2023 NYCU-Math TA training

(1) The definition of limits Let $L \in \mathbb{R}$. We write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if, for any $\epsilon>0$, there is $\delta>0$ such that

$$
|f(x)-L|<\epsilon, \quad \forall 0<|x-a|<\delta
$$

(2) The intermediate value theorem If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then, for any L between $f(a)$ and $f(b)$, there is $c \in(a, b)$ such that $f(c)=L$.
(3) The extremum value theorem If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f attains its maximum and minimum values. That is, there are $\alpha, \beta \in[a, b]$ such that

$$
f(\alpha) \leq f(x) \leq f(\beta), \quad \forall x \in[a, b]
$$

(4) The definition of differentiation Let $a \in \mathbb{R}$. A function f is differentiable at a if

$$
f^{\prime}(a):=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \text { exists, }
$$

or equivalently if there is (unique) $M \in \mathbb{R}$ such that

$$
\lim _{x \rightarrow a} \frac{|f(x)-(f(a)+M(x-a))|}{|x-a|}=0 .
$$

In particular, $M=f^{\prime}(a)$.
(5) The mean value theorem for derivatives Let f be a function defined on $[a, b]$. If f is continuous on $[a, b]$ and differentiable on (a, b), then there is $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

(6) The chain rule If f is differentiable at x and g is differentiable at $f(x)$, then $g \circ f$ is differentiable at x and $(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$.
(7) The inverse function theorem Suppose $f:(a, b) \rightarrow \mathbb{R}$ is one-to-one and differentiable on (a, b). If $f^{\prime}(x) \neq 0$, then f^{-1} is differentiable at $f(x)$ and

$$
\left(f^{-1}\right)^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}
$$

(8) The l'Hospital's rule Let f, g be differentiable functions defined on (a, b). Assume that

$$
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x) \in\{0, \pm \infty\}, \quad \lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)} \in \mathbb{R} \cup\{ \pm \infty\}
$$

Then,

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

(9) The fundamental theorem of calculus Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous.
(1) If $F(x)=\int_{a}^{x} f(t) d t$, then F is an antiderivative of f on (a, b) and continuous on [a.b].
(2) If $G:[a, b] \rightarrow \mathbb{R}$ is an antiderivative of f on (a, b) and continuous on $[a, b]$, then $\int_{a}^{b} f(t) d t=G(b)-G(a)$.
(10) The mean value theorem for integrals If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then there is $c \in(a, b)$ such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

(11) Lagrange multipliers Let $f, g_{1}, \ldots, g_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable functions with $k \leq n$ and $E=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x)=0, \forall 1 \leq i \leq k\right\}$. Suppose $\nabla g_{1}(x), \ldots, \nabla g_{k}(x)$ are linearly independent for all $x \in E$. If f, restricted to E, attains its maximum or minimum at P, then there are constants c_{1}, \ldots, c_{k} such that

$$
\nabla f(P)=c_{1} \nabla g_{1}(P)+\cdots+c_{k} \nabla g_{k}(P)
$$

(12) Taylor series and analyticity Let f be a function which is infinitely differentiable at a. The Taylor series of f centered at a refers to the following series
(1) The Taylor series of f centered at a refers to the following series

$$
T(x):=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

(2) f is analytic at a if there is $\epsilon>0$ such that

$$
f(x)=T(x), \quad \forall x \in(a-\epsilon, a+\epsilon)
$$

(13) Fubini's Theorem Let D is a rectangle region be contained in \mathbb{R}^{2}

$$
D=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}
$$

and let $f: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ is integrable. If $f_{y}(x)=f(x, y)$ is integrable on $[a, b]$ for each $y \in[c, d]$, and if $g(y)=\int_{a}^{b} f(x, y) d x$ is integrable on $[c, d]$. Then the Riemann integral
of f over D equals to the iterated integral

$$
\iint_{D} f(x, y) d A=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

(14) Change of Variables for multiple integrals Given U is a open set in \mathbb{R}^{n}, let g : $\bar{U} \rightarrow \mathbb{R}^{n}$ is one to one and continuously differentiable on U. If the Jacobian of $g, J g(\mathbf{x}) \neq 0$ on U, if A is a Jordan measurable and $\bar{A} \subseteq U$, if f is bounded and integrable on $g(A)$, then $f \circ g$ is integrable on A and

$$
\int_{g(A)} f(\mathbf{y}) d \mathbf{y}=\int_{A} f(g(\mathbf{x}))|J g(\mathbf{x})| d \mathbf{x}
$$

