應用數學系 114 學年度暑期「助教訓練課程」說明

一、 碩一新生均需參加。

(系上規定碩班學生需參加且完成助教訓練課程方可擔任助教)。

- 二、時間:8/20(三)~8/21(四)上午10:00~12:00及下午1:30~4:00
 地點:基礎科學教學研究大樓204教室。
- 三、 課程內容等相關資料會在6月底<u>應用數學系</u>網站最新消息中公佈,同學可上 網查看。
- 四、 最慢請在 8/5(二)填寫 Google 表單報名,並 mail 大學部成績單電子檔至 calculus@math.nctu.edu.tw,以方便我們建檔並統計人數(以應用數學系三 個組別碩士班學生優先)。
- 五、 Google 表單報名網址: <u>https://forms.gle/TccSmJeAyDR1kdmW6</u>

2025 NYCU-Math TA training

(1) <u>The definition of limits</u> Let $L \in \mathbb{R}$. We write

$$\lim_{x \to a} f(x) = L$$

if, for any $\epsilon > 0$, there is $\delta > 0$ such that

$$|f(x) - L| < \epsilon, \quad \forall 0 < |x - a| < \delta.$$

- (2) <u>The intermediate value theorem</u> If $f : [a, b] \to \mathbb{R}$ is continuous, then, for any L between f(a) and f(b), there is $c \in (a, b)$ such that f(c) = L.
- (3) <u>The extremum value theorem</u> If $f : [a,b] \to \mathbb{R}$ is continuous, then f attains its maximum and minimum values. That is, there are $\alpha, \beta \in [a,b]$ such that

$$f(\alpha) \le f(x) \le f(\beta), \quad \forall x \in [a, b].$$

(4) <u>The definition of differentiation</u> Let $a \in \mathbb{R}$. A function f is differentiable at a if

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 exists,

or equivalently if there is (unique) $M \in \mathbb{R}$ such that

$$\lim_{x \to a} \frac{|f(x) - (f(a) + M(x - a))|}{|x - a|} = 0.$$

In particular, M = f'(a).

(5) The mean value theorem for derivatives Let f be a function defined on [a, b]. If f is continuous on [a, b] and differentiable on (a, b), then there is $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

- (6) <u>The chain rule</u> If f is differentiable at x and g is differentiable at f(x), then $g \circ f$ is differentiable at x and $(g \circ f)'(x) = g'(f(x))f'(x)$.
- (7) <u>The inverse function theorem</u> Suppose $f : (a, b) \to \mathbb{R}$ is one-to-one and differentiable on (a, b). If $f'(x) \neq 0$, then f^{-1} is differentiable at f(x) and

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)}.$$

(8) <u>The l'Hospital's rule</u> Let f, g be differentiable functions defined on (a, b). Assume that

$$\lim_{x\to a^+}f(x)=\lim_{x\to a^+}g(x)\in\{0,\pm\infty\},\quad \lim_{x\to a^+}\frac{f'(x)}{g'(x)}\in\mathbb{R}\cup\{\pm\infty\}.$$

Then,

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

- (9) <u>The fundamental theorem of calculus</u> Let $f : [a, b] \to \mathbb{R}$ be continuous.
 - (1) If $F(x) = \int_a^x f(t)dt$, then F is an antiderivative of f on (a, b) and continuous on [a,b].
 - (2) If $\vec{G}: [a,b] \to \mathbb{R}$ is an antiderivative of f on (a,b) and continuous on [a,b], then $\int_a^b f(t)dt = G(b) G(a).$
- (10) The mean value theorem for integrals If $f : [a, b] \to \mathbb{R}$ is continuous, then there is $c \in (a, b)$ such that

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

(11) **Lagrange multipliers** Let $f, g_1, ..., g_k : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable functions with $k \leq n$ and $E = \{x \in \mathbb{R}^n | g_i(x) = 0, \forall 1 \leq i \leq k\}$. Suppose $\nabla g_1(x), ..., \nabla g_k(x)$ are linearly independent for all $x \in E$. If f, restricted to E, attains its maximum or minimum at P, then there are constants $c_1, ..., c_k$ such that

$$\nabla f(P) = c_1 \nabla g_1(P) + \dots + c_k \nabla g_k(P).$$

(12) Taylor series and analyticity Let f be a function which is infinitely differentiable at a. The Taylor series of f centered at a refers to the following series
 (1) The Taylor series of f centered at a refers to the following series

$$T(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

(2) f is analytic at a if there is $\epsilon > 0$ such that

$$f(x) = T(x), \quad \forall x \in (a - \epsilon, a + \epsilon).$$

(13) **<u>Fubini's Theorem</u>** Let D is a rectangle region be contained in \mathbb{R}^2

$$D = \{(x, y) \mid a \le x \le b, \ c \le y \le d\}$$

and let $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ is integrable. If $f_y(x) = f(x, y)$ is integrable on [a, b] for each $y \in [c, d]$, and if $g(y) = \int_a^b f(x, y) dx$ is integrable on [c, d]. Then the Riemann integral

of f over D equals to the iterated integral

$$\int \int_D f(x,y) dA = \int_c^d \left(\int_a^b f(x,y) dx \right) dy$$

(14) Change of Variables for multiple integrals Given U is a open set in \mathbb{R}^n , let $g: \overline{U} \to \mathbb{R}^n$ is one to one and continuously differentiable on U. If the Jacobian of $g, Jg(\mathbf{x}) \neq 0$ on U, if A is a Jordan measurable and $\overline{A} \subseteq U$, if f is bounded and integrable on g(A), then $f \circ g$ is integrable on A and

$$\int_{g(A)} f(\mathbf{y}) d\mathbf{y} = \int_A f(g(\mathbf{x})) |Jg(\mathbf{x})| d\mathbf{x}$$