Triangle-free distance-regular graphs

Student: Ming-hsing Lu
Advisor: Chih-wen Weng

Abstract

Let $\Gamma=(X, R)$ denote a distance-regular graph with distance function ∂ and diameter $d \geq 3$. For $2 \leq i \leq d$, by a parallelogram of length i, we mean a 4 -tuple $x y z u$ of vertices in X such that $\partial(x, y)=$ $\partial(z, u)=1, \partial(x, u)=i$, and $\partial(x, z)=\partial(y, z)=\partial(y, u)=i-1$. Suppose the intersection number $a_{1}=0, a_{2} \neq 0$ in Γ. We prove the following (i)-(ii) are equivalent. (i) Γ is Q-polynomial and contains no parallelograms of length 3; (ii) Γ has classical parameters. By applying the above result we show that if Γ has classical parameters and the intersection numbers $a_{1}=0, a_{2} \neq 0$, then for each pair of vertices $v, w \in X$ at distance $\partial(v, w)=2$, there exists a strongly regular subgraph Ω of Γ containing v, w. Furthermore, for each vertex $x \in \Omega$, the subgraph induced on $\Omega_{2}(x)$ is an a_{2}-regular connected graph with diameter at most 3 .

1 Introduction

It is shown that a distance-regular graph with classical parameters has the Q-polynomial property [2, Theorem 8.4.1]. To describe the converse, let Γ denote a Q-polynomial distance-regular graph with diameter $d \geq 3$. Brouwer, Cohen, Neumaier proved that if Γ is a near polygon and has intersection number $a_{1} \neq 0$ then Γ has classical parameters [2, Theorem 8.5.1]. Weng proves the same result by loosing the near polygon assumption, but instead assuming that the graph Γ contains no kites of length 2 and no kites of length 3 [7, Lemma 2.4]. For the complement, Weng shows Γ has classical parameters in the assumptions that Γ has diameter $d \geq 4$, intersection numbers $a_{1}=0, a_{2} \neq 0$, and Γ contains no parallelograms of length 3 and no parallelograms of length 4 [9, Theorem 2.11]. We generalize Weng's result as following.

Theorem 1.1. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $d \geq 3$ and intersection numbers $a_{1}=0, a_{2} \neq 0$. Then the following (i)-(ii) are equivalent.
(i) Γ is Q-polynomial and Γ contains no parallelograms of length 3 .
(ii) Γ has classical parameters.

By the results in [4] and [10], Theorem 1.1 has the following corollary.

Corollary 1.2. Let Γ denote a distance-regular graph with classical parameters and intersection numbers $a_{1}=0, a_{2} \neq 0$. Then for each pair of vertices
$v, w \in X$ at distance $\partial(v, w)=2$, there exists a strongly regular subgraph Ω of Γ containing v, w with intersection numbers of Ω

$$
\begin{aligned}
a_{i}(\Omega) & =a_{i}(\Gamma) \\
c_{i}(\Omega) & =c_{i}(\Gamma) \\
b_{i}(\Omega) & =a_{2}(\Gamma)+c_{2}(\Gamma)-a_{i}(\Gamma)-c_{i}(\Gamma)
\end{aligned}
$$

for $0 \leq i \leq 2$.

Applying Corollary 1.2, we have the following corollary.

Corollary 1.3. Let Ω be a strongly regular graph with $a_{1}=0, a_{2} \neq 0$. Then $\Omega_{2}(x)$ is an a_{2}-regular connected graph with diameter at most 3 for all $x \in \Omega$.

2 Preliminaries

Let $\Gamma=(X, R)$ be a graph consisting of a finite non-empty set X of vertices, and a finite set R of unordered pairs of distinct vertices called edges. For each vertex x in a graph Γ, the number of edges incident to x is the valency of x. Two vertices associate with each edge are called the endpoints of the edge.

