Triangle-free distance-regular graphs

Student: Ming-hsing Lu Advisor: Chih-wen Weng

Abstract

Let $\Gamma = (X, R)$ denote a distance-regular graph with distance function ∂ and diameter $d \geq 3$. For $2 \leq i \leq d$, by a parallelogram of length *i*, we mean a 4-tuple xyzu of vertices in X such that $\partial(x, y) =$ $\partial(z, u) = 1$, $\partial(x, u) = i$, and $\partial(x, z) = \partial(y, z) = \partial(y, u) = i - 1$. Suppose the intersection number $a_1 = 0$, $a_2 \neq 0$ in Γ . We prove the following (i)-(ii) are equivalent. (i) Γ is Q-polynomial and contains no parallelograms of length 3; (ii) Γ has classical parameters. By applying the above result we show that if Γ has classical parameters and the intersection numbers $a_1 = 0$, $a_2 \neq 0$, then for each pair of vertices $v, w \in X$ at distance $\partial(v, w) = 2$, there exists a strongly regular subgraph Ω of Γ containing v, w. Furthermore, for each vertex $x \in \Omega$, the subgraph induced on $\Omega_2(x)$ is an a_2 -regular connected graph with diameter at most 3.

1 Introduction

It is shown that a distance-regular graph with classical parameters has the Q-polynomial property [2, Theorem 8.4.1]. To describe the converse, let Γ denote a Q-polynomial distance-regular graph with diameter $d \geq 3$. Brouwer, Cohen, Neumaier proved that if Γ is a near polygon and has intersection number $a_1 \neq 0$ then Γ has classical parameters [2, Theorem 8.5.1]. Weng proves the same result by loosing the near polygon assumption, but instead assuming that the graph Γ contains no kites of length 2 and no kites of length 3 [7, Lemma 2.4]. For the complement, Weng shows Γ has classical parameters in the assumptions that Γ has diameter $d \geq 4$, intersection numbers $a_1 = 0, a_2 \neq 0$, and Γ contains no parallelograms of length 3 and no parallelograms of length 4 [9, Theorem 2.11]. We generalize Weng's result as following.

Theorem 1.1. Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \geq 3$ and intersection numbers $a_1 = 0$, $a_2 \neq 0$. Then the following (i)-(ii) are equivalent.

- (i) Γ is Q-polynomial and Γ contains no parallelograms of length 3.
- (ii) Γ has classical parameters.

By the results in [4] and [10], Theorem 1.1 has the following corollary.

Corollary 1.2. Let Γ denote a distance-regular graph with classical parameters and intersection numbers $a_1 = 0$, $a_2 \neq 0$. Then for each pair of vertices $v, w \in X$ at distance $\partial(v, w) = 2$, there exists a strongly regular subgraph Ω of Γ containing v, w with intersection numbers of Ω

$$a_i(\Omega) = a_i(\Gamma),$$

$$c_i(\Omega) = c_i(\Gamma),$$

$$b_i(\Omega) = a_2(\Gamma) + c_2(\Gamma) - a_i(\Gamma) - c_i(\Gamma).$$

for $0 \leq i \leq 2$.

Applying Corollary 1.2, we have the following corollary.

Corollary 1.3. Let Ω be a strongly regular graph with $a_1 = 0$, $a_2 \neq 0$. Then $\Omega_2(x)$ is an a_2 -regular connected graph with diameter at most 3 for all $x \in \Omega$.

2 Preliminaries

Let $\Gamma = (X, R)$ be a graph consisting of a finite non-empty set X of vertices, and a finite set R of unordered pairs of distinct vertices called *edges*. For each vertex x in a graph Γ , the number of edges incident to x is the valency of x. Two vertices associate with each edge are called the endpoints of the edge.

