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Abstract

Let C denote the complex field and let d be a positive integer. We essentially
determine all the triples A, B, C of (d+1) x (d+ 1) matrices over C that satisfy

AT = o, B = g1, 0¥ =4I, BA=qAB, CB = ¢BC, AC = qCA

for some nonzero complex numbers «, 3, v, and a primitive root ¢ of unity of
order d + 1.



Contents

Abstract (in English)

Contents

1

2

Introduction
Cyclic pairs
Proof of Theorem 1.3

Remarks

11

ii

11



1 Introduction

Let C denote the complex field and let Maty,1(C) denote the set of (d+ 1) x (d+1)
matrices over C with the index set {0,1,...,d}.

Definition 1.1. Let A denote a matrix in Maty.1(C). We say A is left-cyclic when-
ever each of the entries A;, 1 and Ay is nonzero for ¢« = 1,2,...,d and all other
entries of A are zero ; or A is right-cyclic whenever its transpose is left-cyclic. We
say a square matrix is cyclic whenever it is left-cyclic or right-cyclic.

Definition 1.2. Let V denote a vector space over C with finite dimension. Let
A:V—V , B:V — YV, and C : V — V denote linear transformations which
satisfy (i) — (4i7) below.

(i) There exists a basis for V with respect to which the matrix representing A is
left-cyclic, the matrix representing B is diagonal, and the matrix representing
C' is right-cyclic.

(17) There exists a basis for V with respect to which the matrix representing A is
right-cyclic, the matrix representing B is left-cyclic, and the matrix representing
C is diagonal.

(7i1) There exists a basis for V with respect to which the matrix representing A is
diagonal, the matrix representing B is right-cyclic, and the matrix representing
C is left-cyclic.

We call such a triple (A, B,C') a cyclic triple on V.
The following is our main result.

Theorem 1.3. Let 'V denote a vector space over C with dimension d + 1. Let A :
V—V,B:V—V, and C:V — V denote linear transformations. We prove
the following are equivalent.

(i) (A, B,C) is a cyclic triple on V.

(i) There exist three nonzero complex numbers o, 3, v and a primitive root q of
unity of order d + 1 such that

AT = oI, B =pI 0¥ =~I, BA=¢AB, CB = ¢BC, AC = qCA.

(i1i) There exists a basis vy, vi, ..., vg for V with respect to which the matrices
representing A (resp. B,C') is left-cyclic (resp. diagonal, right-cyclic) with the
following forms,
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1 0 0 ¢ 0
q 0 ¢
(resp. B : ¢ C:C )
qd—l 0 qd
0 g 1 0

for some nonzero complexr numbers n, £, , and a primitive root q of unity of
order d + 1.

2 Cyclic pairs

To prove Theorem 1.3 we need some previous results in [1, 3]. For the thesis to be
self-contained, these results are stated in this section and the proofs are given in
slightly different ways.

Lemma 2.1. Cyclic matrices are diagonalizable with distinct nonzero eigenvalues.

Proof. For any left-cyclic matrix

0 Qo
aq 0
A= (05}
0
0 aq 0

the characteristic polynomial of A is

d
f(z) = 2% — Hai.
i=0

Since ag, ay, . ..,aq are not zeros, f(x) has d + 1 distinct roots. Hence A has d + 1
distinct eigenvalues. This implies A is diagonalizable with nonzero eigenvalues. For
any right-cyclic matrix A, since A7 is left-cyclic and A have the same characteristic
polynomial with AT, A is also diagonalizable with nonzero eigenvalues. We complete
the proof. O

Definition 2.2. Let V denote a vector space over C with finite positive dimension.
By a cyclic pair on V we mean an ordered pair of linear transformations A: V — V
and B : V — V that satisfy conditions (1), (2) below.

(1) There exists a basis for V with respect to which the matrix representing A is
diagonal and the matrix representing B is cyclic.

(17) There exists a basis for V with respect to which the matrix representing B is
diagonal and the matrix representing A is cyclic.