If $e=x y$ is an edge of Γ, then e is said to join the vertices x and y, and these vertices x and y are said to be adjacent. A path is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list. A graph is connected if each pair of vertices belong to a path. The length of a path is the number of the edges in the path. The
distance of two vertices x and y in Γ is the length of the shortest path from x to y, denoted by $\partial(x, y)$. The diameter of Γ is $\max \{\partial(x, y) \mid x, y \in X\}$

For the rest of this section, we review some definitions and basic concepts of distance-regular graphs. See Bannai and Ito[1] or Terwilliger[6] for more background information.

Throughout this thesis, $\Gamma=(X, R)$ will denote a connected, graph with vertex set X, edge set R, path-length distance function ∂, and diameter $d \geq 3$.
Γ is said to be regular, if all vertices in Γ have the same valency. A k regular graph is a graph with valency k of each vertex of the graph. Γ is said to be a strongly regular graph $\operatorname{srg}(v, k, \lambda, \mu)$, if Γ is k-regular with diameter 2 and has the following two properties:
(i) For any two adjacent vertices x and y, there are exactly λ vertices adjacent to x and to y.
(ii) For any two nonadjacent vertices x and y, there are exactly μ vertices adjacent to x and to y.

Note that $\operatorname{srg}(v, k, \lambda, \mu)$ is a distance-regular graph of diameter 2 with $a_{1}=\lambda, c_{2}=\mu, b_{0}=k$.

For a vertex $x \in X$ and $0 \leq i \leq d$, set $\Gamma_{i}(x)=\{y \mid \partial(x, y)=i\} . \Gamma$ is said to be distance-regular whenever for all integers $0 \leq h, i, j \leq d$, and all vertices $x, y \in X$ with $\partial(x, y)=h$, the number

$$
p_{i j}^{h}=\left|\left\{z \in X \mid z \in \Gamma_{i}(x) \cap \Gamma_{j}(y)\right\}\right|
$$

is independent of x, y. The constants $p_{i j}^{h}$ are known as the intersection numbers of Γ. For convenience, set $c_{i}:=p_{1 i-1}^{i}$ for $1 \leq i \leq d, a_{i}:=p_{1}^{i}{ }_{i}$ for $0 \leq i \leq d, b_{i}:=p_{1}^{i}{ }_{i+1}$ for $0 \leq i \leq d-1$, and put $b_{d}:=0, c_{0}:=0, k:=b_{0}$. It is immediate from the definition that $b_{i} \neq 0$ for $0 \leq i \leq d-1, c_{i} \neq 0$ for $1 \leq i \leq d$, and

$$
\begin{equation*}
k=b_{0}=a_{i}+b_{i}+c_{i} \quad \text { for } \quad 1 \leq i \leq d \tag{2.1}
\end{equation*}
$$

Note that $a_{1} \neq 0$ implies $a_{2} \neq 0$. See Figure 1 .

Figure 1: $\partial(x, y)=3$. Either $\partial(x, z)=2$ or $\partial(z, y)=2$.

A distance-regular graph Γ is called bipartite whenever $a_{1}=a_{2}=\cdots=$ $a_{d}=0$. See Figure 2. Γ is called a generalized odd graph whenever $a_{1}=a_{2}=$ $\cdots=a_{d-1}=0, a_{d} \neq 0$. See Figure 3.

From now on, we fix a distance-regular graph Γ with diameter $d \geq 3$. For $0 \leq h, i, j \leq d$ let $p_{i j}^{h}$ denote the intersection numbers of Γ.

