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Spectral Spread of Graphs
Student: Jeng-cheng Shih Advisor: Chih-wen Weng

Department of Applied Mathematics

National Chiao Tung University

Abstract

Given an nxn matrix M, the spread, (M );is essentially the diameter of its spectrum:

(M) = Hzlf}X|Pz' — pjl,

)

where the maximal is taken over all pairs of eigenvalues (or nonzero eigenvalues in
some cases) of M. We consider adjacent matrices, Laplacian and signless Laplacian
matrices which are commonly used in graph theory. After discussing relatedness on
the graphs and their corresponding spreads, we discover the boundary which affects
the spread, and use this result to find the graphs that may have the maximal or

minimal spread.
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Introduction

The spread of a graph is the difference between thelargest eigenvalue and the least
eigenvalue of its adjacency matrix. In order to let someone read these kinds of articles
more conveniently, the purpose of the thesis as to conform some interested papers to
get the target. 'We review the history in thebeginning. In [1], Petrovi¢ determined all
minimal graphswhose spreads do not exceed 4. In [2] and 3], some lower and upper
bounds for the spread of a graph were given. Particularly, they give the maximal and
minimal spreads among the graphs. After then, the Laplacian spread of the graph is
considered as the difference between the largest and the second smallest eigenvalues
of Laplacian matrix, as the smallest one always equals zero. In [11], the authors
showed that among all trees of fixed order; the star is the unique one with maximal
Laplacian spread and the path is the unique one with the minimal. And in [12], [16]
the unique unicyclic graph with maximal Laplacian spread is obtained from a star by
adding an edge between two pendant vertices and the cycle is the unique one with
the minimal. In [17], there exist exactly two bicyclic graphs with maximal Laplacian
spread among all bicyclic graphs of fixed order, which are obtained from a star by
adding two incident edges and by adding two non-incident edges between the pendent
vertices of the star, respectively. In [18], there are only five types of tricyclic graphs
with maximal Laplacian spread among all tricyclic graphs of fixed order. In [12], [16]

and [17], they do not show the detail for searching the characteristic polynomial, and



we give two different methods in such Proposition 5.1.2 and Lemma 6.1.1. After this
we give an conjecture of a connected graph with fixed order whose have the maximal
Laplacian spread. Finally, the signless Laplacian matrices has become more popular
recently. In [20], some upper and lower bounds for the signless Laplacian spreads have
considered, and then determine the unique unicyclic graph with maximal signless
Laplacian spread among the class of connected unicyclic graphs of fixed order. And
they give the remarks for some open problems, and the conjecture for the maximal

signless Laplacian spread.




2
Preliminaries

We shall recall three theorems in the matrix theory with their proof in this
chapter, the Perron-Frobenius-theorems, the eigenvalue interlacing theorem and the

Gersgorin’s Theorem. First-we give some notations.

Definition 2.0.1. (i) For two matrices M, N of the same sizes, we write M < N
and M #£ N for all i, 7.

(i) |M] is the matrix with‘entries |M;;|.

(iii) An n x n matrix/ M is associated with-a digraph I'); with vertex set VI' =

{1,2,...,n} and arcs (i, j) whenever M;; # 0.

(iv) A digraph I' is strong connected if for any two vertices x,y there exists a walk

in ' from z to y.
(v) A nonnegative matrix M is irreducible if "y is strong connected.

(vi) For an n x n matrix M, the number that takes the maximal |A| among all

eigenvalues A € C is called the spectral radius of M.



2.1 Perron-Frobenius theorems

We introduce Perron-Frobenius theorems and their proof in this section. First we

give an observation.

Remark 2.1.1. (i) If M is an n X n nonnegative irreducible matrix then (I +

M)t > 0.
(i) zsy= [T+ M)" o< (I+M)"yfor z,y € R

Definition 2.1.2. Let B := {z € R"|z > 0,z # 0}. For « € B, define

Alz) = min{(mc)i 11 €0 <n,z; #0},

and note that
X(z) = sup{n € Rlnz < Ma}:

The following lemma is-crucial in the proof of Perron-Frobenius theorem.
Lemma 2.1.3:A((1 + M) 'z) > Xa) for x € B with \N(w)x < Mz.
Proof. Since
MNz)[(I + M2 ta) = (I M) Na)o< (I M) Mx = M[(I+ M)" '],
we have A\((1 + M)"z) > MNax). O
The following theorem is the main part of Perron-Frobenius theorems.