If e = xy is an edge of Γ , then e is said to *join* the vertices x and y, and these vertices x and y are said to be *adjacent*. A *path* is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list. A graph is *connected* if each pair of vertices belong to a path. The *length* of a path is the number of the edges in the path. The *distance* of two vertices x and y in Γ is the length of the shortest path from x to y, denoted by $\partial(x, y)$. The *diameter* of Γ is max{ $\partial(x, y) \mid x, y \in X$ }

For the rest of this section, we review some definitions and basic concepts of distance-regular graphs. See Bannai and Ito[1] or Terwilliger[6] for more background information.

Throughout this thesis, $\Gamma = (X, R)$ will denote a connected, graph with vertex set X, edge set R, path-length distance function ∂ , and diameter $d \geq 3$.

 Γ is said to be *regular*, if all vertices in Γ have the same valency. A *k*regular graph is a graph with valency *k* of each vertex of the graph. Γ is said to be a strongly regular graph $srg(v, k, \lambda, \mu)$, if Γ is *k*-regular with diameter 2 and has the following two properties:

- (i) For any two adjacent vertices x and y, there are exactly λ vertices adjacent to x and to y.
- (ii) For any two nonadjacent vertices x and y, there are exactly μ vertices adjacent to x and to y.

Note that $srg(v, k, \lambda, \mu)$ is a distance-regular graph of diameter 2 with $a_1 = \lambda, c_2 = \mu, b_0 = k.$

For a vertex $x \in X$ and $0 \leq i \leq d$, set $\Gamma_i(x) = \{y \mid \partial(x, y) = i\}$. Γ is said to be *distance-regular* whenever for all integers $0 \leq h, i, j \leq d$, and all vertices $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h = |\{z \in X \mid z \in \Gamma_i(x) \cap \Gamma_j(y)\}|$$

is independent of x, y. The constants p_{ij}^h are known as the *intersection num*bers of Γ . For convenience, set $c_i := p_{1 \ i-1}^i$ for $1 \le i \le d$, $a_i := p_{1 \ i}^i$ for $0 \le i \le d$, $b_i := p_{1 \ i+1}^i$ for $0 \le i \le d-1$, and put $b_d := 0$, $c_0 := 0$, $k := b_0$. It is immediate from the definition that $b_i \ne 0$ for $0 \le i \le d-1$, $c_i \ne 0$ for $1 \le i \le d$, and

$$k = b_0 = a_i + b_i + c_i \quad \text{for} \ \ 1 \le i \le d.$$
(2.1)

Note that $a_1 \neq 0$ implies $a_2 \neq 0$. See Figure 1.

Figure 1: $\partial(x, y) = 3$. Either $\partial(x, z) = 2$ or $\partial(z, y) = 2$.

A distance-regular graph Γ is called *bipartite* whenever $a_1 = a_2 = \cdots = a_d = 0$. See Figure 2. Γ is called a *generalized odd graph* whenever $a_1 = a_2 = \cdots = a_{d-1} = 0$, $a_d \neq 0$. See Figure 3.

From now on, we fix a distance-regular graph Γ with diameter $d \geq 3$. For $0 \leq h, i, j \leq d$ let p_{ij}^h denote the intersection numbers of Γ .

Let $\operatorname{Mat}_X(\mathbb{R})$ denote the algebra of all the matrices over the real number field with the rows and columns indexed by the elements of X. The *distance matrices* of Γ are the matrices $A_0, A_1, \dots, A_d \in \operatorname{Mat}_X(\mathbb{R})$, defined by the

Figure 2: A bipartite distance-regular graph

Figure 3: A generalized odd graph

rule

$$(A_i)_{xy} = \begin{cases} 1, & \text{if } \partial(x, y) = i; \\ 0, & \text{if } \partial(x, y) \neq i \end{cases} \quad \text{for } x, y \in X.$$

Then

$$A_0 = I, (2.2)$$

$$A_0 + A_1 + \dots + A_d = J$$
 where $J = \text{all } 1's \text{ matrix},$ (2.3)

$$A_i^t = A_i \quad \text{for } 0 \le i \le d, \tag{2.4}$$

$$A_{i}A_{j} = \sum_{h=0}^{a} p_{ij}^{h}A_{h} \quad \text{for} \quad 0 \le i, j \le d,$$
(2.5)

$$A_i A_j = A_j A_i \quad \text{for } 0 \le i, j \le d.$$
(2.6)