Let $\operatorname{Mat}_{X}(\mathbb{R})$ denote the algebra of all the matrices over the real number field with the rows and columns indexed by the elements of X. The distance matrices of Γ are the matrices $A_{0}, A_{1}, \cdots, A_{d} \in \operatorname{Mat}_{X}(\mathbb{R})$, defined by the

Figure 2: A bipartite distance-regular graph

Figure 3: A generalized odd graph
rule

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1, & \text { if } \partial(x, y)=i ; \\
0, & \text { if } \partial(x, y) \neq i
\end{array} \quad \text { for } \quad x, y \in X\right.
$$

Then

$$
\begin{align*}
& A_{0}=I \tag{2.2}\\
& A_{0}+A_{1}+\cdots+A_{d}=J \text { where } J=\text { all } 1^{\prime} s \text { matrix, } \tag{2.3}\\
& A_{i}^{t}=A_{i} \quad \text { for } 0 \leq i \leq d \tag{2.4}\\
& A_{i} A_{j}=\sum_{h=0}^{d} p_{i j}^{h} A_{h} \text { for } 0 \leq i, j \leq d \tag{2.5}\\
& A_{i} A_{j}=A_{j} A_{i} \quad \text { for } 0 \leq i, j \leq d \tag{2.6}
\end{align*}
$$

Let M denote the subspace of $\operatorname{Mat}_{X}(\mathbb{R})$ spanned by $A_{0}, A_{1}, \ldots, A_{d}$. Then M is a commutative subalgebra of $\operatorname{Mat}_{X}(\mathbb{R})$, and is known as the BoseMesner algebra of Γ. By [1, p59, p64], M has a second basis $E_{0}, E_{1}, \cdots, E_{d}$ such that

$$
\begin{align*}
& E_{0}=|X|^{-1} J, \tag{2.7}\\
& E_{i} E_{j}=\delta_{i j} E_{i} \tag{2.8}\\
& E_{0}+E_{1}+\cdots+E_{d}=I, \tag{2.9}\\
& E_{i}^{t}=E_{i} \quad \text { for } 0 \leq i, j \leq d, \tag{2.10}\\
& \text { for } 0 \leq i \leq d
\end{align*}
$$

The $E_{0}, E_{1}, \cdots, E_{d}$ are known as the primitive idempotents of Γ, and E_{0} is known as the trivial idempotent. Let E denote any primitive idempotent of Γ. Then we have

$$
\begin{equation*}
E=|X|^{-1} \sum_{i=0}^{d} \theta_{i}^{*} A_{i} \tag{2.11}
\end{equation*}
$$

for some $\theta_{0}^{*}, \theta_{1}^{*}, \cdots, \theta_{d}^{*} \in \mathbb{R}$, called the dual eigenvalues associated with E.
Let \circ denote entry-wise multiplication in $\operatorname{Mat}_{X}(\mathbb{R})$. Then

$$
A_{i} \circ A_{j}=\delta_{i j} A_{i} \quad \text { for } \quad 0 \leq i, j \leq d
$$

so M is closed under \circ. Thus there exists $q_{i j}^{k} \in \mathbb{R} 0 \leq i, j, k \leq d$ such that

$$
E_{i} \circ E_{j}=|X|^{-1} \sum_{k=0}^{d} q_{i j}^{k} E_{k} \quad \text { for } \quad 0 \leq i, j \leq d
$$

Γ is said to be Q-polynomial with respect to the given ordering E_{0}, E_{1}, \cdots, E_{d} of the primitive idempotents, if for all integers $h, i, j(0 \leq h, i, j \leq d)$,
$q_{i j}^{h}=0\left(\right.$ resp. $\left.q_{i j}^{h} \neq 0\right)$ whenever one of h, i, j is greater than (resp. equal to) the sum of the other two. Let E denote any primitive idempotent of Γ. Then Γ is said to be Q-polynomial with respect to E whenever there exists an ordering $E_{0}, E_{1}=E, \cdots, E_{d}$ of the primitive idempotents of Γ, with respect to which Γ is Q-polynomial. If Γ is Q-polynomial with respect to E, then the associated dual eigenvalues are distinct [5, p384]. It is shown that if Γ is Q-polynomial with $a_{2}=0$, that Γ is a bipartite graph or a generalized odd graph.

