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The multiplicity of Laplacian eigenvalue one

Student: Chiao-Ling Chen Advisor: Chih-wen Weng

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050

Abstract

We give a tree algorithm of the multiplicity my(1) of Laplacian
eigenvalue 1. Let 7 be the tree with a vertex U, and the vertices
Wi, Wo, Wa,yoooy Wi, U, Uy, .oy Ug are all neighbors of  with
deg( U;)=2 and deg( W; )=1. For the remaining parts of 7; Tj 1S a tree with

unique vertex t j in Tj adjacent to u;, 1< j <S Then
S
mr (D =(k-1 + Zlmr @
i=

In addition, we apply our algorithm to some special trees called caterpillar

n our last section.
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0.1 Introduction

The Laplacian matrix of a graph and its eigenvalues can be used in several
areas of mathematical research and have physical interpretation of various
physical and chemical theories. The adjacency matrix of a graph and its
eigenvalues were much more investigated in the past than the Laplacian ma-
trix [I]. However, according to the Interlacing theorem [2], the eigenvalues of
Laplacian matrix represent more interlacing behavior than the eigenvalues of
adjacency matrix. Regarding the interlacing behavior, the adjacency matrix
only removes vertices, but the Laplacian matrix removes not only vertices
but also edges. Moreover, the Perron-Frobenius theory only shows that the
largest eigenvalue of a connected graph goes down when one removes an edge
or a vertex. But in the Interlacing theorem, it also tells us what happens with
the other eigenvalues. For example, in [3] and [4] the Interlacing theorem can
be applied to show that in some connected graphs, the largest eigenvalues
are exactly 2. In the recent research, Ji-Ming Guo [5] gives an upper bound
of the kth Laplacian eigenvalue of a tree, and A.E.Brouwer, W.H. Haemers
[6] give a lower bound for the Laplacian eigenvalues of a graph. In their
paper, they give us some information between eigenvalues and the degree of

vertices. However in this paper, we want to find the multiplicity of 1 of some



trees. Note that if the multiplicity of Laplacian eigenvalue one is k then the
(n — k + 1)-th Laplacian eigenvalue \,_+1 is bound above by 1u. We con-
struct a labeled digraph and give four operations in the digraph. Moreover,
we present an algorithm of a tree to find the multiplicity of 1. Also, we give

some applications of the algorithm.

0.2 Preliminary

An ordered pair G = (V(G), E(G)) is a graph if V(G) is a finite set
and E(G) is a subset of V(G) x V(G) \ { (a,a) | a € V(G) } such that
(u,v) € E(G) iff (v,u) € E(G) for u,v € V(G). The elements in V(G) are
called vertices, and elements in E(G) are called edges of G. The order
of a graph is the cardinality of V(G). Let G = (V(G), E(G)) be a graph.
For (u,v) € E(G), we say that u and v are adjacent. The degree of
w is the number deg(u) of vertices that are adjacent to w. The graph is
connected if for each pair of vertices z,y € V(G), there exists a sequence
of vertices * = uq, Uy, us, ..., u; = y such that u; and wu; ., are adjacent for

0 <i<t—1. The components of the graph are its maximal connected

subgraphs. G — u is the graph with vertex set V(G — u) = V(G) \ {u} and



edge set E(G —u) = E(G)\ { (u,a),(a,u) | acV(G) }.

A triple G* = (V(G*), E(G*), fo+) is a labeled digraph if V(G*) is a
finite set, F(G*) is a subset of V(G*) x V(G*) \ { (a,a) | a€ V(G*) } and
fer : V(G*) — NU{0} is a function. The indegree of u is degg.(u) =
| { b] (byu) € E(G*) } |. The outdegree of u is deg/.(u) = | { ¢ | (u,c) €
E(G") } -

Example.
1 4 5 9 3

® ® ® O—©0

a b We

The labeled digraph G*

V(G*) ={a,b,c,d, e}, E(G*) ={(a,b), (b,c),(c,d),(d,e), (e d), (e c)}

fG* (C) - 57 degc_l* (C) = 27 degé* (C) =1

0.3 Laplacian of a simple graph

In this section, let G = (V(G), E(G)) be a graph of order n. The matrices
considered in this section are n X n matrices with rows and columns indexed

by V(G). Set D(G) to be a diagonal matrix such that D(G),, = deg(x), and



A(G) to be a matrix with

1 if (z,y) € E(G),

0 else.