Let M denote the subspace of $\operatorname{Mat}_X(\mathbb{R})$ spanned by A_0, A_1, \ldots, A_d . Then M is a commutative subalgebra of $\operatorname{Mat}_X(\mathbb{R})$, and is known as the *Bose-Mesner algebra* of Γ . By [1, p59, p64], M has a second basis E_0, E_1, \cdots, E_d such that

$$E_0 = |X|^{-1} J, (2.7)$$

$$E_i E_j = \delta_{ij} E_i \qquad \text{for } 0 \le i, j \le d, \qquad (2.8)$$

$$E_0 + E_1 + \dots + E_d = I, (2.9)$$

$$E_i^t = E_i \qquad \text{for } 0 \le i \le d. \tag{2.10}$$

The E_0, E_1, \dots, E_d are known as the *primitive idempotents* of Γ , and E_0 is known as the *trivial* idempotent. Let E denote any primitive idempotent of Γ . Then we have

$$E = |X|^{-1} \sum_{i=0}^{d} \theta_i^* A_i$$
 (2.11)

for some $\theta_0^*, \theta_1^*, \cdots, \theta_d^* \in \mathbb{R}$, called the *dual eigenvalues* associated with *E*.

Let \circ denote entry-wise multiplication in $Mat_X(\mathbb{R})$. Then

$$A_i \circ A_j = \delta_{ij} A_i \quad \text{for } 0 \le i, j \le d,$$

so M is closed under \circ . Thus there exists $q_{ij}^k \in \mathbb{R}$ $0 \le i, j, k \le d$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{k=0}^d q_{ij}^k E_k \quad \text{for } 0 \le i, j \le d.$$

 Γ is said to be *Q*-polynomial with respect to the given ordering E_0, E_1, \cdots , E_d of the primitive idempotents, if for all integers $h, i, j \ (0 \le h, i, j \le d)$, $q_{ij}^{h} = 0$ (resp. $q_{ij}^{h} \neq 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two. Let E denote any primitive idempotent of Γ . Then Γ is said to be Q-polynomial with respect to E whenever there exists an ordering $E_0, E_1 = E, \dots, E_d$ of the primitive idempotents of Γ , with respect to which Γ is Q-polynomial. If Γ is Q-polynomial with respect to E, then the associated dual eigenvalues are distinct [5, p384]. It is shown that if Γ is Q-polynomial with $a_2 = 0$, that Γ is a bipartite graph or a generalized odd graph.

Set $V = \mathbb{R}^{|X|}$ (column vectors), and view the coordinates of V as being indexed by X. Then the Bose-Mesner algebra M acts on V by left multiplication. We call V the *standard module* of Γ . For each vertex $x \in X$, set

$$\hat{x} = (0, 0, \cdots, 0, 1, 0, \cdots, 0)^t,$$
 (2.12)

where the 1 is in coordinate x. Also, let \langle , \rangle denote the dot product

$$\langle u, v \rangle = u^t v \quad \text{for } u, v \in V.$$
 (2.13)

Then referring to the primitive idempotent E in (2.11), we compute from (2.10)-(2.13) that

$$\langle E\hat{x}, \hat{y} \rangle = \mid X \mid^{-1} \theta_i^* \quad \text{for } x, y \in X, \tag{2.14}$$

where $i = \partial(x, y)$.

The following theorem about Q-polynomial is used in this thesis.

