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ABSTRACT

The Vapnik-Chervonenkis dimension of a t - (v,k,2)~design D =(X, B) is the
largest cardinality of a subset-A-of X such. that for each subset C < A there

exists a block B eBsuch that C = AN B. In this thesis we give some general

properties of the Vapnik-Chervonenkis dimension of a t=(v,k, 1) design, and

use them to completely determine the VVapnik-Chervonenkis dimension of a

t—(v,k,1) design for t =2 andt.= 3.
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1 Introduction

Suppose that for opinion poll we want to select a small number of individ-
uals representing all major sections of the society. First, we have to choose
certain categories of people and then decide which of these groups are consid-
ered ”important”. According to our democratic principles, we shall measure
the ”importance” of a group by its size (in the percentage of the popula-
tion) [3, page: 247]. Then the important groups will define a hypergraph
H. The smallest number of people representing all important group is shat-
tered. Vladimir Vapnik and Alexey Chervonenkis defined ' VC dimension (for
Vapnik-Chervonenkis dimension) [1]. The VC dimension is'a measure of the
capacity of a statistical classification algorithm, defined as the cardinality of
the largest set of points that the algorithm can shatter. In this thesis we
completely determine the VO dimension of at=(v,k, 1) design for ¢ = 2 and
t=3.



2 VC dimension of hypergraph

In this section, we shall give the definition of the VC dimension of a hyper-
graph, provide an example and a basic property. A hypergraph is a general-
ization of a graph, where an edge can connect any number of vertices. The

formal definition is given below.

Definition 2.1. A hypergraph H_.issa-pair. H = (V(H), E(H)) where V(H)
is a set of elements, called ‘points or-wvertices, and E(H ) is a set of non-empty
subsets of V(H) called hyperedges or blocks. Therefore, E(H) is a subset of
P(X)\ {0}, wherexP(X) is-the-power set of X.

Example 2.2.0Let V.(H) ={1,2,3,4,5,6,7}and
B(H) = {123,145,167,246,257, 347,356}

Then H is a hypergraph. See Figure 1 below for the diagram illustration.

§

Figure 1.

Throughout this thesis, let H = (V(H), E(H)) denote a hypergraph.



Definition 2.3. A subset A C V(H) is called shattered if for every C C A
there exists an B € E(H) such that BN A = C. The Vapnik-Chervonenkis

dimension (or VC dimension) of H is the cardinality of the largest shattered

subset of V(H). It will be denoted by VC-dim(H). [3, page 247].

We give a necessary condition for a hypergraph to have VC dimension d.
Lemma 2.4. If a hypergraph H has VC dimension d, then |E(H)| > 2.

Proof. Let A be a shattered subset-with|A] = d, so the number of subsets
of A are 2¢. By the construction, we have |E(H)|'> 2% O

From the above lemma,-a-hypergraph without hyperedges has no VC di-
mension. A hypergraph with at least a hyperedge has-VC dimension, since
the empty set is shattered. The following lemma characterizes the hyper-

graph with VC dimension 0.
Lemma 2.5. H has VC dimension 0 if and onlyif H has only one hyperedge.

Proof. The sufficient condition-follows immediately from Lemma 2.4. To
prove the necessity, on the contrary assume H has two hyperedges B Z B'.
Pick b € B’ — B. Since the set {b} is shattered, H has VC dimension at least
1. O



3 Block designs

We shall consider a special class of hypergraphs hereafter.

Definition 3.1. Let ¢, v, k, and X\ be positive integers such that v > k > t.
A t-(v,k, \) design is a hypergraph (X, B) such that the following properties

are satisfied:
(1) |X[=v;
(ii) each block contains exactly &k points;

(iii) any ¢ distinct points are contained in exactly A\ blocks.

A t-(v, k, \) design is trivialif k= v, i.e. ‘there exists a unique block, which
contains all the.points. A t-design is a t-(v, k,A) design for.for some v, k, \.

Sometimes a t-design is referred as a block design.

