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The pure number of subdivision graph
with pendant subgraphs

Student: Zih-sian Yang Advisor: Dr. Chih-wen Weng

Department of Applied Mathematics

National Yang Ming Chiao Tung University

Abstract

Let G be a simple undirected graph with the adjacency matrix A(G). The rank
r(G) of G is the dimension of the column space of the adjacent matrix A(G) of
G, and the matching number m(G) is the maximum number of a matching in G.
The number f(G) := 2m(G) — r(G) of G is called the pure number of G. It is
well-known that every tree has pure number 0. In this thesis, we first studies the
relation between the three numbers m(G), r(G) and f(G) of G, and then extends
the previous results on the pure numbers of trees and unicyclic graphs to a special
class of graphs. Each graph G in this class is obtained from a graph H by edge
subdivision, adding pendant-trees on new vertices, and adding pendant-subgraphs
on original vertices. If further assume that the above adding pendant-trees use their
matched vertices to pend, we show that f(G) is the sum of the f-values of adding
pendant-subgraphs, nothing to do with pendant-trees and the graph H. We give
some open problems for further study.

Keywords: rank, matching number, pure number, trees, unicyclic graphs, subdivision

graphs, matched vertex.
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1 Introduction

The graphs in this thesis are simple undirected. Let G be a graph with adjacency
matrix A(G). The rank of A(G) is called the rank of G, denoted by r(G). Let m(G)
denote the maximal size of a matching in G and the number f(G) := 2m(G) — r(G) is
called the pure number of G. The three numbers m(G), r(G) and f(G) are related. It
is well-known that f(7T) = 0 for every tree T in [1]. When G is a unicyclic graph, J.-M.
Guo, W. Yan and Y.-N. Yeh found that the pure number f(G) take only one of the three
values —1, 0 or 2, and characterized these three types of unicyclic graphs in [4]. S.-C.
Gong , Y.-Z. Fan and Z.-X. Yin extend the results in [4] to find the rank of a graph with
pendant-trees pending on matched vertices in [3]. Our study employs the methods in these
two papers [4, 3]. There are two basic methods: One is about a rank operation of graphs
by pendant-edge deletion as described in Section 3.2 and the other is an f-invariant
operation of graphs, called the pendant-star deletion as described in Section 3.3. We
generalize these two basic methods to a more effective f-invariant operation of graphs,
called pendant-tree deletion in Theorem 4.5 of Section 4.3. Before doing this, we review
how the two basic methods involved in the study of unicyclic graphs in Section 3.4 and the
study of graphs with a pendant-tree in Section 3.5. Our main result is Theorem 4.7, which
states that if G is obtained from a graph H by edge subdivision, adding pendant-trees
on new vertices and adding pendant-subgraphs on original vertices and with the further
assumption that the above adding pendant-trees use their matched vertices to pend, then
f(G) is the sum of the f-values of adding pendant-subgraphs, nothing to do with pendant
trees and the graph H. Three examples of Theorem 4.7 are provided in Section 4.5 and a
variant of Theorem 4.7 is given in Section 4.6. We give some problems for further study

in Section 4.7.



2 Notations and Definitions

In this section, we provide the notations and definitions which are necessary in this

thesis.

2.1 Graphs and subgraphs

A simple undirected graph (or a graph for short) is a pair G = (V(G), E(G)),
where V(G) is a finite set and F(G) collects some 2-subsets of V(G). The elements in
V(G) and E(G) are called vertices and edges of G respectively. The number |V(G)]
is called the order of G and the number |E(G)| is called the size of G. For an edge
e = uwv € E(G), the following terminologies are used interchangeably: the vertices u
and v are endpoints of the edge; the vertices © and v are adjacent; the vertex u is a
neighbour of v; the vertex u is incident with e; the edge e is incident on u. For a
vertex v € V(G), define N(v) to be the set of all vertices which are adjacent to v. The
cardinality of N(v) is called the degree of vertex v, denoted by deg(v). A subgraph of
G is a graph H satisfying V(H) C V(G) and E(H) C E(G). Let S C V(G) be a subset
of vertices of G and the induced subgraph G|[S] of G by S is the graph with vertex set
S whose edge set consisting of the edges in F(G) that have both endpoints in S. Given
S C V(G), denote by G — S the induced subgraph G[S], where S := V(G) — S. If H is
an induced subgraph of G, then we use G — H instead of G — V(H). A subdivision
of a graph G is the graph SD(G) with vertex set V(SD(G)) = V(G) U E(G) and edge
set E(SD(G)) = {ue,ve : e=uv € E(G)}. We call a vertex in F(G) C V(SD(G)) the
division vertex and a vertex in V(G) C V(SD(G)) the original vertex. See Figure 1