Theorem 2.1. [6, Theorem 3.3] Let Γ be Q-polynomial with respect to E with the distinct associated dual eigenvalues $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$. Then the following (i)-(ii) are equivalent. (i) For all integers $h, i, j(1 \le h \le d), (0 \le i, j \le d)$ and for all $x, y \in X$ such that $\partial(x, y) = h$,

$$\sum_{\substack{z \in X\\ \partial(x,z)=i\\ \partial(y,z)=j}} Ez - \sum_{\substack{z \in X\\ \partial(x,z)=j\\ \partial(y,z)=i}} Ez = p_{ij}^h \frac{\theta_i^* - \theta_j^*}{\theta_0^* - \theta_h^*} (Ex - Ey).$$
(2.15)

(ii)

$$\theta_{i-2}^* - \theta_{i-1}^* = \sigma(\theta_{i-3}^* - \theta_i^*)$$
(2.16)

for appropriate $\sigma \in \mathbb{R} \setminus \{0\}$

 Γ is said to have *classical parameters* (d, b, α, β) whenever the diameter of Γ is $d \geq 3$, and the intersection numbers of Γ satisfy

$$c_i = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix} \right) \quad \text{for } 0 \le i \le d, \tag{2.17}$$

$$b_i = \left(\begin{bmatrix} d \\ 1 \end{bmatrix} - \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \quad \text{for } 0 \le i \le d, \qquad (2.18)$$

where

$$\begin{bmatrix} i \\ 1 \end{bmatrix} := 1 + b + b^2 + \dots + b^{i-1}.$$
 (2.19)

 Γ is said to have *classical parameters* if Γ is has classical parameters (d, b, α, β) for some constants d, b, α, β . It is shown that a distance-regular graph with classical parameters has the *Q*-polynomial property [2, Theorem 8.4.1]. Terwilliger proves the following theorem.

Theorem 2.2. [6, Theorem 4.2] Let Γ denote a distance-regular with diameter $d \geq 3$. Choose $b \in \mathbb{R} \setminus \{0, -1\}$, and let [] be as in (2.19). Then the following (i)-(ii) are equivalent. (i) Γ is Q-polynomial with associated dual eigenvalues $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$ satisfying

$$\theta_i^* - \theta_0^* = (\theta_1^* - \theta_0^*) \begin{bmatrix} i \\ 1 \end{bmatrix} b^{1-i}.$$

(ii) Γ has classical parameters (d, b, α, β) for some real constants α, β .

From Theorem 2.2, we have

$$\theta_i^* - \theta_{i+1}^* = b^{-i}(\theta_0^* - \theta_1^*). \tag{2.20}$$

Pick an integer $2 \le i \le d$. By a *parallelogram* of length i in Γ , we mean a 4-tuple xyzw of vertices of X such that

$$\partial(x, y) = \partial(z, w) = 1, \quad \partial(x, w) = i,$$

 $\partial(x, z) = \partial(y, z) = \partial(y, w) = i - 1.$

See Figure 4.

Figure 4: A parallelogram of length i.

3 The Main Theorem

Lemma 3.1. Let Γ denote a Q-polynomial distance-regular graph with $a_1 = 0$ and diameter $d \ge 3$. Fix an integer i for $2 \le i \le d$ and three vertices x, y, zwith

$$\partial(y,x) = 1, \quad \partial(x,z) = i - 1, \quad \partial(y,z) = i.$$

Then

$$s_i = s_i(x, y, z) = a_{i-1} \frac{(\theta_1^* - \theta_i^*)(\theta_{i-1}^* - \theta_1^*) + (\theta_2^* - \theta_i^*)(\theta_0^* - \theta_{i-1}^*)}{(\theta_0^* - \theta_{i-1}^*)(\theta_{i-1}^* - \theta_i^*)},$$

where

$$s_i(x, y, z) = |\Gamma_{i-1}(y) \cap \Gamma_{i-1}(x) \cap \Gamma_1(z)|.$$
 (3.1)

Proof. Let

$$\ell_i(x, y, z) = | \Gamma_{i-1}(y) \cap \Gamma_i(x) \cap \Gamma_1(z) |.$$

Since $w \in \Gamma_{i-1}(y) \cap \Gamma_1(z)$ implies $w \in \Gamma_{i-1}(x) \cup \Gamma_i(x)$, we have

$$s_i(x, y, z) + \ell_i(x, y, z) = a_{i-1}.$$
 (3.2)