Lemma 2.3. Suppose

o = O
]

(a #0)
0
10

is a left-cyclic matriz and 0 # 0 is an eigenvalue of A. Let u be an eigenvector
corresponding to 6. Then

for some nonzero scalar ug € C.

d+1

Proof. Since the characteristic polynomial of A is x%T" — «, it is obvious that

Qd—i-l —

a.
Suppose
Ug
Uy
U= Uz
Ug
Observe
0 o U Qg Oug
Lo Ul Uo Hul
Au=1] 0 1 up [ = w | =] Ous ||
0
1 0 Uq Ud—1 9ud
since Au = Qu. Hence u; = Qu;q for i = 0,1,...,d — 1 and ug = (6/a)uy = 0~ %uy.
Then u; = ugf~" (1 < i < d). Note that ug # 0 since u # 0 and 6 # 0. Hence the
proof is completed. O]

Theorem 2.4. Let 'V denote a vector space over C with dimension d + 1. Let A :
V — V and B : V — V denote linear transformations. Then the following (i)-(iii)
are equivalent.

(i) (A, B) is a cyclic pair on 'V .



(ii) There exist two nonzero complex numbers « and 3 such that
ATt — o, B™' =3I, BA=¢AB,
where q is a primitive root of unity of order d + 1.

(11i) There exists a basis vg,v1,...,vq for V with respect to which the matrices rep-
resenting A and B have the following forms,

0 o} ¢ 0
10 £q
A: o1 - . B: £ :
0 "
10 0 £q°
where a, & € C are nonzero scalars and q € C is a primitive root of unity of
order d + 1.

Proof. ((iii) = (i1)) By direct computation

o 0
«Q
AL = «Q =al,
0 Qo
§d+1 0
§d+1
Bd+1 _ é‘d-ﬁ-l _ /6[’
0 éd—H
0 al
q 02
¢ 0
0 ¢4 0
and
0 a{qd
E 0
¢ O
AB = £q2
0 gt 0

Therefore A = oI, B! = 31, and BA = ¢AB, where 3 = £41,
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((71) = (4)) Since V is over the complex field C, there exists an eigenvalue £ for B.
Let vy be an eigenvector of B with respect to eigenvalue &, that is, Bvy = vy with
vy # 0. Consider vectors vy, Avg, A%vy, . . ., Adv.

Claim. {vg, Avg, A%vg, ..., A%y} is a basis of eigenvectors of B.

Set u; = Alvy for i = 0,1,...,d. Note that u; # 0 since A is invertible. Ob-
serve Bu; = BA'wy = ¢*A'Bvy = £¢'Alvg = Eqiu,, since BA = gAB. Hence u; are
distinct eigenvectors of B with respect to distinct eigenvalues £¢' (0 < i < d), and

{ug, uq, uz, ..., uq} is a basis of eigenvectors of B. This proves the claim.
For the basis {ug, u1,usg, ..., uq},
AUZ' = AH_lUO = Uj+1 (O S 7 S d— ].)

and

Auy = Ay = avg = aug (AT = aI).
Hence with respect to the basis {ug, u1, us, ..., uq}, the matrices representing A and
B are

0 o 3 0

10 &q

A: 1 . B: £
0 10 0 &q

0 B
10 "7 0
1

0 1 0

for some n € C, since B! = BI and AB = ¢ 'BA. Therefore, (A, B) is a cyclic
pair.

((i) = (4i7)) Since (A, B) is a cyclic pair, there exists a basis {ug, uq,...,uq} such
that the matrices representing A is cyclic and B is diagonal. Without loss of gener-
ality, we suppose the matrix representing A, B as follows.(exchange the ordered basis
to ug, Ug_1, - .., uy as A is right-cyclic)

0 QAo bo 0
aq 0 bl
A az 0 , B: ba
0 aq 0 0 bd
So we know that
Aui = Aj41Ui41 (0 S 1 S d— 1) (21)
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and

Aug = aguyg. (2.2)

Set
Vo = Up (23)

and
Vi = a1Qg . ..4a;U; (]_ S 1 S d) (24)

So by (2.1) - (2.4),
A’UZ' == Ui+1(0 S 1 S d— 1)

and

A’Ud = Aaq..-a10a9Vg.