Theorem 2.1.4. Let M be an n x n nonnegative irreducible matriz and define Ay :=
sup,ep A(x) € RUoco. Then Ay = AN(xg) for some xg > 0. Moreover A\, is an eigenvalue

and xo s its associated eigenvector.

Proof. Let C' = {z € Blry + 22 + ... + &, = 1}, and note that sup,.z A (z) =
sup,cc A(z). Despite C' is compact, A is not necessary to be continuous on C. Set
D = (I + M)"*C and note that \ is continuous on D. Now

sup A\(z) = sup A(x) > sup A(x) = A(zg) > sup A(x)
zeC z€B xeD zeC



for some zo € D as D C B and D is compact. Hence \(xp) > 0 is an eigenvalue of

M with eigenvector xy > 0. [

The above xy is indeed unique by the following theorem. We refer z, as the

Perron-Frobenius vector of M.

Theorem 2.1.5. As the notation in Theorem 2.1.4, the eigenvalue Ay = sup,cp A(x)
is the spectral radius of M. Moveover the geometric multiplicity of Ay is 1, i.e. the

eigenspace of Ay has dimension 1.

Proof. Let A € C be another eigenvalue with eigenvector x € C". That is Mx = Ax.
Then |\||z| = |[\x| = |[Mz| < M|z|. Hence [A| < A(|z|). This not only implies
|A| < A1 but also implies that if A = \; then |z| isralso an eigenvector of A;. Since
Mz| = Mlz| # 0pif Jz|; = 0 then > 7 M|zl =0, equivalently |z|, = 0 for
M, > 0. By strong conneetivity of Iy ,.|z|; # 0 for all z.«If \; has two independent
eigenvectors, it.is always possible to-have a linear combination of them to have some

zero position. Hence r = cxq for some ¢ € C. O

The following Theorem shows that the largest eigenvalue \; of M is characterized

by its eigenvector.

Theorem 2.1.6."Let. M be an n x n nonnegative irreducible matriz with A\ =
sup,ep AN(x). Suppose that Xwe C is an eigenvalue of M whose associated eigen-

vector x € B. Then A = A"

Proof. Applying the above proof to left eigenvector, we have yl M = Ayl for maximal
eigenvalue \; with eigenvector yy > 0. Since \iylz = yl Mz = yI'Az and yl'z > 0,

we have A = Aj. O
The following two theorems are useful in the sequel.
Theorem 2.1.7. Let M be an n X n irreducible nonnegative matrix, then

1. If0# x>0 and Mz > px, for somep > 0, then p < A\ (M), and equality holds

if and only if x > 0 is an eigenvector of \;.



2. If0 #£ x>0 and Mx < pz, for some p > 0, then p > A\ (M), and equality holds

if and only if x > 0 is an eigenvector of \;.

Proof. As before, let A\; be the maximal eigenvalue with left eigenvector yo > 0.
Suppose that Mz < pz for some p > 0 and 0 # x > 0. Then iyl = = yl Mz < yl'px.
Since yJx > 0, we have p < \;. Note that p = \; iff Mz = px. The other statement

is similar. O]

Theorem 2.1.8. Let M be an n x n irreducible nonnegative matriz with spectral
radius \1. Let S be a complex matriz with |S| < M and X be an eigenvalues of S.
Then |A| < A1, and equality holds iff |S|= M and there are a diagonal matriz E with
diagonal entries of abselute value 1 and-a constant ¢ of absolute value 1, such that
S =cEME™!.

Proof. Supposes.# 0 and-Ss= \s.-Then
M|s| = |S]ls| = [Ss| = [As| = [Al]s]. (2.1.1)

By theorem 2.1.7, A\; > |\|, and equality holds iff |s| > 0 is an eigenvector of M. In this
case, both of the'equalities.in (2.1.1) hold.. The first equality implies M;;s; = |S;;s;].
The second equality implies for each i, S;;s; is.in thesame direction e; of the complex
plane, where |e;| =1, fe. Sis; = e€;|S;;s;] forallyy. By setting E; = e; and

¢ = |sjlej/s;, we have Si; = e.Mizeslsslf (si€;) = cBi M B =

2.2 The eigenvalue interlacing theorem

We consider the interlacing property between a matrix and its submatrix or quo-
tient matrix. For m < n, the sequence 17y > 12 > ...n, is said to interlace the

sequence A\ > Ao > ... A\, if Ny > > Ay, for 1 <i <m.

