Ph.D. Entrance Exam: Linear Algebra
 May 22, 2007

1. (10 points) Determinate whether

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] \text { and }\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

are the matrices of the same linear transformation in two different pairs of bases. Justify your answer.
2. (10 points) Prove that the matrix

$$
\left[\begin{array}{llll}
0 & 2 & 1 & 0 \\
2 & 0 & 2 & 1 \\
1 & 2 & 0 & 2 \\
0 & 1 & 2 & 0
\end{array}\right]
$$

has two positive and two negative characteristic roots (eigenvalues), taking into account multiplicities.
3. Let $[A, B]=A B-B A$ be the commutator product of $n \times n$ real matrices A and B.
(a) (5 points) Show that for any 2×2 real matrices A, B and C, $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=O$, where O is the zero matrix.
(b) (5 points) Show that for any 2×2 real matrices A and $B,[A, B]^{2}=$ $a I$, for some $a \in \mathbf{R}$, where I is the identity matrix.
(c) (5 points) Let C be a 2×2 real matrix. Show that $\operatorname{tr}(C)=0$ if and only if $C=[A, B]$ for some 2×2 real matrices A and B.
(d) (5 points) Are the statements (a) and (b) valid for $n \times n$ real matrices ? Either prove or give a counterexample.
4. Prove or give a counterexample:
(a) (5 points) If A is an $n \times n$ real matrix such that $A^{2}=A$, then $\operatorname{tr}(A)$ is an integer.
(b) (5 points) If A and B are $n \times n$ real matrices, then the minimal polynomials for $A B$ and $B A$ are equal.
(c) (5 points) If A and B are $n \times n$ real matrices, B is not the zero matrix, then $\operatorname{det}(A+x B)=0$, for some real number x.
5. Let \mathbf{V} be an n -dimensional vector space over \mathbf{R}, and let T be a linear transformation of \mathbf{V} into itself such that the range $T(\mathbf{V})$ and null space (kernel) $N(T)$ are identical, $T(\mathbf{V})=\mathbf{N}(\mathbf{T})$.
(a) (5 points) Show that n is even.
(b) (5 points) What can you say about the characteristic polynominal and the minimal polynominal of T.
(c) (5 points) Give an example of such a linear transformation.
6. Let \mathbf{V} be an n -dimensional vector space over R . Suppose that J is a linear transformation of V into itself satisfying $J^{2}=-I$, where I is the identity mapping.
(a) (5 points) For $a+i b \in \mathbf{C}$ and $u \in \mathbf{V}$, define $(a+i b) \cdot u=a u+b J(u)$, show that \mathbf{V} is a vector space over \mathbf{C}.
(b) (5 points) What is the dimension of \mathbf{V} if we consider \mathbf{V} as a vector space over \mathbf{C} of (a) ? Justify your answer.
(c) (5 points) If $v_{1}, v_{2}, \cdots, v_{m}$ is a basis for \mathbf{V} over \mathbf{C} of (a), can you construct a basis for \mathbf{V} over \mathbf{R} ?
7. (15 points) Let \mathbf{V} be a finite dimensional vector space over \mathbf{R}, and T is a linear transformation of \mathbf{V} into itself. Suppose that the characteristic polynominal $p_{T}(x)$ of T is written as $p_{T}(x)=p_{1}(x) p_{2}(x)$, where $p_{1}(x)$ and $p_{2}(x)$ are two relatively prime polynominals with real coefficients. Show that every vector $v \in \mathbf{V}$ can be written in a unique way as $v=v_{1}+v_{2}$, where $v_{1}, v_{2} \in \mathbf{V}, p_{1}(T)\left(v_{1}\right)=0$ and $p_{2}(T)\left(v_{2}\right)=0$.