for a graph and its subdivision.



€3 €3

Figure 1: A graph and its subdivision

2.2 Paths and cycles

Throughout the thesis, G is a graph. A walk in G is a sequence of edges (e, e, -+ ,€,_1)
for which there is a sequence of vertices (vq,vg, - -+ ,v,) such that e; is incident on v;, v; 11
for i = 1,2,...,n—1. A trail in G is a walk in which all edges are distinct. A path of
length £ from a vertex u to a vertex v v in GG is a trail whose corresponding sequence of
vertices (u = vg, vy, -+ ,v = v) are all distinct except possible v = v in which we call the
path a cycle. Note that a cycle has length at least 3. A connected graph is a graph
such that for any two vertices u, v in V(G), there is a path from u to v. A connected
component of a graph G is a maximal connected induced subgraph of G. An acyclic

graph is a graph without any cycle.

2.3 Examples of graphs

We use P, (resp. C,) to denote the graph itself being a path (resp. a cycle) of order
n. A tree is a connected acyclic graph. For n > 1, a complete graph of order n,
denoted by K,, is a graph G with all possible ('V(gG)l) edges. For p > 1, let ?p denote
the graph of order p without any edges. A bipartite graph G is a graph whose vertex
set V(@) can be divided into two disjoint subsets U and V' such that every edge e has
one endpoint in U and the other in V; Moreover, if |E(G)| = |U| - |V| holds, then G
is called a complete bipartite graph, denoted by G = Ky v|. The complete graph

K ,,—1 is also called a star of order n and the vertex of degree n—1 in K ,,_; is called the



center. We use the notation S, to denote a star with center u. We say a graph H is G
if after suitable renaming of V' (H) and we have G = H. Graphs G and H are disjoint if
V(G)NV(H) = 0. If G and H are disjoint graphs, then we use GU H to denote the graph
with vertex set V(G) UV (H) and edge set E(G)U E(H), and call GU H the union of G
and H. If H; and H, are graphs with a unique common vertex u, then the graph, denoted
by Hy +, Hy with vertex set V(H,) UV (H;) and edge set E(H;) U E(H,) is called the
coalescence of Hy and H, at u. In this situation, we also say that the graph H;+, H> has
pendant- H; and pendant-H; pending on the vertex u. A k-cyclic graph is a connected
graph of order n and size n + k — 1. A 1-cyclic graph is also called a unicyclic graph.
The unique cycle in a 1-cyclic graph is called the base cycle. See Figure 2 for a 1-cyclic
graph of order 12 with a pendant-tree of order 9 and a pendant-cycle of order 4 pending

on the vertex u.

Figure 2: A graph with a pendant-tree of order 9 and a pendant-cycle of order 4 pending
on u

If Hy, ..., Hy are disjoint graphs and G is a graph such that V(G) N V(H;) = {u;}

for 1 <14 <t, then we denote the graph

(( o (G “":m Hl) +m2 H2 T ) +zt,1 Ht—l) +u, Ht



t
G +a, | Hi,
=1

and call the graph obtained from G by adding pendant-H; on z;.