Set $V=\mathbb{R}^{|X|}$ (column vectors), and view the coordinates of V as being indexed by X. Then the Bose-Mesner algebra M acts on V by left multiplication. We call V the standard module of Γ. For each vertex $x \in X$, set

$$
\begin{equation*}
\hat{x}=(0,0, \cdots, 0,1,0, \cdots, 0)^{t} \tag{2.12}
\end{equation*}
$$

where the 1 is in coordinate x. Also, let \langle,$\rangle denote the dot product$

$$
\begin{equation*}
\langle u, v\rangle=u^{t} v \quad \text { for } \quad u, v \in V \tag{2.13}
\end{equation*}
$$

Then referring to the primitive idempotent E in (2.11), we compute from (2.10)-(2.13) that

$$
\begin{equation*}
\langle E \hat{x}, \hat{y}\rangle=|X|^{-1} \theta_{i}^{*} \quad \text { for } \quad x, y \in X \tag{2.14}
\end{equation*}
$$

where $i=\partial(x, y)$.
The following theorem about Q-polynomial is used in this thesis.

Theorem 2.1. [6, Theorem 3.3] Let Γ be Q-polynomial with respect to E with the distinct associated dual eigenvalues $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{d}^{*}$. Then the following (i)(ii) are equivalent.
(i) For all integers $h, i, j(1 \leq h \leq d),(0 \leq i, j \leq d)$ and for all $x, y \in X$ such that $\partial(x, y)=h$,

$$
\begin{equation*}
\sum_{\substack{z \in X \\ \partial(x, z)=i \\ \partial(y, z)=j}} E z-\sum_{\substack{z \in X \\ \partial(x, z)=j \\ \partial y, z)=i}} E z=p_{i j}^{h} \frac{\theta_{i}^{*}-\theta_{j}^{*}}{\theta_{0}^{*}-\theta_{h}^{*}}(E x-E y) . \tag{2.15}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\theta_{i-2}^{*}-\theta_{i-1}^{*}=\sigma\left(\theta_{i-3}^{*}-\theta_{i}^{*}\right) \tag{2.16}
\end{equation*}
$$

for appropriate $\sigma \in \mathbb{R} \backslash\{0\}$
Γ is said to have classical parameters (d, b, α, β) whenever the diameter of Γ is $d \geq 3$, and the intersection numbers of Γ satisfy

$$
\begin{align*}
& c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) \quad \text { for } 0 \leq i \leq d \tag{2.17}\\
& b_{i}=\left(\left[\begin{array}{l}
d \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\beta-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right) \quad \text { for } 0 \leq i \leq d \tag{2.18}
\end{align*}
$$

where

$$
\left[\begin{array}{l}
i \tag{2.19}\\
1
\end{array}\right]:=1+b+b^{2}+\cdots+b^{i-1}
$$

Γ is said to have classical parameters if Γ is has classical parameters (d, b, α, β) for some constants d, b, α, β. It is shown that a distance-regular graph with classical parameters has the Q-polynomial property [2, Theorem 8.4.1]. Terwilliger proves the following theorem.

Theorem 2.2. [6, Theorem 4.2] Let Γ denote a distance-regular with diameter $d \geq 3$. Choose $b \in \mathbb{R} \backslash\{0 .-1\}$, and let [] be as in (2.19). Then the following (i)-(ii) are equivalent.
(i) Γ is Q-polynomial with associated dual eigenvalues $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{d}^{*}$ satisfying

$$
\theta_{i}^{*}-\theta_{0}^{*}=\left(\theta_{1}^{*}-\theta_{0}^{*}\right)\left[\begin{array}{l}
i \\
1
\end{array}\right] b^{1-i}
$$

(ii) Γ has classical parameters (d, b, α, β) for some real constants α, β.

From Theorem 2.2, we have

$$
\begin{equation*}
\theta_{i}^{*}-\theta_{i+1}^{*}=b^{-i}\left(\theta_{0}^{*}-\theta_{1}^{*}\right) \tag{2.20}
\end{equation*}
$$

Pick an integer $2 \leq i \leq d$. By a parallelogram of length i in Γ, we mean a 4-tuple $x y z w$ of vertices of X such that

$$
\begin{gathered}
\partial(x, y)=\partial(z, w)=1, \quad \partial(x, w)=i \\
\partial(x, z)=\partial(y, z)=\partial(y, w)=i-1
\end{gathered}
$$

See Figure 4.

