DEPARTMENT OF MATHEMATICS NATIONAL CHIAO-TUNG UNIVERSITY

Ph. D. Qualifying Examination Spring, 2016.

Analysis

Answer all of the following 8 questions. Each of Questions 1-6 carries 10 points, and each of Questions 7 and 8 carries 20 points.

- 1. Let f be a positive measurable function defined on \mathbb{R} . Show that there is a sequence $\{f_n\}_n$ of simple functions such that $f_n(x)$ monotonically increases to f(x) everywhere.
- 2. Show that any nondecreasing real-valued function on [0, 1] is Riemann integrable.
- 3. Prove that the derivative function f' of a real-valued differentiable function f on [0,1] is Lebesque measurable.
- 4. Let φ be a linear functional of the real Hilbert space $L^2[0,2\pi]$ defined by

$$\varphi(f) = \int_0^{2\pi} f(2\pi - x) dx.$$

Prove that $\|\varphi\| = \sqrt{2\pi}$, and find an g in $L^2[0,2\pi]$ such that

$$arphi(f) = \int_0^{2\pi} f(x)g(x)dx, \quad orall f \in L^2[0,2\pi].$$

5. Assume that every moment

$$m_n(f, [a, b]) = \int_a^b t^n f(t) dt, \quad \forall n = 0, 1, 2, \dots,$$

of a real-valued Legesgue integrable function f defined on [a, b] is zero. Show that f(t) = 0 almost everywhere in [a, b]. What can you say for an integrable function f on $(-\infty, +\infty)$?

- 6. (Baire Category Theorem) Let X be a complete metric space and $\{X_n : n \in \mathbb{N}\}$ be a countable collection of closed subsets of X such that $X = \bigcup_n X_n$. Prove that at least one of X_n 's has non-empty interior.
- 7. An extended real valued function $f: \mathbb{R} \longrightarrow [-\infty, +\infty]$ is said to be *lower semi-continuous* at the point y if

$$f(y) \neq -\infty$$
 and $f(y) \leq \liminf_{x \to y} f(x)$.

Show the following statements.

- (a) Let f(y) be finite. Then f is lower semicontinuous at y if and only if given $\epsilon > 0$, there is a $\delta > 0$ such that $f(y) \leq f(x) + \epsilon$ for all x with $|x y| < \delta$.
- (b) A real valued function f is lower semicontinuous on (a, b) if and only if the set $\{x \in \mathbb{R} : f(x) > \lambda\}$ is open for each real number λ .
- (c) A lower semicontinuous real valued function f defined on [a, b] bounded from below assumes its minimum on [a, b].
- (d) (Dini Theorem) Let $\{f_n\}_n$ be a sequence of lower semicontinuous functions defined on [a, b]. Suppose $f_n(x)$ monotonically increasing to 0 for all x in [a, b]. Then f_n converges to zero uniformly on [a, b].
- 8. Let I = [0, 1] and $Q = I \times I$. Define $f: Q \longrightarrow \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{1}{p} & \text{if } y \text{ is rational and } x = \frac{q}{p}, p, q \in \mathbb{N} \text{ such that} \\ & \text{the greatest common factor } (p,q) \text{ of } p \text{ and } q \text{ is } 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Is f Riemann integrable over Q? If yes, compute $\int_Q f$.
- (b) For each fixed x, compute the lower Riemann integral $\underline{\int}_{y\in I} f(x,y)$ and the upper Riemann integral $\overline{\int}_{y\in I} f(x,y)$.
- (c) Show that $\int_{y\in I} f(x,y)$ exists for x in I-D, where D is a set of measure zero in I.
- (d) Verify Fubini's theorem for $\int_Q f$.