2.4 Matching number m(G), rank r(G) and pure number f(G)

A matching M in a graph G is a set of edges such that any two edges have no common
endpoints. The matching number m(G) of G is the largest size of a matching of G. If
|M| = m(G), then M is said to be a maximum matching in G. If a vertex u is incident
with an edge of a matching M, then w is said to be saturated by M; Otherwise, u is
said to be unsaturated by M. A vertex v of G is matched in G if m(G) > 1 and v is
saturated by every maximum matching of G; Otherwise, v is said to be mismatched in
G.

Let G be a graph with vertex set V(G) ={vi,vs, -+ ,v,}. Then the adjacency
matrix A(G) = (a;;) of G is an n-by-n matrix such that

(1)

1 if v; and v; are adjacent.
a;; =
Y 0 otherwise.

The column space C(A(G)) of G is the set of vectors consisting of the linear combinations
of all column vectors of A(G) over R. The rank of G, denoted by 7(G), is the dimension
of the column space C(A(G)) of G. We define the pure number f(G) of G as 2m(G) —
r(Q).

3 Results in the literature

We shall review some known results in this chapter. For the completeness, we also

provide some of the proofs.



3.1 The union of disjoint graphs

The following lemma is immediate from the definitions of rank r(G), matching number

m(G) and the pure number f(G) of a graph G.

Lemma 3.1. [1] Let G = |J;_, G;, where G1,Gy, ..., G, are connected components of G.

Then

n

r(G) = r(G), m(G) =3 m(G), f(G) =} f(G)

i=1
From the above lemma, to study r(G), m(G) and f(G) of a graph G, it suffices to

assume that G is connected.

3.2 Rank of a graph by pendant-edge deletion

Let G be a graph with a pendant-edge uv pending on vertex v. The deleting of the
set {u, v} from G is called the pendant-edge deletion operation. We use the notation
G —u— v to denote the graph G — {u,v}. The following lemma provides the effect on the

ranks after the pendant-edge deletion operation of a graph.

Lemma 3.2. ([2/) Let G be a graph with a pendant-edge uv pending on the vertexr v.
Then

Proof. For visual understanding, the adjacency matrix A(G) of G is illustrated as

010 0
10 Yt

L - nXn



where y is (|[V(G)| — 2) x 1 submatrix of A(G) on V(G —u —v) x {v} and n = |[V(G)].
Applying row operations by using the first row of A(G) to eliminate y, and applying col-

umn operation by using the first column of A(G) to eliminate y*, this yields the following

matrix _ -
010 0
100 0
0 0 5
AG —u—vw)
0 0
L 4 nXxXn
which has rank 7(G —u — v) + 2. n

From above the Lemma 3.1 and the Lemma 3.2, we have the corollary in the following.

Corollary 3.3. [8] If S is a pendant-star of G pending on the center of S with |V (S)| > 2,
then

r(G)=r(G—-S)+2.

Proof. Let v be the center of S and let u be a neighbor of v in S. Note that G —u — v
equals to G — S together with |V (S)| — 2 isolated vertices from S — {u,v}. By Lemma 3.2

and Lemma 3.1, we have

where n = |V(.59)]. n

3.3 f-invariant operation: pendant-star deletion

We shall prove that the deleting of pendant-star of a graph is f-invariant in this

section, and consequently f(7") = 0 for every tree T.



Lemma 3.4. [}] If S is a pendant-star of G pending on the center of S and |V (S)| > 2,
then

m(G) =m(G —S) + 1.

Proof. We show first that m(G) > m(G—S)+1. Let u be the center of pendant-star S and
uv be an edge in S. Let M be a maximum matching in G — S with |M| = m(G—S). Since
the edge uv € M, we have m(G) > m(G—S)+1. Next, we show that m(G) < m(G—S)+1.
Since a matching in G with maximum size is divided into two parts: one contains a

matching of G — S and the other contains a matching of S. Hence, we have

m(G) <m(G—S)+m(S)=m(G—-5)+ 1.

By Corollary 3.3 and Lemma 3.4, we get the result of f-invariant of the deleting of

pendant-star on a graph in the following.