Figure 4: A parallelogram of length i.

3 The Main Theorem

Lemma 3.1. Let Γ denote a Q-polynomial distance-regular graph with $a_{1}=0$ and diameter $d \geq 3$. Fix an integer i for $2 \leq i \leq d$ and three vertices x, y, z with

$$
\partial(y, x)=1, \quad \partial(x, z)=i-1, \quad \partial(y, z)=i .
$$

Then

$$
s_{i}=s_{i}(x, y, z)=a_{i-1} \frac{\left(\theta_{1}^{*}-\theta_{i}^{*}\right)\left(\theta_{i-1}^{*}-\theta_{1}^{*}\right)+\left(\theta_{2}^{*}-\theta_{i}^{*}\right)\left(\theta_{0}^{*}-\theta_{i-1}^{*}\right)}{\left(\theta_{0}^{*}-\theta_{i-1}^{*}\right)\left(\theta_{i-1}^{*}-\theta_{i}^{*}\right)},
$$

where

$$
\begin{equation*}
s_{i}(x, y, z)=\left|\Gamma_{i-1}(y) \cap \Gamma_{i-1}(x) \cap \Gamma_{1}(z)\right| . \tag{3.1}
\end{equation*}
$$

Proof. Let

$$
\ell_{i}(x, y, z)=\left|\Gamma_{i-1}(y) \cap \Gamma_{i}(x) \cap \Gamma_{1}(z)\right| .
$$

Since $w \in \Gamma_{i-1}(y) \cap \Gamma_{1}(z)$ implies $w \in \Gamma_{i-1}(x) \cup \Gamma_{i}(x)$, we have

$$
\begin{equation*}
s_{i}(x, y, z)+\ell_{i}(x, y, z)=a_{i-1} . \tag{3.2}
\end{equation*}
$$

By (2.15) we also have

$$
\begin{equation*}
\sum_{\substack{w w X \\ \partial(x, w)=i-1 \\ \partial(z, w)=1}} E w-\sum_{\substack{w \in X \\ \partial(x, w)=1 \\ \partial(z, w)=i-1}} E w=a_{i-1} \frac{\theta_{i-1}^{*}-\theta_{1}^{*}}{\theta_{0}^{*}-\theta_{i-1}^{*}}(E x-E z) \tag{3.3}
\end{equation*}
$$

Taking the inner product of (3.3) with \hat{y} using(2.14), we obtain

$$
\begin{equation*}
s_{i}(x, y, z) \theta_{i-1}^{*}+\ell_{i}(x, y, z) \theta_{i}^{*}-a_{i-1} \theta_{2}^{*}=a_{i-1} \frac{\theta_{i-1}^{*}-\theta_{1}^{*}}{\theta_{0}^{*}-\theta_{i-1}^{*}}\left(\theta_{1}^{*}-\theta_{i}^{*}\right) \tag{3.4}
\end{equation*}
$$

Solving $s_{i}(x, y, z)$ by using (3.2) and (3.4) we get,

$$
\begin{equation*}
s_{i}(x, y, z)=a_{i-1} \frac{\left(\theta_{1}^{*}-\theta_{i}^{*}\right)\left(\theta_{i-1}^{*}-\theta_{1}^{*}\right)+\left(\theta_{2}^{*}-\theta_{i}^{*}\right)\left(\theta_{0}^{*}-\theta_{i-1}^{*}\right)}{\left(\theta_{0}^{*}-\theta_{i-1}^{*}\right)\left(\theta_{i-1}^{*}-\theta_{i}^{*}\right)} \tag{3.5}
\end{equation*}
$$

From Lemma 3.1, $s_{i}(x, y, z)$ is a constant for any vertices x, y, z with $\partial(y, x)=1, \partial(x, z)=i-1, \partial(y, z)=i$. We use s_{i} for this value. Note that $s_{i}=0$ if and only if Γ contains no parallelogram of length i.