A(Q) is referred to the adjacency matrix of G. Let L(G) = D(G) — A(G),
L(G) is called the Laplacian matrix (or simply Laplacian) of G, and the
eigenvalues of L(G) are called the Laplacian eigenvalues of G. Since L(G)
is a symmetric matrix, it is diagonalizable. For an eigenvalue A\ of L(G),
let mg(\) be the multiplicity of A\. Denoted by mg(A) = 0 if A is not an

eigenvalue of L(G).

0.4 Labeled digraph representing a matrix

Recall that in a graph G, the Laplacian matrix L(G) has nonnegative
integers on the diagonal and values 0, —1 off diagonal. It is natural to give a

name for such a matrix.

Definition 0.4.1. An n x n matrix M has Laplacian type if M,, € N

U{0} and M,, € {0,—1} for x #y, x,y € {1,2,...,n}.



In particular, the Laplacian matrix of a graph G has Laplacian type. Note
that a matrix with Laplacian type in general needs not to be symmetric. Let
M be a Laplacian type with rows and columns indexed by a finite set V.
The labeled digraph G, = (V(Gh), E(GYy), for,) associated with M, if
V(Gy) =V, BE(Gy) =1 (v,y) | My = =1} and fg: (x) = My, On the
other hand, for each labeled digraph F* = (V(F™), E(F™), fr+) the matrix

Mg+ with rows and columns indexed by V' (F*) such that

(

(MF*)xy: —1 if (l’,y) EE(F*),
0 else

\

for x,y € V(F*), is called the characteristic matrix of F*. Besides, in
n X n matrix N, the rank(N) is the maximal number of its linearly inde-

pendent columns, and the nullity (N) is n—rank(N).



0.5 Four operations

Let H be a connected simple graph , and we build up the vertex labeled
digraph H* = (V(H*), E(H*), fu+) associated with L(H) — I corresponding
to H. And in H* we can find the multiplicity mg (1) of Laplacian eigenvalue
1 of H directly.

We consider the following four operations oy, 7, put, Yw,s o0 H*.

(a) Type I operation o,:
Suppose that fy«(p) =0, deg™(p) = 1 and (p,q) € E(H*). Then we have a

new labeled digraph

op(H") = (0p(V(H")), 0,(E(H")), 0p(f1+)),
where
op(V(H")) =V(H"),

op(E(H")) = E(H") —{(a,q)|(a,q) € E(H"),a #p},
and
fre(u) if u##q,
op(fr-(u)) =

0 if u=gq.



The new labeled digraph o,(H*) = (0,(V(H*)),0,(E(H")),0,(fu~)) associ-

ated with matrix M, (g~), where

)
0 ifs=t=gq,
(Mo, (m+))st = 0 ift=gq, (s,q) € E(H*), s # p,
\ (L(H) — 1) otherwise.
0 2 1 0

< <

<
" ‘ ‘ .

p \*.

0
52 S4

V

The labeled digraph H*



0 0 1 0
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The new labeled digraph o,(H*)

(b) Type II operation 7,:

Suppose that fy«(p) =0, deg” (p) = 1 and (q,p) € E(H*). Then we have a

new labeled digraph
(H") = (7 (V(H")), 7 (E(H")), 7 (f+)),

where
m(V(H")) = V(H"),
T(E(H")) = E(H") = {(g,a)| (¢,a) € E(H"),a #p},

and
.

fr-(u) ifu#q,
Tp(fr+(u)) =

0 if u=gq.



The new labeled digraph 7,(H*) = (7,(V(H*)), 7,(E(H")), 7,(fn+)) associ-

ated with matrix M. g~), where

p

0 ift=s=4q,
(M-, (1)) st = 0 if s=gq, (¢,t) € E(H"), t # p,
(L(H) — 1) otherwise.