Corollary 3.5. [8] If S is a pendant-star of G pending on the center of S and |V (S)| > 2,

then
f(G=8) = [f(G).
Proof. By Corollary 3.3 and Lemma 3.4, we have
F(G=8) =2m(G - 8)—r(G—S5)
=2(m(G) - 1) = (r(G) - 2)

Motivated by Corollary 3.5, an algorithm taking a tree T' with a prescribed vertex u

as input and a star S with center u as output by pendant-star deletion is given.



Algorithm 3.6 (Star producing from a tree T' with a prescribed vertex ).

Input: A tree T with a vertex u
1: If T is a star with center u, then S, <— T and go to 4; otherwise, go to 2.
2: Find a vertex v of degree 1 in T, its neighbor w # v and a star S,, containing w and
v. Go to 3.
3: Apply the pendant-S,, deletion operation and take the connected component H of
T — S, where H contains u. T' < H and go back to 1.
4: return 5,.

Output: S,
It has been shown in [8, 6] that the above output star S, is unique. Indeed, from our
later Proposition 4.3, we have

V(S,) ={u}U{v € N(u) : v is mismathced in the subtree of 7T — u containing v}.

Lemma 3.7. For any positive integer p, f(K,) = 0.

Proof.
J(Ky) = 2m(K,) —r(K,) =2-0—0=0.

From the Algorithm 3.6, we have the result about the pure number of a tree in the

following.
Corollary 3.8. [1] If T is a tree of order at least 2, then f(T) = 0.

Proof. By Corollary 3.5, Lemma 3.7 , and Algorithm 3.6, it remains to prove that the
corollary holds in the base case T'= K ,_1. Since (K ,-1) =2 and m(K;,_1) = 1, we
have

f(T) = f(Kl,nfl) = 2m(K17n,1) — T(Kl’nfl) =2-1-2=0.



3.4 1-cyclic graphs

We will review the result in the study of the pure number of a 1-cyclic graph in this
section. Throughout this section, let G be a connected 1-cyclic graph with base cycle C.
We assume that V(C) = {uy,ug,...,u:} and

t
G=C+, T (2)
i=1
where T; are disjoint trees such that V(C) NV(T;) = {u;}. See Figure 3 for an example

with ¢ = 3.

Figure 3: A 1-cyclic graph with three pendant-trees.

Let G* be the graph obtained from G by replacing each T; with the star S; in the
output of Algorithm 3.6 on 7T; with prescribed vertex u; € V(C'). The graph G* is called

the canonical subgraph of G. See Figure 4 for G* of the graph G in Figure 3.

Figure 4: The canonical graph G* of the graph G in Figure 3.

The rank of the cycle C,, can be easily found.

Lemma 3.9. [7]
H(C,) = {n—2 if n is a multiple of 4, (3)

n otherwise.

10



The pure number of a 1-cyclic graph G is determined from G* and the number of

vertices in its base cycle C' by J.-M.Guo, W.Yan and Y.-N.Yeh [4].

Theorem 3.10. 4] Let G be a 1-cyclic graph with cycle C. Then
(i) f(G)=—1if G* =C and |V(C)| is odd,
(ii) f(G)=2if G* = C and |V(C)| =0 (mod 4),
(i5i) f(G)=0if (G*=C and |V(C)| = 2(mod 4)) or G* # C.

Proof. By Corollary 3.5 and Corollary 3.8, G* is obtained from G by repeated deleting of
pendant-star, which is f-invariant, we have f(G) = f(G*). Assume G* # C in the case

(7i7), then G* has a pendant-star S. By Corollary 3.5, we have

(@) = (G =5) = f(T) =0,

where a tree T is obtained from G* by deleting the star S. Another cases, when G* = C,
we determine f(G*) according to the assumptions in the cases (i)-(éi7) about t = |V (C)|

and Lemma 3.9, we have
(1) f(G") = f(C)=2m(C) —r(C)=2(t-1)/2 -t = —1,
(1) F(G*) = F(C) = 2m(C) — 1(C) = 24/2 — (t—2) =2,

(iii) F(G*) = f(C) = 2m(C) — r(C) = 2t/2 — t = 0.

