

D -disjunct matrices with column weight $d + 1$

Chih-wen Weng
(with Yu-pei Huang and Wu, Hsin-Jung)

Department of Applied Mathematics, National Chiao Tung University

April 20, 2010

d -disjunct matrices with column weight $d + 1$

Abstract

A binary matrix M is called **d -disjunct** if any column of M is not covered by the boolean sum of any d other columns. Erdős, Frankl and Füredi shows that if a $t \times n$ d -disjunct matrix M with constant column weight $d + 1$ exists then $n \leq t(t - 1)/(2d)$. We improve the above bound of n by showing $n \leq \text{Max}(t(t - 1)/d(d + 1), t - d)$. This inequality is sharp in many pairs (d, t) , but is not sharp when $(d, t) = (5, 36)$. We construct $t \times n$ d -disjunct matrices with constant column weight $d + 1$ for $(d, t, n) = (d, (d + 1)m, (d + 1)m + 1)$, where d is a prime power, and m is an integer satisfying $m = 2d - 4$, $m = 2d - 3$ or $m \geq 2d - 1$. In particular a 5-disjunct matrix of size 36×37 exists.