The labeled digraph H*



0 0 0

< <
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P q\: 53

1 0

52 S4

The labeled digraph 7,(H*)

(c) Type III operation py,

Suppose that fy«(w) =1, (w, 1), (t,w) € E(H*). Then we have

Put(H") = (pwt(V(H")), pwt(E(H)), pui(fu)),
where
put(V(H")) = V(H),
put(E(H")) = E(H") = { (t,w) }

and
fu-(u) ifu#t,
pw,t(fH* (u)) -

foae(u)—1 ifu=t.

10



The new labeled digraph py(H*) = (pw(V(H")), pwt(E(H")), pwi(fa+))

associated with matrix M, g+, where

0 ifm=t,n=w,
(Mput)mn = (L(H) =Dy —1 ifm=n=t,
(L(H) = Dmn otherwise.
\

The labeled digraph H*

11
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The labeled digraph py,+(H*)

(d) Type IV operation 7,

Suppose that fy«(w) = 1, deg™(w) = 1 and (w,t) € E(H*). Then we

have

Yt (H") = (Yt (V(H")), Yoot (ECH)), Yo t(f1+))
where

Yus(V(HT)) = V(H),

Yui(E(H")) = E(H") = { (w,?) }
and

Yo (frr (W) = fr-(u) Yu € V(H").

12



The new labeled digraph 7, :(H*) = (Yw:(V(H*)), Ywrt(E(H*)), Yot (fa+))

associated with matrix M, ,(g~), where

(

0 ifm=w,n=t,

(M'yw,t(H*))mn =

(L(H) — Dmn otherwise.

\

0

2 1

o o o
a e
0

T

The labeled digraph H*

1 0
e @
t f
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0 1 0

2 1
o o o o
a b\\: t
0

The labeled digraph v, +(H*)

_—

-~ @

These four kinds of operations are applied to the vertex labeled digraph.
Consider the corresponding characteristic matrices during the processes, we
can also see the operations above as operations on characteristic matrices
preserving the rank. If a vertex labeled digraph associated with a matrix
M of Laplacian can take use of these four operations to becomes a non-edge
labeled subgraph, then the nullity of M is the number of vertices with label
zero. In particular, if M = L(G) — I for some graph G, we can find the
multiplicity mg(1) of Laplacian eigenvalue 1 of G, where I(G) is the identity

matrix,

0 else.

14



0.6 Tree Algorithm

Definition 0.6.1. Let G be a graph. A vertex u € V(G) is called typical
if deg(v) < 2 for any vertex v adjacent to u, and deg(w) = 1 for some w

adjacent to u.

Theorem 0.6.2. Let T' be the tree with a typical vertex u, the vertices wy,
Wy, W3, ..., Wk, U1, Uz, Ug, ..., Us are all neighbors of u with deg(w;) = 1
and deg(u;) = 2. For the remaining parts T; is a tree with a unique vertex t;

in T; adjacent to u; for 1 < j <s. Then

mr(1) = (k—1)+ ZmTi(l).

Proof. Let T* be the labeled digraph associated with L(T') — I, where L(T')
is the Laplacian of T. For fr«(w;) = 0, degt.(w;) = 1 and (wy,u) €
E(T*), we can apply Type I operation o,, to delete all arcs (w;,u) and
(uj,u) for 2 < 7 < kand 1 < i < s, and to erase the label on u, we
have the new labeled digraph o,,(T*). However, since o, (fr+)(w;) = 0,
deg;w1(T*)(w1) =1 and (u,w;) € 04, (T*), we can apply the operation 7,

15



to delete all arcs (u,w;) and (u,u;) for 2 < 7 < kand 1 < i < s. Af
ter that we have a new labeled digraph 7., (0., (T*)). And in 7, (0., (T*)),
we have isolated points ws,ws...wg. And each w; has label 0. Moreover,
since Twl(fawl(T*))<u1) =1, and (uy,t1) and (¢t1,u1) € E(Tw, (0w, (T7))), we
can apply Type III operation p,, 4, to delete the arc (£, ;) and to decrease
the label on ¢; 1. Then we have a new labeled digraph py, ¢, (Tw, 0w, (T)).