By (2.15) we also have

$$\sum_{\substack{w \in X \\ \partial(x,w)=i-1 \\ \partial(z,w)=1}} Ew - \sum_{\substack{w \in X \\ \partial(x,w)=1 \\ \partial(z,w)=i-1}} Ew = a_{i-1} \frac{\theta_{i-1}^* - \theta_1^*}{\theta_0^* - \theta_{i-1}^*} (Ex - Ez).$$
(3.3)

Taking the inner product of (3.3) with \hat{y} using(2.14), we obtain

$$s_i(x, y, z)\theta_{i-1}^* + \ell_i(x, y, z)\theta_i^* - a_{i-1}\theta_2^* = a_{i-1}\frac{\theta_{i-1}^* - \theta_1^*}{\theta_0^* - \theta_{i-1}^*}(\theta_1^* - \theta_i^*).$$
(3.4)

Solving $s_i(x, y, z)$ by using (3.2) and (3.4) we get,

$$s_i(x, y, z) = a_{i-1} \frac{(\theta_1^* - \theta_i^*)(\theta_{i-1}^* - \theta_1^*) + (\theta_2^* - \theta_i^*)(\theta_0^* - \theta_{i-1}^*)}{(\theta_0^* - \theta_{i-1}^*)(\theta_{i-1}^* - \theta_i^*)}.$$
 (3.5)

From Lemma 3.1, $s_i(x, y, z)$ is a constant for any vertices x, y, z with $\partial(y, x) = 1$, $\partial(x, z) = i - 1$, $\partial(y, z) = i$. We use s_i for this value. Note that $s_i = 0$ if and only if Γ contains no parallelogram of length i.

Lemma 3.2. Let Γ denote a distance-regular graph with classical parameters (d, b, α, β) and $a_1 = 0$, $a_2 \neq 0$. Then b < -1.

Proof. From (2.1), (2.17), (2.18), and since $a_1 = 0, a_2 \neq 0$, we have

$$-\alpha(b+1)^2 = a_2 - (b+1)a_1 = a_2 > 0.$$
(3.6)

Hence

$$\alpha < 0. \tag{3.7}$$

By direct calculation from (2.17), we get

$$(c_2 - b)(b^2 + b + 1) = c_3 > 0. (3.8)$$

Since b is an integer and $b \neq 0, -1[2, p.195]$, we have

$$b^2 + b + 1 > 0. (3.9)$$

Then from (3.8), implies

$$c_2 > b.$$
 (3.10)

By using (2.17), (3.10), we get

$$\alpha(1+b) = c_2 - b - 1 \ge 0. \tag{3.11}$$

Hence b < -1, by (3.7) and since $b \neq -1$.

Theorem 3.3. Let Γ denote a Q-polynomial distance-regular with diameter $d \geq 3$ and $a_1 = 0, a_2 \neq 0$. Then with referring to definition in (3.1) the following (i)-(iii) are equivalent.

(*i*) $s_3 = 0$.

- (*ii*) $s_i = 0$, for $3 \le i \le d$.
- (iii) Γ has classical parameter (d, b, α, β) .

Proof. (ii) \Rightarrow (i) Clear.

(iii) \Rightarrow (ii) From (2.20) we have,

$$\theta_i^* - \theta_{i+1}^* = b^{-i}(\theta_0^* - \theta_1^*)$$

for some $b \in \mathbb{R} \setminus \{0, -1\}$. Therefore, for $3 \le i \le d$,

$$(\theta_1^* - \theta_i^*) = (\theta_0^* - \theta_1^*)(b^{-1} + b^{-2} + \dots + b^{i-1}), \qquad (3.12)$$

$$(\theta_{i-1}^* - \theta_1^*) = -(\theta_0^* - \theta_1^*)(b^{-1} + b^{-2} + \dots + b^{i-2}), \qquad (3.13)$$

$$(\theta_2^* - \theta_i^*) = (\theta_0^* - \theta_1^*)(b^{-2} + b^{-3} + \dots + b^{i-1}), \qquad (3.14)$$

and

$$(\theta_0^* - \theta_{i-1}^*) = (\theta_0^* - \theta_1^*)(b^0 + b^{-1} + \dots + b^{i-2}).$$
(3.15)

