

Please explain *all* your answers and indicate which theorems you are using!

1. Let $f(x, y)$ be continuous on $[0, 1] \times [0, 1]$ such that for some finite $C > 0$

$$|f(x, y_1) - f(x, y_2)| \leq C|y_1 - y_2|, \quad \text{for all } x, y_1, \text{ and } y_2 \in [0, 1].$$

(a) (7%) Prove that $\frac{\partial f}{\partial y}(x, y)$ exists for almost all $y \in [0, 1]$ with each fixed $x \in [0, 1]$.

(b) (7%) Prove that $\frac{d}{dy} \int_0^1 f(x, y) dx = \int_0^1 \frac{\partial f}{\partial y}(x, y) dx$.

(c) (6%) Express $\frac{d}{dy} \int_0^{y^2} f(x, y) dx$ in terms of the integral of f and $\frac{\partial f}{\partial y}$ for $y \in [0, 1]$.

2. (a) (10%) Suppose that f is Lebesgue integrable over $[0, 1]$. Prove or disprove that there is a decreasing sequence of real numbers such that $\lim_{n \rightarrow \infty} a_n = 0$ and that $\lim_{n \rightarrow \infty} a_n |f(a_n)| = 0$.

(b) (10%) Let $\{f_n\}_n$ be a sequence of Lebesgue integrable functions defined on $[0, 1]$ such that $\sup_n \int_0^1 |f_n(x)| dx < \infty$. Is it true that there is a decreasing sequence of real numbers such that $\lim_{n \rightarrow \infty} a_n = 0$ and that $\lim_{n \rightarrow \infty} a_n |f_n(a_n)| = 0$? Justify your answer.

3. Let $\{f_n\}_n$ be a sequence of Lebesgue integrable functions defined on $[0, 1]$ with $\lim_{n \rightarrow \infty} \int_0^1 f_n(x) dx = 0$.

(a) (7%) Is it true that $\lim_{n \rightarrow \infty} f_n(x) = 0$ for at least one value of $x \in [0, 1]$?

(b) (7%) Is (a) true if the f_n 's are further assumed to be continuous on $[0, 1]$?

Justify your answers.

4. (10%) Let f be a Lebesgue integrable function defined on $[0, \infty)$. Compute the limit $\lim_{s \searrow 0} \int_0^\infty f(x) e^{-sx^2} dx$.

5. Let f be a function in $L^2[0, 1]$ and let $F(x) = \int_0^x f(t) dt$ for $x \in [0, 1]$.

(a) (6%) Prove that $\|F\|_2 \leq \|f\|_2$.

(b) (4%) Give a necessary and sufficient condition on f for which $\|F\|_2 = \|f\|_2$. Prove your assertion.

6. Let $1 \leq p \leq q < \infty$ and $[a, b] \subset \mathbb{R}$.

(a) (6%) Prove that $L^q[a, b] \subset L^p[a, b]$.

(b) (6%) Let $X : L^q[a, b] \rightarrow L^p[a, b]$ be such that $Xf = f$ for $f \in L^q[a, b]$. Find the norm of X .

7. Let $\Pi = \{z \in \mathbb{C} \mid |z| = 1\}$ and let $\mathcal{C}(\Pi, \mathbb{C}) = \{f \mid f \text{ continuous function from } \Pi \text{ to } \mathbb{C}\}$.

(a) (8%) Give a complete statement of the *Stone-Weierstrass theorem* for $\mathcal{C}(\Pi, \mathbb{C})$.

(b) (6%) Use this theorem to prove that, for any f in $\mathcal{C}(\Pi, \mathbb{C})$ and $z_0 \in \Pi$, the limit

$$\lim_{n \rightarrow \infty} \frac{1}{n} \left(\sum_{k=0}^{n-1} f(z_0^k) \right)$$

exists. Also find the limit value.