

104 學年度第二學期博士班資格考

Algebra Qualifying Exam

- Let \mathbb{Z} be the ring of integers.
- Let \mathbb{Q} be the field of rational numbers.
- Let \mathbb{C} be the field of complex numbers.

1. (20 points) Let G be a group of order 168. Suppose that G is simple.
 - Let P be a Sylow 7-subgroup of G . Let $N_G(P) = \{g \in G \mid g^{-1}Pg = P\}$ be the normalizer of P in G . Find the order of $N_G(P)$.
 - Show that G has no element of order 14.
 - If H is a proper subgroup of G , show that $|G : H| \geq 7$.
2. (20 points) Prove or disprove each of the following statements.
 - $1 + \sqrt{-23}$ is a prime element in $\mathbb{Z}[\sqrt{-23}] = \{a + b\sqrt{-23} \mid a, b \in \mathbb{Z}\}$.
 - $\mathbb{Z}[\sqrt{-23}]$ is a unique factorization domain (UFD).
 - If S is a principal ideal domain (PID), then the polynomial ring $S[x]$ is a PID.
3. (20 points) Let R be a commutative ring with identity such that every submodule of every free R -module is free.
 - Is it true that every ideal of R is a principal ideal?
 - Is it true that R is an integral domain?
4. (20 points)
 - Construct a finite field F of order 27.
 - Let $S = \{r^2 \mid r \in F\}$ be the set of squares in F . Find the number of elements in S .
 - Show that every element in F can be written as a sum of two squares.
5. (20 points) Let $f(x) = x^4 - 7$ be a polynomial over \mathbb{Q} . Suppose that $E \subseteq \mathbb{C}$ and E is the splitting field of $f(x)$ over \mathbb{Q} .
 - Show that $f(x)$ is irreducible over \mathbb{Q} .
 - Let $i = \sqrt{-1}$ and let $\alpha = \sqrt[4]{7}$ be the unique positive real root of $x^4 - 7$. Show that $E = \mathbb{Q}(\alpha, i)$.
 - Determine $[E : \mathbb{Q}]$.
 - Let $K = \mathbb{Q}(\sqrt{7})$. Determine the Galois group $\text{Gal}(E/K)$.