3.5 Graph with pendant-tree pending on a matched vertex

S.-C. Gong , Y.-Z. Fan and Z.-X. Yin study the rank of a graph with a pendant-tree.

We review their results in this section.

11



Lemma 3.11. /3] If G has a pendant-star S pending on the center u of S, then u is

matched in G.

Proof. Suppose the u is mismatched in G and M is a maximum matching of G such that
the u is unsaturated by M. Let v # u be a vertex in the pendant-star S of G. Then v is
also unsaturated by M. Hence, M U {uv} is a matching of size |M| + 1, a contradiction

to the maximal of |M|. |

The following corollary is immediate from Lemma 3.11.

Corollary 3.12. [3] Let T be a tree of order at least 2. Then there is a matched vertex

in a tree T'.

Proof. By Lemma 3.11, this is clear since a tree has a pendant-star. [ ]

Theorem 3.13. [3] Let G be a graph with a pendant-tree T pending on a matched vertex
w of T and |V(T')| > 2. Then

r(G)=r(T)+r(G-T).

Proof. We use the induction on the matching number m(7") of T. If m(T) = 1, then
T = K, with center u, where (K ,) = 2 by Lemma 3.2. Let v # u be another vertex

in K;,. By Lemma 3.1 and Lemma 3.2,
r(G)=r(G-—u—v)+2=r(K,1UG)+2=1r(G)+2=r(G— Ky,)+r(K,),

where G is the graph G — K ,. Assume m(7) > 2. Since T' is not a star, there is a
pendent- K , pending on the center w # u of K, such that T'— K , is still a tree. Since
m(K;,) =1 <m(T), and by induction hypothesis with applying G = T in the statement,
we have

r(T) = r(Kig) +7(T = Kig) =2+ 7(T = Kiy). (4)

12



Similarly, since m(K ), m(T — K ,) < m(T'), by induction hypothesis and (4), we have

7(GQ) =r(Kiq) +7(G — Ki4)
=24 7(T — Ky 4) +7(G — K14 — (T — K1)

—r(T) + (G —T).

4 Our results

We provide our results in this Chapter.

4.1 Relationship between f(G), r(G) and m(G)

The parameters f(G), r(G) and m(G) of a graph G have close relationship in doing

the graph deletion.

Proposition 4.1. Let G be a graph with an induced subgraph H. Then any two statements

of the following (i)~(iii) imply the third.
(i) f(G) = f(H)+ f(G - H),
(ii) r(G) = r(H) +r(G — H),

(iii) m(G) = m(H) +m(G — H).

Proof. We will apply Lemma 3.1 to find f, r and m values of disjoint graphs H and G — H

in the following:

13



e (i), (ii) = (iti): From f(G) = f(H)+ (G — H) and r(G) = r(H) + (G — H), we
have

S(F(E) +7(0))

= SUH) + (G~ H) + 7(H) + (G~ H)

(f(H) +r(H)+ f(G - H) +r(G - H))

1

T2
=m(H)+m(G— H).

o (1), (itd) = (i) : From f(G) = f(H)+ f(G—H) and m(G) = m(H)+m(G - H),

we have

=r(H)+r(G—-H).

o (ii),(1ii) = (i): From r(G) =r(H)+r(G — H) and m(G) = m(H) + m(G — H),
we have
f(G) = 2m(G) —r(G)
=2(m(H)+m(G—H))— (r(H)+r(G— H))
= 2m(H) —r(H))+ (2m(G - H) —r(G — H))

= f(H)+ f(G—H).

4.2 A characterization of the output star S of a tree T’

In this section, we will introduce the relation between output star S, in Algorithm 3.6

of a tree T" and a prescribed vertex u of T

14



Lemma 4.2. Let u be a vertex in G. Then u is mismatched in G if and only if v is

matched in G — u for every v € N(u).
Proof. We will prove two things in the following:

(=) Suppose that u is mismatched in G. Then m(G) = m(G —u). Let M be a matching
of G —u with |M| = m(G — u). If v is unsaturated by M, then M U {uv} is a

matching of G with size m(G — u) + 1 = m(G) + 1, a contradiction.