Similarly, because of []°Z; pu.t;Tuw; Tun (T) is a new labeled digraph and

-1 "
pr_l (T*)(up) = 17 (uivti) (tivui) € E(H?:l puivtiTwlaw1<T ))7 we

i=1 Pugt;Twy Owy

can apply Type III p,, ;, to delete the arc (¢,,u,) and to decrease the label
ont, 1 for 2 <p < s. As the results of the preceding operations, we have a
new labeled digraph [[7_; pu, ¢ Tw, 0w, (T7). Since fi1:_ p, 7 0w, () (U1) = 1

and degff[s

i—1 Puj,t; Twy Owy

() = Land (ur, t1) € E(I[;_; pustiTun 0w, (T7)), we
can apply Type IV operation 7,, 4, to delete arc (uy,t;). So, we have a new

labeled digraph 7u, ¢ (1T Puiti Tw, 0w, (T*)).  Furthermore, for H?;% Vuy

B PuitiTun 0wy (TF) 1s & new labeled digraph , fnpf

1
’YU]' ot Hf:l Puj,t; Twy Twy (T*)

— + _ p—1
(UP) = 1 and deg(Hﬁ;ll Yujity [i=1 Pug,t; Twy owy TF) <uP) = 1 and (Up,tp) < E(szl
Yujit; L= Pussti Twn 0w, (T)), we can apply Type IV operation 7, 4, to delete
arc (up,t,) for 2 < p < s. Therefore, Hj‘=1 Vg t; Lot Pussti Twn Oy (T) s

a new labeled digraph. Note that in this new labeled digraph Hj:1 Vuj b

16



1121 Pust; Tun Oun (T*), we have several components, that are isolated points
Wy, ws ... w, with label 0, uq,us...u, with label 1 and T(; corresponding
to Ty, 1 < d < s. Now, let’s consider the characteristic matrix Mszmuj,tj
TL5y puyty Ty Twy (T5)- Since we have isolated points ws, w3 . .. w; with label 0 in
H;’:l Yujit; Lot Pus it Twn Oy (T), the row and column corresponding to each
w; are 0 in the characteristic matrix MH‘;:muj,tj TL5_y puyt; 7y 0w, (T%)- HOWeVer,
we have isolated points wy, uy . .. us with label 1in [T7_; vu;6; T1i—) Pusti Tun
0w, (T7), the row and column corresponding to each w; are 1 in the charac-

. . . /
teristic matrix MH? . Moreover, each component 7},

—1 'Yu]-,tj H?:l Puj,t; Twy Owy (T*)

in szl Yujit; 1it Pusts Twr 0wy (T) is a labeled digraph of T induced from

L(T;) — I. This implies

nullity(MH;:1 gty Ty Pugaty Ty oy )

= (k—1)+ > nullity(M,).

d=1

Thus

my(l) = (k—1)+ ZmTi(l)-

17



0.7 Applications

We need the following lemma about Laplacian eigenvalues of a path P, of
n vertices in our study. Let P, be the path with vertex set V(P,) = {w;|i =
1,2,...,n } and edge set E(P,) = { {w;,uis1}|i=1,2,...,n—1}.
Lemma 0.7.1. [7] P, has eigenvalues N\;(L(P,)) = 2 —2cos(n(n—1)/n) for

ie{1,2,---,n}.

By this Lemma, we know that mp, (\) = 1 for each eigenvalue \.
Corollary 0.7.2. P, has eigenvalue 1 if and only if 3 divides n.

Proof. Since \;(L(P,)) = 2 — 2cos(n(n —i)/n) = 1 for i € {1,2,--- ,n},
cos(m(n —i)/n) = 1/2. Moreover, for each eigenvalue \, mp () = 1. So,
cos(m/3) = cos(m(n —i)/n). Then 7/3 = w(n —i)/n. This implies n = 3i/2.
Thus 3 divides n. Let n = 3d, d € N. If we take ¢« = 2d, then we get
MNi(L(P,)) = Aa(L(Psq) = 2 — 2cos(m(3d — 2d)/3d) = 2 — 2cos(w/3) = 1.