Therefore, for the new basis {vg, v1,...v4}, the matrices represent A and B as follows,

0 «
10
A L0 ., (a=ap...aq)
0 1 0
bo 0
b1
B by . (eigenvector invariant)
0 by
Similarly there exists a basis {wg, w1, ..., ws} of V such that the matrix representing
A is diagonal and the matrix representing B as
0 p
10
1 0 ’
0 1 0

for some G € C. Note that wg, w; are eigenvectors of A. Let 0y, #; be the corresponding
eigenvalues. Then there exists ¢y € C such that

Co
00061
Wo 00962
Cgeo_d
with respect to basis vg, v1,...,vq by lemma 2.3. Namely |,
wo = coup + cobly tvy + 00(90_2112 +... .+ 0090_dvd. (2.5)
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In the same way, there exists ¢; € C such that
wy = c1vg + 167 oy b vy L+ clﬁfdvd. (2.6)
By (2.5),

Bwo — COBUO + 0000_131)1 + 006)0_231)2 + ...+ C()QO_dBUd

= Cobovo + Coealbl'l}l + CoeaZbg’UQ + ...+ Coeadbdvd. (28)

Compare coefficients in ( 2.6) and ( 2.8), since Bwy = wy, we get

c
bO = _17
Co
c1 6
bl = _1_07
Co 491
c1 0y 2
by = — ()7,
2 Co ((91)
1,00 d
bg = — ()%
=2
Note that by, by, . ..,by is a geometric sequence with common ratio ¢ = 6y/60;. Hence

by =E&¢ fori=1,2,...,d with £ = by. Observe ¢*™! = QBIJFI/Q‘{*IJrl = 1 by lemma 2.1.
Further, ¢ # ¢/ for 1 < i,j < d, otherwise b; = b;, a contradiction to lemma 2.1.
It implies that ¢ is a primitive root of unity of order d + 1. Therefore, for the basis

{vo,v1,...,v4} , the matrices representing A and B are as follows.
0 « & 0
10 &q
A: 10 . B &g
0 1 0 0 £q?

3 Proof of Theorem 1.3

Proof. ((i1) = (7)) It suffices to show that the condition (¢) in Definition 1.2 is true,
since (#4) and (ii7) can be obtained similarly. Consider that A™™! = oI, B! =
61, BA = qAB. According to Theorem 2.4, let v be an eigenvector of B correspond-
ing to eigenvalue ¢ and form a basis {v, Av, A%v, ..., A%} for V such that the
matrix representing A (resp. B) is left-cyclic (resp. diagonal) as follows

0 « & 0
1 0 &q

A 10 , B: £q?
0 1 0 0 £q?



Similarly, let v, Cv, C?%v, ..., C% form another basis for V such that the matrices
representing C' (resp. B) is left-cyclic (resp. diagonal) as follows

0 vy ¢ 0
10 &gt
ok 10 . B: &g :
0 1 0 0 g
since B! = BI,C! = ~I,CB = ¢BC, namely, BC = ¢~ 'CB. Observe
¢’ =& (1<i<d).

We know that A and C%1~% are the same eigenvector of B corresponding eigen-
value £q¢°. Hence
Aty = g, CT 0 (1 <i<ad),

where ¢; is nonzero complex number. Note that the basis

{v, Av, ..., A, ..., A%}
is regarded as
{v, caC%, ..., cgu1:C 0, ..., c;Cv}.
Hence for the basis {v, Av, A%v, ..., A%}, the matrix representing C' is right-cyclic
as follows
0 cqy 0
0 cd_lcgl
C 0
C1Co !
et 0
Now we find the basis {v, Av, A%v, ..., A%} such that the matrices representing

A (resp. B, C) is left cyclic (resp. diagonal, right-cyclic) .
Hence (A, B, C) is a cyclic triple.

((i) = (¢i)) By Theorem 2.4, it is obvious that there exists three nonzero complex
numbers o, 3 and v such that A% = of, B¥! = BI, and C%! = ~I. By the
condition (i) in Definition 1.2, there exists a basis {ug, u1, ..., ugq} such that the
matrices representing A (resp. B, C) is left-cyclic (resp. diagonal, right-cyclic) as



follows

0 Qo
aq 0
A as )
0
0 aq 0
bo 0
by
(resp. B : bo ,
0 ba
0 C1 0
0 (&)
C 0 )
Cd
Co 0
Set
vg = ug and v; = aias...a;u; for i =1,2,...,d.

