

Notations.

- Throughout the exam, the letter n will always represent a positive integer.
- The letter \mathbb{R} denotes the field of real numbers. Hence, the notation \mathbb{R}^n represents the usual Euclidean space of dimension n . The notation $M_n(\mathbb{R})$ stands for the set of $n \times n$ matrices over \mathbb{R} .
- The identity matrix of size n is denoted by I_n .
- For a matrix A , we let A^t denote the transpose of A . For a square matrix B , we let $\text{tr } B$ and $\det B$ denote the trace and the determinant of B , respectively. If a square matrix C is nonsingular, then C^{-1} denotes its inverse.
- For a square matrix A , we let $\exp A = \sum_{n=0}^{\infty} A^n/n!$.

Problems.

- Define an equivalence relation \sim on $M_n(\mathbb{R})$ by $A \sim B$ if and only if there exists an invertible matrix P in $M_n(\mathbb{R})$ such that $A = P^{-1}BP$.
 - Recall that a matrix A in $M_n(\mathbb{R})$ is said to be *unipotent* if $(A - I_n)^k = 0$ for some positive integer k . Determine the number of equivalence classes of unipotent matrices in $M_6(\mathbb{R})$. (10 points.)
 - Recall that a matrix B in $M_n(\mathbb{R})$ is said to be *nilpotent* if $B^k = 0$ for some positive integer k . Prove that if $B \in M_n(\mathbb{R})$ is nilpotent, then $\exp B$ is unipotent. (10 points.)
- Let $A \in M_n(\mathbb{R})$.
 - Prove that if A is skew-symmetric, then $\exp A$ is orthogonal. (10 points.)
 - Prove that if $\text{tr } A = 0$, then $\det(\exp A) = 1$. (15 points.)
- Let $V = M_n(\mathbb{R})$. Define $f : V \times V \rightarrow \mathbb{R}$ by

$$f(A, B) = \text{tr}(AB).$$

- Prove that f is a symmetric bilinear form on V . (*Symmetric* means $f(A, B) = f(B, A)$ for all $A, B \in V$. *Bilinear* means f is linear in each of the two variables.) (10 points.)
- Let U be the subspace of V consisting of symmetric matrices and W be the subspace of V consisting of skew-symmetric matrices. Prove that U and W are orthogonal components of each other with respect to the symmetric bilinear form f . That is,

$$\{A \in V : f(A, B) = 0 \ \forall B \in U\} = W,$$

$$\{A \in V : f(A, B) = 0 \ \forall B \in W\} = U.$$

(Hint: Choose suitable bases for U and W first.) (15 points.)

- Let V be the vector space \mathbb{R}^n equipped with the standard inner product $\langle \cdot, \cdot \rangle$. Recall that a linear transformation $T : V \rightarrow V$ is said to be an *isometry* if $\langle Tv, Tv \rangle = \langle v, v \rangle$ for all $v \in V$.
 - Prove that every isometry has determinant ± 1 . (10 points.)
 - Prove that if n is odd, then every isometry T with determinant 1 fixes some nonzero vector in \mathbb{R}^n . (That is, $Tv = v$ for some nonzero vector v .) (15 points.)
 - Give an example of an isometry of determinant 1 for \mathbb{R}^2 that does not fix any nonzero vector. (5 points.)