Thus P, has eigenvalue 1 . O]

Definition 0.7.3. A caterpillar is a tree CP(n; ky, ko, ks, . . ., ky,) with ver-

tex set V = V(P,) U U{uy|l < j < k;} and edge set E = E(P,) U
i=1

18



U {{uwi, |1 < j < ki, ki > 0.
i=1

Theorem 0.7.4. Let Hy = CP(n;ky, ko, ks, ..., k) be the graph where ko; =

0 for all i and n is odd, then mg, (1) = ZEZBWQ koji1 — (n+1)/2.

Proof. Take u; to be the typical vertex, then by theorem 6.2 we have mg, (1) =
(k1 = 1) + Mepm—2ks ka,... kn) (1). Similarly, when we take ug11 be the typical

vertex in CP(n — 2t; kg1, kayo, - - -, ky), where ¢ > 1. Then
myg, (1) =((ki — 1)+ (ks — 1)+ ...+ CP(1; k)

=k -1+ ks—1)+...+ (k,— 1)

(n—1)/2

)
> kg — (n+1)/2.
=0
Il

Theorem 0.7.5. Let Hy = CP(n; ky, ko, ks, ..., k) be the graph where ko; =
0 for all i and n is even, then mp,(1) = 25.162)/2 kajr1 — (n—2)/2.
Proof. Similarly to theorem 7.4, we take wug 1 to be the typical vertex in

CP(n — 2t; ko1, katy2, - - - kn), where t > 0. Then

mHQ(l) = (k’l - ]_) + (k?g - 1) +...+ (k‘n_g - 1) —f—CP(Q, kn—h kn)
(n—2)/2

= Z kaji1 — (n—2)/2.

19



Theorem 0.7.6. Let Hy = CP(n;0,0,...,k,0,...,0) be the graph where
t=0 (mod3). Ifn=1 (mod3), then mpg,(1) = k. Otherwise, if n =0,2

then mp, (1) = k; — 1.

Proof. Take u; to be the typical vertex, then we have mpg, (1) = (k —
1)+ CP(t —2;0,0,...,0) + CP(n —t —1;0,0,...,0). If n =1 ( mod 3),
then by Corollary 7.3, mepp—i—1,00,..0(1) = 1, and mepe—20,0,..0)(1) = 0.
Thus, mp,(1) = (ks — 1) + 1 = k;. Otherwise, if n = 0,2 ( mod 3) then
mCP(nftfl;0,0,...,O)(l) = 0, and mCP(t72;0,O,...,0)(1) = 0. Thus, mH3(]-) =

ke — 1. [l

Theorem 0.7.7. Let Hy = CP(n;0,0,...,k,0,...,0) be the graph where
t=1(mod3). If n=2 ('mod 3), then mg,(1) = k. Otherwise, if n =0,1

( mod 3) then myg, (1) =k, — 1.

Proof. Take u; to be the typical vertex, then we have mpy, (1) = (k; —
1)+ CP(t —2;0,0,...,0) + CP(n —t —1;0,0,...,0). If n = 2 ( mod 3),
then by Corollary 7.3, mepm—i-100,.,0(1) = 1, and mepi—20p0,..0(1) = 0.
Thus, mg, (1) = (ky — 1) + 1 = k;. Otherwise, if n = 0,1 ( mod 3) then
Mepn—t-100,.0) (1) = 0, and mepu—200,.0(1) = 0. Thus, mg, (1) =

ke — 1. [l

20



Theorem 0.7.8. Let H; = CP(n;0,0,...,k,0,...,0) be the graph where
t=2(mod3). If n =0 ( mod3), then mg,(1) = ky + 1. Otherwise, if

n=1,2 (' mod3) then mp, (1) = k;.

Proof. Take u; to be the typical vertex, then we have mpy, (1) = (k, — 1) +
CP(t—-2;0,0,...,0) + CP(n—t—1;0,0,...,0). If n =0 ( mod 3), then
by Corollary 7.3, mepm—i—1,00,.,0(1) = 1, and mepi—200,..0(1) = 1. Thus,
mp;(1) = (kb — 1) + 2 = k + 1. Otherwise, if n = 1,2 ( mod 3) then

mCP(nftfl;0,0,...,O)(l) =0, and mCP(t72;0,O,.,.,0)(1) = 1. Thus, mHs(l) =k, O

21
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