(<) Suppose that for every v € N(u), v is matched in G — u. Let M be a matching of
G — u with size m(G — u). Then every v € N(u) is saturated by M. Let N be the

maximum matching of G. Then,
m(G) = [N| < [NNE({u})[+[N N E(G —u)| < |M|=m(G —u).

Hence, M is a maximum matching of G. We conclude that u is not saturated by

M. Hence, u is mismatched in G.

Proposition 4.3. Let T be a tree and w € V(T'). Let S, be the star in the output of the

star producing algorithm in Algorithm 3.6. Then the following (i)-(iii) are equivalent.
(i) w is mismatched in T';
(ii) V(Su) = {u};

(iii) V(S,) # {v} for every v € N(u), where S, is the star in the output of the star

producing algorithm when the input is the component T, containing v in T — u.
Moreover,
V(S,) = {u}U{v € N(u) : v is mismathced in the component T, containing v of T —u}.
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Proof. Let d(T,) be the maximum length of a path from u to a vertex in 7. We prove
the equivalent of (i)-(iii) and S, is unique by induction on d(T,). If d(7,) = 0, then T
is the graph with single vertex u, so w is mismatched in T, V(S,) = {u} and N(u) = 0.
If d(T,) = 1, then u is matched in 7', S, = T # {u}, and V(S,) = {v} for v € N(u).
Suppose that d(T,,) > 2. Before doing the next step, notice that d(7,) < d(T,) for

v € N(u), and by induction, S, is unique. By the construction of the algorithm,
V(Su) = {uj U{v € N(u) - S, = {v}}.
Hence, the equivalent of (i)-(ii) implies
V(S,) = {u}U{v € N(u) : vis mismatched in the component T, containing v of T'—u}.

Now, we use the induction hypothesis to prove the equivalent of (i)-(iii).

((i)=-(iii)) Suppose u is mismatched in 7. Then by Lemma 4.2, v is matched in 7,
for every v € N(u). Since d(7,) < d(T,) and by induction hypothesis, V(S,) # {v} for
every v € N(u).

((iii)=(i), (ii)) Suppose V(S,) # {v} for every v € N(u). By induction hypothesis, v
is matched in T,. Hence, u is mismatched in 7" by Lemma 4.2. This proves (i). By the
construction of the algorithm and the unique of S,, we have V(S,) = {u}. This prove (ii).

((ii)=-(iil)) Suppose V (S,) = {u}. For v € N(u), by the construction of the algorithm
and the unique of S,, we have V (S,) # {v}.

Proposition 4.4. Let G = C'+,, U§:1 T; be a 1-cyclic graph with base cycle C' as described
in (2), and G* be the canonical subgraph of G as described in Section 3.4. Then G* = C
if and only if V(Sy,) = {w} for every u; € V(C).

Proof. This result is immediately from the definition of G* and Proposition 4.3. ]

16



4.3 f-invariant operation: pendant-tree deletion

In this section, we generalize the f-invariant operation of pendant-star deletion to the

operation of pendant-tree deletion pending on a matched vertex of the tree.

Theorem 4.5. Let G = F +, T be a graph with a pendant-tree T" pending on a matched

vertex uw of T'. Then
1(G) = H(G—T),

Proof. We follow Algorithm 3.6 to choose a star S, containing an edge wv from 7', where
v has degree 1 and apply pendant-S,, deletion to have f(G) = f(G—S,) = f(F+uH) by
Corollary 3.5 and Lemma 3.7, where H is the connected component of T'— S, containing
u. Repeatedly doing this the process of Algorithm 3.6. Since u is a matched vertex in 7T,
we have f(G) = f(F + uS,) in the end of Algorithm 3.6, where |V (S,)| > 2. Applying

pendant-S,, deletion from F' + uS,,, we have

F(G) = f(F+uS,) = f(F—u) = f(G-T).

