \quad \text{for } i = 0, 1, \dots, n.$$

(b) Prove that for each x in $[a, b]$ there exists a $\xi_x \in (a, b)$ such that

$$f(x) - P_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0}^n (x - x_i).$$

2. (15%) Let f be a twice continuously differentiable real-valued function on $[a, b]$.

(a) Let $x_0 = a$, $x_1 = b$ and $h = b - a$. Use the Lagrange interpolation to derive the trapezoid rule with an error term for $\int_a^b f(x) dx$.

(b) Let $a = x_0 < x_1 < \dots < x_n = b$ be a uniform partition of $[a, b]$ and let $h = (b - a)/n$ be the mesh size. Derive the composite trapezoid rule for approximating $\int_a^b f(x) dx$ and prove that the error term of the composite trapezoid rule is

$$-\frac{1}{12}(b - a)h^2 f''(\xi), \quad \text{for some } \xi \in (a, b).$$

3. Consider the following two-point boundary value problem:

$$-u''(x) + u(x) = f(x) \quad \text{for } 0 < x < 1, \quad u(0) = \alpha \text{ and } u(1) = \beta.$$

Let \mathcal{P} be a uniform mesh of the interval $[0, 1]$ with the grid points $x_j = jh$, $0 \leq j \leq m + 1$, where $h = 1/(m + 1)$ is the mesh size.

(a) (10%) Show that

$$u''(x_i) = \frac{1}{h^2} \left\{ u(x_{i-1}) - 2u(x_i) + u(x_{i+1}) \right\} - \frac{1}{12} h^2 u^{(4)}(\xi) \quad \text{for some } \xi \in (x_{i-1}, x_{i+1}).$$

(b) (10%) Derive the centered difference scheme for solving the boundary value problem on the uniform mesh. Please write down explicitly the resulting linear system $\mathbf{A}\mathbf{u} = \mathbf{f}$, where $\mathbf{u} = [u_1, \dots, u_m]^\top$ is the finite difference solution.

(c) (10%) Let $\hat{\mathbf{u}} = [u(x_1), \dots, u(x_m)]^\top$ be the vector of true values and $\mathbf{u} = [u_1, \dots, u_m]^\top$ be the finite difference solution obtained in (b). Then the error vector \mathbf{E} defined by $\mathbf{E} = \hat{\mathbf{u}} - \mathbf{u}$ contains the errors at each grid point. Prove the finite difference scheme derived in (b) convergent with the order of accuracy $O(h^2)$ in the discrete L^2 -norm by showing that $\|A^{-1}\|_2$ is uniformly bounded as $h \rightarrow 0^+$.

Hint: The eigenvalues of the $m \times m$ matrix

$$\begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & \\ & & \ddots & \ddots & \ddots \\ & & & -1 & 2 & -1 \\ & & & & -1 & 2 \\ & & & & & -1 & 2 \end{bmatrix}_{m \times m}$$

are given by $\lambda_p = -2(\cos(p\pi h) - 1)$ for $p = 1, 2, \dots, m$.

(d) (10%) Let $A\mathbf{u} = \mathbf{f}$ be the linear system derived in (b). State the Jacobi iterative method in the matrix form for solving the linear system. Does the Jacobi iterative method converge for any initial guess $\mathbf{u}^{[0]} \in \mathbb{R}^m$? Give your reason.

4. Consider the following initial-boundary value problem for the 1-D heat equation:

$$\begin{aligned} u_t &= \nu u_{xx}, \quad 0 < x < 1, \quad t > 0, \\ u(0, t) &= u(1, t) = 0, \quad t > 0, \\ u(x, 0) &= u_0(x), \quad 0 \leq x \leq 1, \end{aligned}$$

where constant $\nu > 0$ is the thermal conductivity. Let u_j^n be an approximation to $u(x_j, t_n)$, where $x_j = jh$, $t_n = nk$, k is the time step and h is the spatial grid size.

(a) (10%) Derive the Crank-Nicolson method for the 1-D heat problem and show that the local truncation error is second order accurate in both space and time, i.e., $O(h^2 + k^2)$.

(b) (10%) Show that the Crank-Nicolson method is unconditionally stable.

5. (10%) Consider the following Cauchy problem for the scalar advection equation:

$$\begin{aligned} u_t + au_x &= 0, \quad x \in \mathbb{R}, \quad t > 0, \\ u(x, 0) &= u_0(x), \quad x \in \mathbb{R}, \end{aligned}$$

where $a > 0$ is a given constant. Let u_j^n be an approximation to $u(x_j, t_n)$, where $x_j = jh$, $t_n = nk$, k is the time step and h is the spatial grid size. Derive the Lax-Wendroff method, which is a second-order accurate scheme for numerically solving the Cauchy problem, by applying the Taylor expansion on $u(x, t+k)$ around (x, t) . We can find that the scheme is a discretization of following advection-diffusion equation using the forward difference in time and centered difference in space,

$$u_t + au_x = \frac{a^2 k}{2} u_{xx}.$$