Evaluate (3.5) using (3.12), (3.13), (3.14), (3.15), we find $s_i = 0$ for $3 \le i \le d$.

(i) \Rightarrow (iii) Suppose $s_3 = 0$. Then by setting i = 3 in (3.5),

$$(\theta_1^* - \theta_3^*)(\theta_2^* - \theta_1^*) + (\theta_2^* - \theta_3^*)(\theta_0^* - \theta_2^*) = 0.$$
(3.16)

 Set

$$b := \frac{\theta_1^* - \theta_0^*}{\theta_2^* - \theta_1^*}.$$
(3.17)

Then

$$\theta_2^* = \theta_0^* + \frac{(\theta_1^* - \theta_0^*)(b+1)}{b}.$$
(3.18)

Eliminating θ_2^*, θ_3^* in (3.16) using (3.18) and (2.16), we have,

$$\frac{-(\theta_1^* - \theta_0^*)^2(\sigma b^2 + \sigma b + \sigma - b)}{\sigma b^2} = 0.$$
 (3.19)

for appropriate $\sigma \in \mathbb{R} \setminus \{0\}$. Note that $\theta_1^* \neq \theta_0^*$, hence

$$(\theta_1^* - \theta_0^*)^2 (\sigma b^2 + \sigma b + \sigma - b) = 0,$$

 \mathbf{SO}

$$\sigma^{-1} = \frac{b^2 + b + 1}{b}.$$
(3.20)

From Theorem 2.2, to prove that Γ has classical parameter, it suffices to prove that

$$\theta_i^* - \theta_0^* = (\theta_1^* - \theta_0^*) \begin{bmatrix} i \\ 1 \end{bmatrix} b^{1-i} (0 \le i \le d).$$
(3.21)

We prove (3.21) by induction on *i*. The case i = 0, 1 are trivial and case i = 2 is from (3.18). Now suppose $i \ge 3$. Then (2.16) implies

$$\theta_i^* = \sigma^{-1}(\theta_{i-1}^* - \theta_{i-2}^*) + \theta_{i-3}^*$$
(3.22)

Evaluate (3.22) using (3.20) and the induction hypothesis, we find $\theta_i^* - \theta_0^*$ is as in (3.21). Therefore Γ has classical parameter.

Theorem 3.4. Let $\Gamma = (X, R)$ denote a distance-regular graph with intersection numbers $a_1 = 0$, $a_2 \neq 0$. Then the following (i)-(ii) are equivalent.

- (i) Γ is Q-polynomial and Γ contains no parallelograms of length 3.
- (ii) Γ has classical parameters.

Proof. (i) \Rightarrow (ii) Suppose Γ is *Q*-polynomial and contains no parallelogram of length 3. Then $s_3 = 0$. Hence Γ has classical parameters by Theorem 3.3.

(ii) \Rightarrow (i) Suppose Γ has classical parameters. Then Γ has Q-polynomial property[8, Theorem 8.4.1]. Then (i) holds by Theorem 3.3.

By the results in [4] and [10], we have the following corollary.

Corollary 3.5. Let Γ denote a distance-regular graph with classical parameters and intersection numbers $a_1 = 0$, $a_2 \neq 0$. Then for each pair of vertices $v, w \in X$ at distance $\partial(v, w) = 2$, there exists a strongly regular subgraph Ω of Γ containing v, w. The intersection numbers of Ω are

$$a_i(\Omega) = a_i(\Gamma),$$

$$c_i(\Omega) = c_i(\Gamma),$$

$$b_i(\Omega) = a_2(\Gamma) + c_2(\Gamma) - a_i(\Gamma) - c_i(\Gamma)$$

for $0 \leq i \leq 2$.