We will provide another proof of Theorem 4.5 in the end of this section. We need two

more lemmas.

Lemma 4.6. Let G be a graph with a pendant-graph H pending on a vertex uw of H. If u

1s a matched vertex in H, then
m(G) =m(H)+m(G — H).
Proof. We claim m(G) > m(H) +m(G — H) and m(G) < m(H)+m(G — H).

(i) Let M; be a maximum matching of H and Mj be a maximum matching of G—H. Let
M = M,UM,. Since H and G — H are disjoint graphs, M; N M, = (). Hence, the M
is a matching of G and | M| = m(H)+m(G—H). Hence, m(G) > m(H)+m(G—H).
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(ii) Since w is a matched vertex in H, we have m(H —u) = m(H) — 1. Let N be a
maximum matching of G. If u is unsaturated by N or u is saturated by N N E(H),

then
m(G) = [N| = NN E(H)|+|NNE(G - H)| <m(H) +m(G— H);
Otherwise, u is saturated by N N E(G — (H — u)), we have

m(G) =|N|=|NNEH —u)|+|NNEG - (H—u))|

<(m(H)—-1)+(m(G—-H)+1)=m(H)+m(G - H).

Now, we are ready to give another proof of Theorem 4.5 in the following:

Second proof of Theorem 4.5. Since the u is matched in T, and by Theorem 3.13, we
have r(G) = r(T,,) + r(G — T,,). Since T, is a tree, we have f(T,) = 0 by Corollary 3.8.

By Lemma 4.6, we have m(G) = m(7T,,) + m(G — T,,). Now by Proposition 4.1, we have

4.4 Pendant-trees to a subdivision graph

We study the pure number of a graph G obtained from a subdivision graph SD(H)
of a graph H by adding pendant-graphs pending on the original vertices and adding
pendant-trees pending on division vertices which are matched vertices of the corresponding

pendant-trees.

Theorem 4.7. Let H be a graph and H, be disjoint graphs for x € V(H)U E(H) such
that (V(H)UE(H))NV(H,) ={z} forx € V(H)UE(H). If H, is a tree and the vertex
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x is matched for v € E(H), then graph G = SD(H) 4+ U,eyryupm) He obtained from

the subdivision graph SD(H) of H by adding pendant-H, pending on x has f-value

f@) = S f(H,).
)

zeV(H

Proof. Applying Theorem 4.5 in G with H, for every z € E(H) repeatedly, we have

By Lemma 3.1, we have

Hence,

We apply Theorem 4.7 to the following special type of graphs.

Corollary 4.8. Let H be a graph and H, be disjoint graphs for x € V(H) U E(H) such
that (V(H)UE(H))NV(H,) = {z} forx € V(H)UE(H). Suppose that H, is a 1-cyclic
graph for x € V(H). If H, is a tree and x is matched in H, for x € E(H), then graph
jsp 4. ) H)=2a-b
@€V (H)UE(H)
where a is the number of H, for x € V(H) whose canonical subgraph H} is a cycle of
length multiple of 4 and b is the number of H, for x € V(H) whose canonical subgraph

H} is a cycle of length odd.

Proof. By Theorem 4.7 and Theorem 3.10, we have f(G) =3  cy ) [(H;) =2a—b. m
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4.5 An application of Theorem 4.7

We provide three applications of Theorem 4.7 in this section.

Example 4.9. Applying H = K3, H, = Cy for x € V(H) and H, = K, for x € E(H) to
Corollary 4.8, one can check that SD(H) = Cg and the result graph is depicted in the left
of Figure 5. Deleting H, = K, for x € E(H) from the graph in in Figure 5, three disjoint
(), are remaining as depicted the graph in the right of Figure 5. Applying Corollary 4.8,
both graphs G in Figure 5 have the same f-value f(G) =2-3 —0=6.

ﬂ( el
[ @

Figure 5: Two graphs with the same f-value 6.