Lemma 2.2.1. (Rayleigh’s principle) Let M be a real symmetric matriz of order
n with eigenvalues \y > Ao > ... > X, and respectively orthonormal eigenvectors

Ul, Ug, . .., Uy,. Then



ul Mu
i
©ouTy

> N\, for any u € (uy,us, ..., u;), and equality holds if and only if u is a

\;-etgenvector.

9. wMu < N\ for any u € (uy, Uz, ..., u;), and equality holds if and only if u

ulv —
is a \iy1-eigenvector.
Proof. Let u = ciuy + ... c;u; for some ¢; is real. Then

ul'Mu AN+ + 3N
_ > A
uTu A4+ T

And the second is similarly true. ]

Lemma 2.2.2. Let S be_réal n.x-m matriz such that STS = I, where m < n. And
M be a real symmetric matrix of order n with eigenvalues Ay > o > ... > )\,
and respectively orthomormal eigenvectors uy, s, . .« uy,. Define N = STMS and let
N has eigenvalues 11 > o->-... = ny and respectively orthonormal eigenvectors

V1, V9, . . ., Uy Then the eigenvalues of N interlace those of M.
Proof. For all'l <7 < m, chose a nonzero vector
Si € <U1, B0 ,Ui> ( <STU1, STUQ, N J STUi_1>J—.

Note that (Ss;)Tus =0, for 1 < j <i—1, hence' Ssi€ (uy,ug,...,u;—1)* and by

Rayleigh’s principle,

(Ss;)TMI(Ss;)  sFNs;
A > S > ;.
T (Ss)T(Ssy) sts; — 1

And similarly by applying the above inequality to —M and —N, we get A\, i <

;- [
Given an n x n matrix M and an ordered partition (X, ..., X,,) of the ordered
set {1,2,...,n}, M can be presented as a matrix in block form:
My, - Mn
M = : :

Mm,l Mmm

)



where M;; has X; as the set of its row numbers and X; as the set of its column
numbers. We always use Qs hereafter to denote the quotient matriz of the partition
matrix M, which is defined to be the m x m matrix whose entries are the average
row sums of the blocks M, ;; that is, the (7, j)-entry of the matrix @)/ is obtained by
dividing the sum of all row sums of M, ; by |X;| = n;, where 1 <4, < m. Let

ng - 0

and
enl/ /nl . 0
s=| G
O b oo enm/ /nm
is an n x m matrix, where e, ~is the all one vector with-m; entries, for 1 <17 < m.

Then it is easy to check that Qy = DSTMSD ™!

Lemma 2.2.3. Suppose that Qi is a quotient matriz of a symmetric matriz M.

Then the eigenvalues of Qupinterlace the eigenvalues of M.

Proof. Note that STS"= T: By Lemma 2.2.2, the éigenvalues of Q,; interlace the

eigenvalues of M. O

2.3 Gersgorin’s Theorem

The following theorem is called Gersgorin’s Theorem.

Theorem 2.3.1. Any eigenvalue \ of a matrixz A is located in one of the closed discs

of the complex plane centered at a; and having the radius:

j=n

Pi = Z |aij]-

=L,



In other words, for all X € o(A), for some i such that

j=n

A —aal < D ayl,

j=1,j#

where o(A) is the spectra of A.

Proof. Let x be an eigenvector associated with an eigenvalue A and let m be the index
of the component of largest modulus in x. Scale z so that |¢,| =1 and || < 1 for

© # m. Since x is an eigenvector, then

which gives

This complete



3
The adjacency spread of a graph

For an n x n matrix M, the spread, (M), of M is defined as the diameter of
its spectrum: (M) = max;|A;-— A;|, where the maximal is taken over all pairs of
eigenvalues of M. Suppose-M-is Hermitian. In that case, the eigenvalues \; = \;(M)
of M are real and may always be assumed to be in-noen-increasing order: A; > Ay >
... > Ap. Themgpp(M) = Ay = A, the distance between the extreme eigenvalues Ay, A,,.

Also, for unit vectors x,y
M= Mz and X, <y My, (3.0.1)

with equality if and enly.if'a is a unit eigenvector associated with A; and y a unit

eigenvector associated with/A,, respectively. Thus,
o(M) = max(x* Mz — y*My) = max 5 m; i (Tixj; — G yj), (3.0.2)

T,y z,y ..

1,]

where the maximal is taken over all pairs of unit vectors. If M # O, the maximal is
attained by orthonormal eigenvectors of M corresponding to the eigenvalues Aq, A,
respectively.