Corollary 3.6. Let Ω be a strongly regular graph with $a_1 = 0$, $a_2 \neq 0$. Then $\Omega_2(x)$ is an a_2 -regular connected graph with diameter at most 3 for all $x \in \Omega$.

Proof. Fix a vertex $x \in \Omega$, suppose $y \in \Omega_2(x)$, obviously, $\partial(x, y) = 2$. Hence $|\Omega_1(y) \cap \Omega_2(x)| = a_2$. This shows $\Omega_2(x)$ is a_2 -regular.

Suppose that $\Omega_2(x)$ is not connected or is connected with diameter at least 4. Pick $u, v \in \Omega_2(x)$ such that there is no path in $\Omega_2(x)$ of length at most 3 connecting u, v. Observe $\partial(u, v) = 2$, since Ω has diameter 2. For each vertex $z \in \Omega_1(u) \cap \Omega_1(v)$, we must have $\partial(x, z) = 1$, otherwise $\partial(x, z) = 2$ and u, z, v is a path of length 2 in $\Omega_2(x)$. Hence we have $z \in \Omega_1(u) \cap \Omega_1(x)$ and $\Omega_1(u) \cap \Omega_1(v) \subseteq \Omega_1(u) \cap \Omega_1(x)$. Now $\Omega_1(u) \cap \Omega_1(v) = \Omega_1(u) \cap \Omega_1(x)$, since both sets have the same cardinality c_2 . Similarly, we have $\Omega_1(u) \cap$ $\Omega_1(v) = \Omega_1(v) \cap \Omega_1(x)$. Pick $w \in \Omega_1(u) \cap \Omega_2(v)$. Then $\partial(x, w) = 2$, since $w \notin \Omega_1(u) \cap \Omega_1(v) = \Omega_1(u) \cap \Omega_1(x)$. We do not have a path of length 2 in $\Omega_2(x)$ connecting w, v, otherwise we can extend this path to a path of length 3 in $\Omega_2(x)$ connecting u, v. By the same argument as above, we have $\Omega_1(w) \cap \Omega_1(v) = \Omega_1(w) \cap \Omega_1(x) = \Omega_1(v) \cap \Omega_1(x)$. Now we have

$$\Omega_1(u) \cap \Omega_1(v) = \Omega_1(v) \cap \Omega_1(x) = \Omega_1(w) \cap \Omega_1(v)$$

Pick $z \in \Omega_1(u) \cap \Omega_1(v) = \Omega_1(w) \cap \Omega_1(v)$. Then z, u, w forms a triangle, a contradiction with $a_1 = 0$.

References

- E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
- [2] A. E. Brouwer, A. M. Cohen, and A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag, Berlin, 1989.
- [3] G. Dickie, Twice Q-polynomial distance-regular graphs are thin. European Journal of Comb., 16:555–560, 1995.
- [4] H. Suzuki, Strongly closed subgraph of a distance-regular graph with geometric girth five, *Kyushu J. Math*, 50(2):371–384, 1996.
- [5] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Alg. Combin., 1:363–388, 1992.
- [6] P. Terwilliger, A new inequality for distance-regular graphs, *Discrete Math.*, 137:319–332, 1995.
- [7] C. Weng, Kite-Free P- and Q-Polynomial Schemes Graphs and Combinatorics, 11:201–207, 1995.
- [8] C. Weng, D-bounded Distance-regular Graphs, Europ. J. Combinatorics, 18:211–229, 1997.
- C. Weng, Parallelogram-Free Distance-Regular Graphs, J. Combin. Theory Ser. B, 71(2):231–243, 1997.
- [10] C. Weng, Weak-Geodetically Closed Subgraphs in Distance-Regular Graphs, Graphs and Combinatorics, 14:275–304, 1998.