The example in Example 2.2 is a 2=(7;3;1) design: We give one more
example of t-designs below.
Example 3.2. Let X ={1,2:3,4,5} and

B = {123,124,125,134,135,145, 234, 235, 245, 345}.

It is easy to check that (X, B) is a 3-(5,3,1) design.

We are concerned in the VC dimension of a t-design. Note that from
Lemma 2.5 a t-design has VC dimension 0 if and only if it is trivial. Hence
we shall exclude the trivial ¢-design in our discussion. The following simple

lemma provides an observation of how in general in this thesis we determine

the VC dimension of a t-(v, k, 1) design for ¢ is 2 or 3.

4



Lemma 3.3. Let D = (X, B) be the 2-(7,3,1) design in Ezample 2.2, where
X =1{1,2,3,4,5,6,7} and

B = {123,145, 167, 246, 257, 347, 356}
Then VC-dim(D) = 2.

Proof. 1t is easy to check that {1,2} is a shattered subset of X. Hence the
VC dimension of D is at least. 2« If VO=dim(D) > 3, then by Lemma 2.4,
|B| > 8, a contradictions Thus VC-dim(D) = 2. O

The following basic properties of t-designs can be found from any text-

books, e.g. [2, page 191].

Lemma 3.4. Let (X, B) be a t-(v, k, \) design. Suppose that Y C X, where

Y| = s < t. Then there are exactly

AE2)
bs — kt_s (1>
(t—s)
blocks in B that contain all the points in'Y . O

Lemma 3.5. Let (X, B) be a t-(v, k, \) design and A C X with |[A| =d < t.
Then for C' C A with |C| =i, there are
d—i

S 1pb, (‘7 @)

0

<

blocks B such that BN A= C.

Proof. Fix C C A with |C| =i, and suppose A — C' = {ay, a9, ...,aq_;} C X.
Set S :={B € B|C C B}, and S; = {B € B | ClJ{qa;} € B} for



1 <j<d—i Notethat |{BeB|BNA=C} =|SiNS2N..NSai].

By inclusion-exclusion principle,

5,5~ 5w

U

s

JEx

aC{1,2,3,...,d—i}
|ee|=Fk

— <dgz')bi_ (dzi)bm+"'+(—1)d_i(3:2)bd

]

Proposition 3.6. Suppose a t-(vsk, \) design (X, B) has VC dimension at
most t. Then the VC dimension of (X, B) is the largest d sueh that the num-

bers in (2) arepositive for all 0 <i < d.

Proof. This is immediate from the definition of VC dimension and Lemma 3.5.

]

Proposition 3.7. If the" VC dimension-of a nontrivial t-(v,k,\) design
(X, B) is d, then

d <min i+ [log, b; .
Proof. Let A be a shattered subset of X, and |A| = d. For any B C A
with |B| = 4, the number of subsets of A containing B are 2(¢~%. Since B

is contained in exactly b; blocks, we have 2(~% < b, which is equivalent to

d—1i <log,b;. ]
We shall give an application of Proposition 3.7.

6



Corollary 3.8. If (X,B) is a t-(v,k,\) design, then the VC dimension of
(X, B) is at most t +1ogy A. In particular, a t-(v, k,1) design has VC dimen-

sion at most t.
Proof. This is immediate from Proposition 3.7. O

Corollary 3.8 and Proposition 3.6 shed light on the determination of the

VC dimension of a t-(v, k, 1) design. We shall consider the cases t = 2 and

t = 3 in the remaining of the



4 2-(v,k,1) design

We will determine the VC-dimension of a nontrivial 2-(v, k, 1) design in this

section. From Lemma 3.4, we have
bo=viv—-1)/(k(k—=1)>b=(w-1)/(k—1)> by=1.

We need the following lemma.

Lemma 4.1. In a nontrivial 2-(vsk, X) design,

Mo =k) (v~ k=1)

b0—261+b2: k‘(k—l)

Proof. From (1),

Aw—1) 2A\v-1)

b0_2b1+b2:k(1€—1) g +A
A A0 —=1) =2 k(v = 1) + Me(k—1)
\ k(k 1)
AN —Fk)(v—k—-1)
N k(k—1)

]

Proposition 4.2. The VC dimension d of a nontrivial 2-(v,k,1) design
(X, B) satisfies
1, ifv=3and k =2;

d =
2, else.