The spread, ¢(G), of a graph G will be that of its adjacency matrix A = A(G),
where a; ; = 1 if i, j are adjacent in G and a; ; = 0 otherwise. In (3.0.1), taking z to

be a unit vector with equal entries gives the lower bound A\; > 2e/n with equality if

10
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and only if G is regular. And we have
0=tr(A) = Z Ai and 2e = Zai,jaj,i =tr(A?) = Z A2 (3.0.3)
i irj i
n—1
———
Example 3.0.2. (i) The complete graph K, of order n has spectrum: n—1,—1, ..., —1.

Hence
pa(Kn) =(n—1) = (1) =n.
(ii) The complete bipartite graph K, ;, with a vertices in one part and b in the other

a+b—2

——
has spectrum: vab,0,. .w,0, =v/ab. Hence

©a(K,p) = Vab — (=vab).= 2V ab.

(iii) The cycle @}, and the-path P,-has-spectrums:

v

271 | .
2co0s —,1 << n, 2cos 1,1§z§n
n

respectively. Hence both of them have spread does not exceed 4. The graphs G
with p4(G) < 4 has all'been. classified. by..Petrovié [1].

3.1 The upper bound

When G is a graph of order m,let ng be the number of non-isolated vertices of G
and let Gy denote the subgraph of order ny obtained by deleting the isolated vertices
of G.

Theorem 3.1.1. /2]

For a graph G with n vertices and e edges,

0a(G) < A\ + V2 — N2 < 2V/e. (3.1.1)

Equality holds throughout if and only if equality holds in the first inequality ; equiva-
lently, if and only if e =0 or Gy = K, for some a,b with e = ab and a + b < n.
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Proof. From (3.0.3), A+ M\.2 < 2e, 50 pA(G) = A — A < M\ + \/m. Equality
holds if and only if Ay = A3 = ... = A\,_; = 0, that is, if and only if A = O or
rank(A)= 2; equivalently, if and only if the non-isolated vertices of G have at most
two distinct neighbor sets. Thus, equality holds if and only if e = 0 or Gy = K, for
some a, b where, necessarily, a+b = ng < n and e = ab. If the latter case holds, then,
by (3.0.3), Ay = =\, = Vab and so equality holds in the second inequality in (3.1.1).
The second inequality in (3.1.1) holds because A\ + V/2e — A2 is a strictly increasing
function of A; when \; < +/e; it is strictly decreasing when \; > +/e. O

Remark 3.1.2. When e > [n?/4], the bound(s) in Theorem 3.1.1 cannot be attained
since a bipartite graph with n vertices has at most |n?/4] edges. However, if ¢ >
[n?/4], then \; > 2e/n. > y/€ and so the bound @4(G) < 2y/e in Theorem 3.1.1 can

be improved to

2e 2e
) - 2e—(—)2 1.2
SOA(G) - + € (n) 9 (3 )

when e > |n?/4]. Unfortunately, when e > |n?/4]; this bound cannot be attained
either; for if itecould, then A\« = 2e/n, equality would-hold in 3.1.1 and so, by
Theorem 3.1.1, G" would be bipartite.

A complete p-partite graph is a simple graph, whose vertex set can be partitioned
into p subsets (the vertex parts) so that wvertices are adjacent, if and only if they
belong to different parts. “Vertex parts are usually allowed to be empty. Here a

complete p-partite graph is assumed to have precisely p non-empty parts.

Theorem 3.1.3. [2] Let G be a graph with n vertices, e edges, and precisely k negative
eigenvalues, 1 < k <n. Then

kE+1 k—1 k2-1
va(G) < ’ )\1+\/26 T TR A2 (3.1.3)

Equality holds if and only of G has at most three distinct non-zero eigenvalues:
A, B, An, where Ay > 0 > B > X\, and [ has multiplicity k — 1 if B > X\, and
multiplicity k if B = \,. Equivalently, equality holds if and only if Gy is a complete
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(k + 1)-partite graph and, when k+ 1 > 4, the k smallest parts of Gy all have equal
size (necessarily, —3 = (A + \,)/(k —1).)

Proof. Since the deletion of isolated vertices does not affect any of the parameters in
(3.1.3), we may assume that G = Gy. When k£ = 1, (3.1.3) becomes the well-known
inequality Ay > —A\,. If £ = 1, then by the trace equation (3.0.3), A\; = —X,, if and
only if rank(G) = 2, that is, if and only if G has precisely two different neighbor sets.
Thus, when k& = 1, equality holds in (3.1.3) if and only if G is complete bipartite.

