

應用數學系 109 學年度暑假「助教訓練課程」說明

- 一、要申請擔任助教工作之碩一新生均需參加(系上規定碩班學生需參加且完成助教訓練課程方可擔任助教)。
- 二、時間：8/4(二)~8/6(四) 上午 9:30~12:00 及下午 1:30~3:30
地點：基礎科學教學研究大樓 204 教室。
- 三、課程人數上限 40 人，最慢請在 7/20(一)E-mail 相關報名資料檔(含報名資料表與大學部成績單)至 calculus@math. nctu. edu. tw，以方便我們建檔並統計人數(以應用數學系三個組別碩士班學生優先)。
- 四、課程大綱為次頁列出之 12 項核心能力，請參加者先行準備，課程進行期間會直接考核並作為分配擔任助教的參考依據。

備註：相關事項將於應用數學系網站最新消息中公佈，同學可上網查看。

2020 NCTU-Math TA training

(1) **The definition of limits** Let $L \in \mathbb{R}$. We write

$$\lim_{x \rightarrow a} f(x) = L$$

if, for any $\epsilon > 0$, there is $\delta > 0$ such that

$$|f(x) - L| < \epsilon, \quad \forall 0 < |x - a| < \delta.$$

Question: How to define limits if $a = \infty$ and what does it mean if $L = \infty$?

(2) **The intermediate value theorem** If $f : [a, b] \rightarrow \mathbb{R}$ is continuous, then, for any L between $f(a)$ and $f(b)$, there is $c \in (a, b)$ such that $f(c) = L$.

Question: Whether the continuity of f can be removed or $[a, b]$ can be replaced by any of its subsets that contain a and b ?

(3) **The extremum value theorem** If $f : [a, b] \rightarrow \mathbb{R}$ is continuous, then f attains its maximum and minimum values. That is, there are $\alpha, \beta \in [a, b]$ such that

$$f(\alpha) \leq f(x) \leq f(\beta), \quad \forall x \in [a, b].$$

Question: What's the extremum value theorem for functions of multiple variables?

(4) **The definition of differentiation** Let $a \in \mathbb{R}$. A function f is differentiable at a if

$$f'(a) := \lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a} \quad \text{exists,}$$

or equivalently if there is (unique) $M \in \mathbb{R}$ such that

$$\lim_{x \rightarrow a} \frac{|f(x) - [f(a) + M(x - a)]|}{|x - a|} = 0.$$

In particular, $M = f'(a)$.

Question: How to define the differentiation of multiple-variable functions?

(5) **The mean value theorem for derivatives**) Let f be a function defined on $[a, b]$. If f is continuous on $[a, b]$ and differentiable on (a, b) , then there is $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Question: Can one remove the continuity or differentiability of f ? Does the mean value theorem apply for vector functions?

(6) **The chain rule** If f is differentiable at x and g is differentiable at $f(x)$, then $g \circ f$ is differentiable at x and $(g \circ f)'(x) = g'(f(x))f'(x)$.

Question: What is the chain rule for $g \circ f$ if $x \in \mathbb{R}^m$, $f(x) \in \mathbb{R}^n$ and $g(f(x)) \in \mathbb{R}^p$ with $m, n, p \in \mathbb{N}$?

(7) **The inverse function theorem** Suppose $f : (a, b) \rightarrow \mathbb{R}$ is one-to-one and differentiable on (a, b) . If $f'(x) \neq 0$, then f^{-1} is differentiable at $f(x)$ and

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)}.$$

Question: What is the inverse function theorem for $f : U \rightarrow \mathbb{R}^n$, where U is an open subset of \mathbb{R}^n ?

(8) **The l'Hospital's rule** Let f, g be differentiable functions defined on (a, b) . Assume that

$$\lim_{x \rightarrow a^+} f(x) = \lim_{x \rightarrow a^+} g(x) \in \{0, \pm\infty\}, \quad \lim_{x \rightarrow a^+} \frac{f'(x)}{g'(x)} \in \mathbb{R} \cup \{\pm\infty\}.$$

Then,

$$\lim_{x \rightarrow a^+} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a^+} \frac{f'(x)}{g'(x)}.$$

Question: Does the l'Hospital's rule hold for the case that $a \in \{\pm\infty\}$?

(9) **The fundamental theorem of calculus** Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous.

- (1) If $F(x) = \int_a^x f(t)dt$, then F is an antiderivative of f on (a, b) and continuous on $[a, b]$.
- (2) If $G : [a, b] \rightarrow \mathbb{R}$ is an antiderivative of f on (a, b) and continuous on $[a, b]$, then $\int_a^b f(t)dt = G(b) - G(a)$.

Question: Can one remove the continuity of f ?

(10) **The mean value theorem for integrals** If $f : [a, b] \rightarrow \mathbb{R}$ is continuous, then there is $c \in (a, b)$ such that

$$\int_a^b f(x)dx = f(c)(b - a).$$

Question: Can one remove the continuity of f ?

(11) **Lagrange multipliers** Let $f, g_1, \dots, g_k : \mathbb{R}^n \rightarrow \mathbb{R}$ be continuously differentiable functions with $k \leq n$ and $E = \{x \in \mathbb{R}^n | g_i(x) = 0, \forall 1 \leq i \leq k\}$. Suppose $\nabla g_1(x), \dots, \nabla g_k(x)$ are linearly independent for all $x \in E$. If f , restricted to E , attains its maximum or minimum at P , then there are constants c_1, \dots, c_k such that

$$\nabla f(P) = c_1 \nabla g_1(P) + \dots + c_k \nabla g_k(P).$$

Question: Can one remove the linear independency of $\nabla g_1, \dots, \nabla g_k$?

(12) **Taylor series and analyticity** Let f be a function which is infinitely differentiable at a . The Taylor series of f centered at a refers to the following series

- (1) The Taylor series of f centered at a refers to the following series

$$T(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.$$

- (2) f is analytic at a if there is $\epsilon > 0$ such that

$$f(x) = T(x), \quad \forall a - \epsilon < x < a + \epsilon.$$

Question: What are the radius of convergence and interval of convergence of T ? What is the Taylor series of function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ at $a \in \mathbb{R}^n$?

報名資料表

姓名：

手機：

E-mail：

本人郵局局號帳號(或玉山銀行)：

(請附上大學成績單正本掃描檔或 PDF 檔)

請填寫報名資料並附上成績單(電子檔)後 E-mail 至

calculus@math. nctu. edu. tw