Lemma 3.2. Let Γ denote a distance-regular graph with classical parameters (d, b, α, β) and $a_{1}=0, a_{2} \neq 0$. Then $b<-1$.

Proof. From (2.1), (2.17), (2.18), and since $a_{1}=0, a_{2} \neq 0$, we have

$$
\begin{equation*}
-\alpha(b+1)^{2}=a_{2}-(b+1) a_{1}=a_{2}>0 \tag{3.6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\alpha<0 . \tag{3.7}
\end{equation*}
$$

By direct calculation from (2.17), we get

$$
\begin{equation*}
\left(c_{2}-b\right)\left(b^{2}+b+1\right)=c_{3}>0 \tag{3.8}
\end{equation*}
$$

Since b is an integer and $b \neq 0,-1[2$, p.195], we have

$$
\begin{equation*}
b^{2}+b+1>0 \tag{3.9}
\end{equation*}
$$

Then from (3.8), implies

$$
\begin{equation*}
c_{2}>b \tag{3.10}
\end{equation*}
$$

By using (2.17), (3.10), we get

$$
\begin{equation*}
\alpha(1+b)=c_{2}-b-1 \geq 0 . \tag{3.11}
\end{equation*}
$$

Hence $b<-1$, by (3.7) and since $b \neq-1$.

Theorem 3.3. Let Γ denote a Q-polynomial distance-regular with diameter $d \geq 3$ and $a_{1}=0, a_{2} \neq 0$. Then with referring to definition in (3.1) the following (i)-(iii) are equivalent.
(i) $s_{3}=0$.
(ii) $s_{i}=0$, for $3 \leq i \leq d$.
(iii) Γ has classical parameter (d, b, α, β).

Proof. (ii) \Rightarrow (i) Clear.
(iii) \Rightarrow (ii) From (2.20) we have,

$$
\theta_{i}^{*}-\theta_{i+1}^{*}=b^{-i}\left(\theta_{0}^{*}-\theta_{1}^{*}\right)
$$

for some $b \in \mathbb{R} \backslash\{0,-1\}$. Therefore, for $3 \leq i \leq d$,

$$
\begin{align*}
& \left(\theta_{1}^{*}-\theta_{i}^{*}\right)=\left(\theta_{0}^{*}-\theta_{1}^{*}\right)\left(b^{-1}+b^{-2}+\cdots+b^{i-1}\right), \tag{3.12}\\
& \left(\theta_{i-1}^{*}-\theta_{1}^{*}\right)=-\left(\theta_{0}^{*}-\theta_{1}^{*}\right)\left(b^{-1}+b^{-2}+\cdots+b^{i-2}\right), \tag{3.13}\\
& \left(\theta_{2}^{*}-\theta_{i}^{*}\right)=\left(\theta_{0}^{*}-\theta_{1}^{*}\right)\left(b^{-2}+b^{-3}+\cdots+b^{i-1}\right), \tag{3.14}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\theta_{0}^{*}-\theta_{i-1}^{*}\right)=\left(\theta_{0}^{*}-\theta_{1}^{*}\right)\left(b^{0}+b^{-1}+\cdots+b^{i-2}\right) . \tag{3.15}
\end{equation*}
$$

Evaluate (3.5) using (3.12), (3.13), (3.14), (3.15), we find $s_{i}=0$ for $3 \leq i \leq d$.
(i) \Rightarrow (iii) Suppose $s_{3}=0$. Then by setting $i=3$ in (3.5),

$$
\begin{equation*}
\left(\theta_{1}^{*}-\theta_{3}^{*}\right)\left(\theta_{2}^{*}-\theta_{1}^{*}\right)+\left(\theta_{2}^{*}-\theta_{3}^{*}\right)\left(\theta_{0}^{*}-\theta_{2}^{*}\right)=0 . \tag{3.16}
\end{equation*}
$$