For the basis {vg,v1,...,v4}, the matrix representing C' (resp. B, A) is right-cyclic
(resp. left-cyclic, diagonal) as

0 I 0
0 i)
C 0o . ,
oy
o 0
(resp.

0 Q@ 19 0

10 &q

A L 0 . B : £ ),

0 1 0 0 £q?

with a = aga; ... aq, £ # 0, and ¢ is a primitive root of unity of order d 4+ 1. We know
that BA = qAB, and by direct computation

0 x&q 0
0 x28¢?
CB : 0 ,
z4€q"
zo§ 0



0 1'15 0

0 x28q
BC : 0
za€qh!

206" 0
Hence we have

BA =gAB, CB = qBC. (3.1)
Similarly, by condition (i¢) in Definition 1.2 we have

AC = ¢ CA,CB = ¢ BC, (3.2)

where ¢’ is a primitive root of unity of order d+1. By ( 3.1) and ( 3.2), CB = ¢BC =
¢ BC. Tt implies ¢ = ¢, so that BA = qAB,CB = qBC, AC = qCA.

((#41) = (i1)) By direct computation, A% = oI, B = BI,C¥ = ~I, where
a=ntt 3= ¢ v = (9 and then

0 1 0 g !
q—l 0 q—2 0
BA @ ¢ qg? , AB : ¢ g’
' 0 0
0 g? 0 0 ¢ @ 0
0 ¢ 0 0 ¢ 0
0 ¢ 0 ¢
CB : (¢ , BC : (¢ ,
0 ¢ 0 ¢!
1 0 q° 0
1 0 g ! 0
q q?
AC : nC , CA = nC
s g
0 g ? 0 1

Hence BA = ¢AB,CB = qBC, AC = qCA.

((i) and (ii) = (i7i)) Let v be the eigenvector of B with corresponding eigen-

value £, and let 1 be an eigenvalue of A. Then for the basis v, n t¢?Av, n~2¢*>T* A%,
.., gt +2d Ady where q is the primitive root of unity of order d+ 1 that satisfies
(17), the matrices representing A (resp. B) is left-cyclic (resp. diagonal) as follows

0 1 1 0
A gt o (rep. B : & ),
0 g2 0 0 q*
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and the matrix representing C' is right-cyclic as

0 C1 0
0 Co
C : 0
Cd
Co 0
Hence
o 0 q 2c 0
qg - c q "C2
AC q e L CA -
' q ey
0 q ey 0 co

We find ¢;41 = q¢; for i = 0,1,...,d — 1 and ¢y = qcy, since AC = qC A. Hence the
matrix representing C' is as follows

0 qgo 0 0 ¢ 0
0 ¢’ 0 ¢
g% 0 ¢
Co 0 1 0
where ( = ¢o. The proof is completed. O]
4 Remarks

The study of a pair or a triple of linear transformations with specified combinatorial
properties was first appeared in [4] with the motivation from the study of P- and
@-polynomial schemes. Also see [5] for a survey on this topic. These are related to
the representation theory of some algebra defined from relations. See [2] for reference.
To finish the thesis we propose the following conjecture.

Conjecture 4.1. Let V denote a vector space over C with dimension d + 1. Let
A: V—YV, B:V-—V and C: V — V denote linear transformations. The
following (i) and (ii) are equivalent.

(i) (A, B), (B,C), (C, A) are cyclic pairs.

(ii) (A, B,C) is a cyclic triple.

11



References

[1] Hung-Jia Chen, The Weakly Cylic Pairs of Linear Transformations, National
Chiao Tung University, master thesis, 2004.

[2] Carter, Flath, Saito, the classical and quantum 6-j symbols, Princeton University
Press, 1995.

[3] Jheng-Lin Pan, A Cyclic Pair of Linear Transformations, National Chiao Tung
University, master thesis, 2004.

[4] P. Terwilliger, Two linear transformations each tridiagonal with respect to an
eigenbasis of the other, Linear Algebra Appl., 330, 149-203, 1999.

[5] P. Terwilliger, Introduction to Leonard pairs, OPSFA Rome 2001, J. Comput.
Appl. Math., 153(2), 463-475, 2003.

12