Proof. Note that v > k since the design is nontrivial. Suppose v = k + 1.
Pick distinct blocks B, B’ € B. Note that k£ > 2 and |BN B’| < 1. Then

k+1l=v>|BUB|>|B|+|B|—|BNB|>2k 1.

8



This implies & = 2 and v = 3. Since a 2-(3,2, 1) design has three blocks, its
VC dimension is at most 1 by Lemma 2.4, and indeed is 1 by Lemma 2.5,

since it is a nontrivial 2-design. Suppose v > k + 1. Then

bo — 2by + by, i = 0;

— 2
Z(—l)%j( j ) = q bi—b, i=1




5 3-(v,k,1) design

We determine the VC-dimension of a nontrivial 3-(v, k, 1) design in this sec-

tion. From Lemma 3.4, we have

> by = 1.

v —1)(v—2) C(v=1)(k-2) v—2
bo— 1 5 >b1— =

To prove our main result, we need the following three lemmas.

Lemma 5.1. In a nontrivial 3-(v;k, 1) design,

(o) (wb— D)0 —k — 2)

Proof. From (1),

by — 3b1 + 3by — b3
v(v —1)(@=2) — 3k(vi= 1)(v=2) + 3k(k—1)(v = 2)=k(k - 1)(k —2)
k(k—1)(k —2)
(v—1)(v=2)(v— k) = 2k(v — 2)(v— k) + k(k = 1)(v— k)
k(k —1)(k —2)
(v—Fk)[(v—1)(v—=2)=2k(v —2) + k(k=1)]
k(k <1 (k=2)
(v—Fk)(v—k—1)(v—k—"2)
k(k—1)(k —2)

Lemma 5.2. In a nontrivial 3-(v, k, 1) design,

(v—Fk)(v—k—1)

by — 2by + b3 = = 1)k —2)

10



Proof. From (1),

w-Dw—-2) 2k-Dw—-2) (k—1)k—2)

N T —y) T G- D=2 T - 1(h—2)
(v =2)(v—k)—(k—1)(v—k)
(k—1)(k—2)
_ (=K -k-1)
(k—1)(k—2) °
U
Lemma 5.3. In a .;""_‘.,""n
Proof. From (
—9
bo— 0110 )
U

Now we are ready to give section.

Proposition 5.4. The VC dimension d of a nontrivial 3-(v,k,1) design
satisfies
L, if (v,k)=(4,3);
d=1q 2, if (v,k)=(5,3), or (6,4);

3, else.
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Proof. By corollary 3.8, d is at most 3. We will use Proposition 3.6 to check
the possibility for d = 3. Note that

bo—3b1—|—3b2—bg, ZZO,
3—1 . .

, _ by — 2by + by, i=1;
Z(—l)]bi+j(3j z) _ ) n 2 + 03

bQ—bg, Z:2,

b37 Z: 3

if v > k + 2 by Lemma 5.1-5.3:"Hence if v >"k+ 2 then d = 3.

Suppose v < k + 2. Note that

1:b3<bzzv_2<{ k J:N{LJ.

k—2 7 |k—2 k—2
Hence £ =3 and by = 2 or by = 3; or k =4 and b, = 2.

(i) Suppose k= 3 and by = 2. Thenv =2k—2.=4 = k+1,0y—2b;+by =0
by Lemma 5.3, and then d = 1.

(ii) Suppose k = 3 and by =:3. Then v =3k =4 =5 =k + 2, by — 3b; +
30 —1 =0 by Lemma 5.1, by — 20y + by > 0 by Lemma 5.3, and then
d=2.

(iii) Suppose k =4 and by = 2. Then v =2k —2 =6 =k + 2, by — 3b; +
3by — 1 =0 by Lemma 5.1, by — 2b; + by > 0 by Lemma 5.3, and then
d=2.

12
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