Set

$$
\begin{equation*}
b:=\frac{\theta_{1}^{*}-\theta_{0}^{*}}{\theta_{2}^{*}-\theta_{1}^{*}} . \tag{3.17}
\end{equation*}
$$

Then

$$
\begin{equation*}
\theta_{2}^{*}=\theta_{0}^{*}+\frac{\left(\theta_{1}^{*}-\theta_{0}^{*}\right)(b+1)}{b} \tag{3.18}
\end{equation*}
$$

Eliminating $\theta_{2}^{*}, \theta_{3}^{*}$ in (3.16) using (3.18) and (2.16), we have,

$$
\begin{equation*}
\frac{-\left(\theta_{1}^{*}-\theta_{0}^{*}\right)^{2}\left(\sigma b^{2}+\sigma b+\sigma-b\right)}{\sigma b^{2}}=0 . \tag{3.19}
\end{equation*}
$$

for appropriate $\sigma \in \mathbb{R} \backslash\{0\}$. Note that $\theta_{1}^{*} \neq \theta_{0}^{*}$, hence

$$
\left(\theta_{1}^{*}-\theta_{0}^{*}\right)^{2}\left(\sigma b^{2}+\sigma b+\sigma-b\right)=0
$$

so

$$
\begin{equation*}
\sigma^{-1}=\frac{b^{2}+b+1}{b} \tag{3.20}
\end{equation*}
$$

From Theorem 2.2, to prove that Γ has classical parameter, it suffices to prove that

$$
\theta_{i}^{*}-\theta_{0}^{*}=\left(\theta_{1}^{*}-\theta_{0}^{*}\right)\left[\begin{array}{l}
i \tag{3.21}\\
1
\end{array}\right] b^{1-i}(0 \leq i \leq d)
$$

We prove (3.21) by induction on i. The case $i=0,1$ are trivial and case $i=2$ is from (3.18). Now suppose $i \geq 3$. Then (2.16) implies

$$
\begin{equation*}
\theta_{i}^{*}=\sigma^{-1}\left(\theta_{i-1}^{*}-\theta_{i-2}^{*}\right)+\theta_{i-3}^{*} \tag{3.22}
\end{equation*}
$$

Evaluate (3.22) using (3.20) and the induction hypothesis, we find $\theta_{i}^{*}-\theta_{0}^{*}$ is as in (3.21). Therefore Γ has classical parameter.

Theorem 3.4. Let $\Gamma=(X, R)$ denote a distance-regular graph with intersection numbers $a_{1}=0, a_{2} \neq 0$. Then the following (i)-(ii) are equivalent.
(i) Γ is Q-polynomial and Γ contains no parallelograms of length 3 .
(ii) Γ has classical parameters.

Proof. (i) \Rightarrow (ii) Suppose Γ is Q-polynomial and contains no parallelogram of length 3. Then $s_{3}=0$. Hence Γ has classical parameters by Theorem 3.3.
(ii) \Rightarrow (i) Suppose Γ has classical parameters. Then Γ has Q-polynomial property[8, Theorem 8.4.1]. Then (i) holds by Theorem 3.3.

By the results in [4] and [10], we have the following corollary.

Corollary 3.5. Let Γ denote a distance-regular graph with classical parameters and intersection numbers $a_{1}=0, a_{2} \neq 0$. Then for each pair of vertices $v, w \in X$ at distance $\partial(v, w)=2$, there exists a strongly regular subgraph Ω of Γ containing v, w. The intersection numbers of Ω are

$$
\begin{aligned}
a_{i}(\Omega) & =a_{i}(\Gamma) \\
c_{i}(\Omega) & =c_{i}(\Gamma) \\
b_{i}(\Omega) & =a_{2}(\Gamma)+c_{2}(\Gamma)-a_{i}(\Gamma)-c_{i}(\Gamma)
\end{aligned}
$$

for $0 \leq i \leq 2$.