Example 4.10. Applying H = Cy, H, = Csforz € V(H)and H, = K, 3 forz € E(H) to
Corollary 4.8, and the result graph is depicted in the left of Figure 6. Deleting H, = K; 3
for x € E(H) from the graph in in the left of Figure 6, four disjoint C3 are remaining in
the right. Applying Corollary 4.8, Lemma 3.9 and Corollary 3.8, both graphs in Figure 6

have the same f-value —4.
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Figure 6: Two graphs with the same f-value —4.

Example 4.11. The graph G in the left of Figure 7 is obtained from the subdivision
SD(e) of an edge e = uv by adding pendent-T;, on the division vertex e and adding two
pendant-1-cyclic graphs (G; and G5 in the right of Figure 7 with cycles €, and C on
pending vertices u and v respectively. Applying Corollary 3.5 on the pendant-T,, and
Lemma 3.1, we have f(G) = f(G1)+ f(Gs). Since the G; and G5 has some pendant-trees
on some mismatched roots, by Proposition 4.4 and Proposition 4.3 , and Theorem 3.10,

we have

f(G) = f(G1) + f(Ga) = f(G]) + f(G3) = f(C1) + f(C2) = —2.

Sl 5 2

Figure 7: Two graphs with the same f-value —2.
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4.6 Variant of Theorem 4.7

A simple modification of Theorem 4.7 yields the following variant version with the

same proof.

Theorem 4.12. Let H be a graph and H, be disjoint graphs for x € V(H)U E(H) such
that (V(H)UE(H))NV(H,) = {z} forx € V(H)UE(H). If H, is a tree and the vertex
x is matched for x € V(H), then
FSDH) +. | Ho)= D f(H).
2€V (H)UE(H) 2€E(H)
Proof. Applying Theorem 4.5 with G = SD(H) +, UzeV(H)UE(H) H, and T = H, for

every x € V(H) repeatedly, we have

By Lemma 3.1, we have

Hence,

fSDH)+, | Ho)= ) f(H.).

z€V(H)UE(H) z€E(H)

Example 4.13. Applying H = Cy, H, = Csforz € E(H)and H, = K, 3forxz € V(H) to
Theorem 4.12, and the result graph is depicted in the left of Figure 8. Deleting H, = K 3
for x € V(H) from the graph in Figure 8, 4 disjoint C3’s are remaining in the right of

Figure 8. Both graphs in Figure 8 have the same f-value —4.
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Figure 8: Two graphs with the same f-value —4

4.7 Problems for further study

We list a few problems for further study in this section. Lemma 3.2 is a crucial tool

in the development of this thesis. The following is a more general problem.

Problem 4.14. Let G and H be two graphs such that V(G) NV (H) = {z}. Express
rank(G +, H) in terms of rank(G), rank(H), rank(G — =) and rank(H — x).

Theorem 4.5 gives the equality f(F+,T) = f(F —u), where F'+, T is the coalescence
of graph F and tree T', and u is matched in 7. The following problem is the complement

part.

Problem 4.15. Let F' be a graph and T be a tree such that V(F)NV(T) = {z} and z
is mismatched in T'. Express f(F +, T') in terms of f(F), f(T), f(F —z) and f(T — z).

It worths mentioning that to work on Problem 4.15, the results in [3] need to be
studied first. A cycle-disjoint graph is a graph whose cycles are pairwise disjoint. In
particular, a 1-cyclic graph is a cycle-disjoint graph. The following problem generalizes

Theorem 3.10.
Problem 4.16. Determine f(G) for a cyclic graph G.

If G is cycle-disjoint, then contracting every cycle of G yields a tree T'(G). Conversely,

if some vertices of a tree are replaced by corresponding cycles and each neighbor of a
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replaced vertex in the tree is connected to a unique vertex in the corresponding cycle,
then the resulting graph is a cycle-disjoint graph.

The first step to study Problem 4.16 is to solve the following conjecture.

Conjecture 4.17. If GG is a cycle-disjoint graph such that every cycle in G contracting

to a matched vertex of degree at least 2 in T'(G), then f(G) = 0.
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