95響年度博士刊王入雍考試

Linear Algebra

Notations．

－The notation $M_{n}(\mathbb{R})$ denotes the set of all $n \times n$ matrices over \mathbb{R} ，and I_{n} is the identity matrix in $M_{n}(\mathbb{R})$ ．
－For a matrix A ，we let A^{t} denote the transpose of A ．

Problems．

1．Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis for \mathbb{R}^{3} ．Suppose that a linear transformation $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ is defined by $T(x, y, z)=(2 x+y, 2 y+$ $z, 2 z)$ ．
（1）Write down the matrix of T relative to the standard basis．（2 points．）
（2）Write down the matrix of T relative to the ordered basis $\left\{e_{3}, e_{2}, e_{1}\right\}$ ． （2 points．）
（3）Find a matrix P such that

$$
P^{-1}\left(\begin{array}{lll}
a & 1 & 0 \\
0 & a & 1 \\
0 & 0 & a
\end{array}\right) P=\left(\begin{array}{lll}
a & 0 & 0 \\
1 & a & 0 \\
0 & 1 & a
\end{array}\right)
$$

for all real numbers a ．（3 points．）
（4）Prove that for any given $n \times n$ matrix A ，there is a matrix Q such that

$$
Q^{-1} A Q=A^{t}
$$

（That is，A and A^{t} are similar for all square matrices A ．）（8 points．）
（5）Let

$$
A=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Find a matrix Q such that $Q^{-1} A Q=A^{t}$ ．（10 points．）
2．For an $n \times n$ matrix A ，define

$$
\exp A=I_{n}+\sum_{k=1}^{\infty} \frac{A^{k}}{k!}
$$

Prove or disprove（by giving counterexamples）the following two asser－ tons．
（1）If A is nilpotent，then so is $\exp A-I_{n}$ ．（ 8 points．）
（2）If $\exp A-I_{n}$ is nilpotent，then so is A ．（ $\mathbf{7}$ points．）
3．Let $V=M_{n}(\mathbb{R})$ be the vector space of all $n \times n$ matrices over \mathbb{R} ．For a given matrix $A \in M_{n}(\mathbb{R})$ ，define a linear operator T_{A} on V by

$$
T_{A}(B)=A B-B A, \quad \forall B \in V .
$$

(1) Consider the case $n=3$ and

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

Determine the eigenvalues of T_{A} and the associated eigenspaces. Determine also the minimal polynomial of T_{A}. (15 points.)
(2) For general n, consider the family

$$
\mathcal{F}=\left\{T_{A}: A \in M_{n}(\mathbb{R}) \text { are diagonal matrices. }\right\}
$$

of linear operators. Prove that \mathcal{F} is simultaneously diagonalizable. (10 points.)
4. Let V be an inner product space of finite dimension n over \mathbb{R}. Recall that a linear transformation $T: V \mapsto V$ is called an isometry if $\left\langle T v_{1}, T v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle$ for all $v_{1}, v_{2} \in V$.
(1) Prove that a linear transformation T is an isometry if and only if its matrix with respect to an orthonormal basis is orthogonal. (An orthogonal matrix is a square matrix M such that $M^{t} M=I_{n}$.) (10 points.)
(2) Consider the case $V=\mathbb{R}^{n}$ with the standard inner product. Let v be a vector of unit length, and define a linear transformation T_{v} by

$$
T_{v}(u)=u-2\langle u, v\rangle v \quad \text { for } u \in V
$$

Prove that T_{v} is an isometry of \mathbb{R}^{n}. (We call such linear transformations reflections.) (5 points.)
(3) Consider $V=\mathbb{R}^{2}$ with the standard inner product. Prove that the linear transformation $S_{\theta}(x, y)=(x \cos \theta+y \sin \theta,-x \sin \theta+$ $y \cos \theta$) is an isometry of \mathbb{R}^{2} for all real numbers θ. (We call such linear transformation rotations.) (3 points.)
(4) Prove that every isometry of \mathbb{R}^{2} is either a rotation or a reflection. (7 points.)
5. Let $V=M_{n}(\mathbb{R})$ be the vector space of all $n \times n$ matrices over \mathbb{R}, and $f: V \mapsto \mathbb{R}$ be a linear transformation. Assume that $f(A B)=f(B A)$ for all $A, B \in V$ and $f\left(I_{n}\right)=n$. Prove that f is the trace function. (Hint: Consider the cases $A=e_{i j}, B=e_{k l}$ for various i, j, k, l, where $\left\{e_{i j}\right\}$ is the standard basis for V.) (10 points.)

