應用數學系109學年度暑假「助教䚯練課程」說明

—，要申請擔任助教工作之碩—新生均需參加（系上規定碩班學生需參加且完成助教訓練課程方可擔任助教）。

二，時間： $8 / 4$（二）$\sim 8 / 6$（四）上午 $9: 30 \sim 12: 00$ 及下午 $1: 30 \sim 3: 30$地點：基礎科學教學研究大樓 204 教室。

三，課程人數上限 40 人，最慢請在 $7 / 20$（一）E－mail 相關報名資料檔（含報名資料表與大學部成績單）至 calculus＠math．nctu．edu．tw，以方便我們建檔並統計人數（以應用數學系三個組別碩士班學生優先）。

四，課程大網為次頁列出之 12 項核心能力，請参加者先行準備，課程進行期間會直接考核並作為分配擔任助教的參考依據。

備註：相關事項將於應用數學系網站最新消息中公佈，同學可上網查看。

2020 NCTU-Math TA training

(1) The definition of limits Let $L \in \mathbb{R}$. We write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if, for any $\epsilon>0$, there is $\delta>0$ such that

$$
|f(x)-L|<\epsilon, \quad \forall 0<|x-a|<\delta
$$

Question: How to define limits if $a=\infty$ and what does it mean if $L=\infty$?
(2) The intermediate value theorem If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then, for any L between $f(a)$ and $f(b)$, there is $c \in(a, b)$ such that $f(c)=L$.
Question: Whether the continuity of f can be removed or $[a, b]$ can be replaced by any of its subsets that contain a and b ?
(3) The extremum value theorem If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f attains its maximum and minimum values. That is, there are $\alpha, \beta \in[a, b]$ such that

$$
f(\alpha) \leq f(x) \leq f(\beta), \quad \forall x \in[a, b]
$$

Question: What's the extremum value theorem for functions of multiple variables?
(4) The definition of differentiation Let $a \in \mathbb{R}$. A function f is differentiable at a if

$$
f^{\prime}(a):=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \text { exists, }
$$

or equivalently if there is (unique) $M \in \mathbb{R}$ such that

$$
\lim _{x \rightarrow a} \frac{|f(x)-[f(a)+M(x-a)]|}{|x-a|}=0
$$

In particular, $M=f^{\prime}(a)$.
Question: How to define the differentiation of multiple-variable functions?
(5) The mean value theorem for derivatives) Let f be a function defined on $[a, b]$. If f is continuous on $[a, b]$ and differentiable on (a, b), then there is $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Question: Can one remove the continuity or differentiability of f ? Does the mean value theorem apply for vector functions?
(6) The chain rule If f is differentiable at x and g is differentiable at $f(x)$, then $g \circ f$ is differentiable at x and $(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$.
Question: What is the chain rule for $g \circ f$ if $x \in \mathbb{R}^{m}, f(x) \in \mathbb{R}^{n}$ and $g(f(x)) \in \mathbb{R}^{p}$ with $m, n, p \in \mathbb{N}$?
(7) The inverse function theorem Suppose $f:(a, b) \rightarrow \mathbb{R}$ is one-to-one and differentiable on (a, b). If $f^{\prime}(x) \neq 0$, then f^{-1} is differentiable at $f(x)$ and

$$
\left(f^{-1}\right)^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}
$$

Question: What is the inverse function theorem for $f: U \rightarrow \mathbb{R}^{n}$, where U is an open subset of \mathbb{R}^{n} ?
(8) The l'Hospital's rule Let f, g be differentiable functions defined on (a, b). Assume that

$$
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x) \in\{0, \pm \infty\}, \quad \lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)} \in \mathbb{R} \cup\{ \pm \infty\} .
$$

Then,

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Question: Does the l'Hospital's rule hold for the case that $a \in\{ \pm \infty\}$?
(9) The fundamental theorem of calculus Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous.
(1) If $F(x)=\int_{a}^{x} f(t) d t$, then F is an antiderivative of f on (a, b) and continuous on [a.b].
(2) If $G:[a, b] \rightarrow \mathbb{R}$ is an antiderivative of f on (a, b) and continuous on $[a, b]$, then $\int_{a}^{b} f(t) d t=G(b)-G(a)$.
Question: Can one remove the continuity of f ?
(10) The mean value theorem for integrals If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then there is $c \in(a, b)$ such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a) .
$$

Question: Can one remove the continuity of f ?
(11) Lagrange multipliers Let $f, g_{1}, \ldots, g_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable functions with $k \leq n$ and $E=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x)=0, \forall 1 \leq i \leq k\right\}$. Suppose $\nabla g_{1}(x), \ldots, \nabla g_{k}(x)$ are linearly independent for all $x \in E$. If f, restricted to E, attains its maximum or minimum at P, then there are constants c_{1}, \ldots, c_{k} such that

$$
\nabla f(P)=c_{1} \nabla g_{1}(P)+\cdots+c_{k} \nabla g_{k}(P) .
$$

Question: Can one remove the linear independency of $\nabla g_{1}, \ldots, \nabla g_{k}$?
(12) Taylor series and analyticity Let f be a function which is infinitely differentiable at a. The Taylor series of f centered at a refers to the following series
(1) The Taylor series of f centered at a refers to the following series

$$
T(x):=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

(2) f is analytic at a if there is $\epsilon>0$ such that

$$
f(x)=T(x), \quad \forall a-\epsilon<x<a+\epsilon .
$$

Question: What are the radius of convergence and interval of convergence of T ? What is the Taylor series of function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $a \in \mathbb{R}^{n}$?

報名資料表

姓名：
手機：
E－mail ：
本人郵局局號帳號（或玉山銀行）：
（請附上大學成績單正本掃描檔或 PDF 檔）

請填寫報名資料並附上成績單（電子檔）後 E－mail 至
calculus＠math．nctu．edu．tw