Corollary 3.6. Let Ω be a strongly regular graph with $a_{1}=0, a_{2} \neq 0$. Then $\Omega_{2}(x)$ is an a_{2}-regular connected graph with diameter at most 3 for all $x \in \Omega$.

Proof. Fix a vertex $x \in \Omega$, suppose $y \in \Omega_{2}(x)$, obviously, $\partial(x, y)=2$. Hence $\left|\Omega_{1}(y) \cap \Omega_{2}(x)\right|=a_{2}$. This shows $\Omega_{2}(x)$ is a_{2}-regular.

Suppose that $\Omega_{2}(x)$ is not connected or is connected with diameter at least 4. Pick $u, v \in \Omega_{2}(x)$ such that there is no path in $\Omega_{2}(x)$ of length at most 3 connecting u, v. Observe $\partial(u, v)=2$, since Ω has diameter 2. For each vertex $z \in \Omega_{1}(u) \cap \Omega_{1}(v)$, we must have $\partial(x, z)=1$, otherwise $\partial(x, z)=2$ and u, z, v is a path of length 2 in $\Omega_{2}(x)$. Hence we have $z \in \Omega_{1}(u) \cap \Omega_{1}(x)$ and $\Omega_{1}(u) \cap \Omega_{1}(v) \subseteq \Omega_{1}(u) \cap \Omega_{1}(x)$. Now $\Omega_{1}(u) \cap \Omega_{1}(v)=\Omega_{1}(u) \cap \Omega_{1}(x)$, since both sets have the same cardinality c_{2}. Similarly, we have $\Omega_{1}(u) \cap$ $\Omega_{1}(v)=\Omega_{1}(v) \cap \Omega_{1}(x)$. Pick $w \in \Omega_{1}(u) \cap \Omega_{2}(v)$. Then $\partial(x, w)=2$, since $w \notin \Omega_{1}(u) \cap \Omega_{1}(v)=\Omega_{1}(u) \cap \Omega_{1}(x)$. We do not have a path of length 2 in $\Omega_{2}(x)$ connecting w, v, otherwise we can extend this path to a path of length 3 in $\Omega_{2}(x)$ connecting u, v. By the same argument as above, we have $\Omega_{1}(w) \cap \Omega_{1}(v)=\Omega_{1}(w) \cap \Omega_{1}(x)=\Omega_{1}(v) \cap \Omega_{1}(x)$. Now we have

$$
\Omega_{1}(u) \cap \Omega_{1}(v)=\Omega_{1}(v) \cap \Omega_{1}(x)=\Omega_{1}(w) \cap \Omega_{1}(v)
$$

Pick $z \in \Omega_{1}(u) \cap \Omega_{1}(v)=\Omega_{1}(w) \cap \Omega_{1}(v)$. Then z, u, w forms a triangle, a contradiction with $a_{1}=0$.

References

[1] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
[2] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
[3] G. Dickie, Twice Q-polynomial distance-regular graphs are thin. European Journal of Comb., 16:555-560, 1995.
[4] H. Suzuki, Strongly closed subgraph of a distance-regular graph with geometric girth five, Kyushu J. Math, 50(2):371-384, 1996.
[5] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Alg. Combin., 1:363-388, 1992.
[6] P. Terwilliger, A new inequality for distance-regular graphs, Discrete Math., 137:319-332, 1995.
[7] C. Weng, Kite-Free P - and Q-Polynomial Schemes Graphs and Combinatorics, 11:201-207, 1995.
[8] C. Weng, D-bounded Distance-regular Graphs, Europ. J. Combinatorics, 18:211-229, 1997.
[9] C. Weng, Parallelogram-Free Distance-Regular Graphs, J. Combin. Theory Ser. B, 71(2):231-243, 1997.
[10] C. Weng, Weak-Geodetically Closed Subgraphs in Distance-Regular Graphs, Graphs and Combinatorics, 14:275-304, 1998.