Suppose now that G = G, has precisely k negative eigenvalues, k& > 2. Let
A1, 1, ..., 0p_1 be the positive eigenvalues of G and let A\, 81, ..., Bx—1 be the nega-

tive eigenvalues. By (3.0.3),

D2 (A XN a)? (M )?
ey g s b Qe M3500” | Ot )
2~ M - &Y B> S k- = k-1

(3.1.4)

The second inequality follows-from the Cauchy<Schwarz inequality and so equality
holds there if and only if the g; are all equal. Equality holds in the last inequality if
and only if G has precisely one positive eigenvalue. By (3.1.4),

kX2 S 2 X3 ee (- 1) <0, (3.1.5)

The quadratic in X, has.one positive and one negative root, and it follows that

1 26k —1) o k2 — 1
—AnSEA1+\/€(k . el (3.1.6)

Since w4(G) = A1 — Ay, (3.1.3) follows and equality holds if and only if it holds
throughout (3.1.4) to (3.1.6); that is, if and only if G has k + 1 non-zero eigenvalues:
AL B Br—1, A, with 8y = ... = Bry1 = 8, where § = _()\1 + )\n)/(k - 1)7 since

the eigenvalues sum to zero.

Suppose now that G = G is a graph with k negative eigenvalues and that equality
holds in (3.1.3). Then the eigenvalues satisfy the conditions required. In particular,
G has only one positive eigenvalue, and so must be complete multipartite [3, p.

163]. Tt’s straightforward to check that the number of distinct rows of the adjacency
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matrix of a complete multipartite graph is equal to the number of parts, and that the
distinct rows are linearly independent. Thus, G must be complete multipartite with
rank(G) = k + 1 parts. Suppose that G has m; parts of size n;, i = 1,...,t, where
ny <mng <...<mng. Then > m; = k+ 1, the total number of parts, and > n;m; = n,
the total number of vertices. By [3, p. 74] we have the characteristic polynomial of

(the adjacency matrix of) G is

)\—i—ni

t t
AR = 3 T TTO )™ (3.1.7)
i=1 i=1
It follows that G has a negative.eigenyalue in each of the ¢ — 1 open intervals
(=141, —ny), @ = 1,...,t— L and that —n;is @ negative eigenvalue of multiplicity
m; — 1 whenever mg > 1.-The only remaining eigenvalue, A\, is the unique positive
zero of the middle factor of the characteristic polynomial (3.1.7). Thus, if s is the

number of part, sizes of G that-occur mere than once, then s + ¢ < 3.

If £k = 2, then G' must be complete tripartite. Alsoywevery such graph G has
rank(G) = 3 non-zero eigenvalues, Xy > > \,, when f = —(\; + \,,). Thus, when
k = 2, equality holds in (3.1.3) for<all complete tripartite graphs.

If £ > 3, then G must be complete (k -+ 1)-partite with four or more parts.
Since s +t > 3, G.cannot have two different part sizes each occurring more than
once. Thus either all the part-sizes of G must be equal or some part size occurs
exactly k£ times. In the latter case, the part sizes are n; < n, and we must have
—ng < A\, < —n; = [, so it is the smaller part size that occurs k£ times. Thus if
equality holds in (3.1.3) and k& > 3, then the k smallest parts of G must all have equal
size ng = —f = (A + \)/(k—1).

Conversely, if G is a complete (k + 1)-partite graph and if the k& smallest parts of
G all have equal size when k£ + 1 > 4, then by (3.1.7), G has at most three distinct

non-zero eigenvalues: i, 5, \,,, where A\; > 0 > g > )\, and 8 has multiplicity £ — 1
if 5 > A\, and multiplicity k if 8 = \,. [
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3.2 The maximal spread p4(n)

We shall show that ¢4(H) is a lower bound of p4(G) for any induced subgraph
H of G.

Corollary 3.2.1. If H is a subgraph of G, then \i(H) < A\ (G) with strict inequality
if G is connected and H is a proper subgraph of G.

Proof. Apply 0 < A(H) < A(G) Theorem 2.1.8. O

If we take S = [I O]T in Lemma 2.2.2, then N = A(H) is just a principle submatrix
of M = A(G). Then we have the following corollary.

Corollary 3.2.2. If G is-a graph with an induced subgraph H, then the eigenvalues

of H interlace the eigenvalues of G.

Lemma 3.2.3. If H is an—induced subgraph of G, then \,(G) < MN(H), where
t = |H|. Thuspa(G) = palH) with strict-dnequality if Gis connected and H is a
proper induced-subgraph of G.

Proof. 1t U is a proper subset of the vertex set of G then the adjacency matrix of
H = G\U is a principal submatrix of the'adjacency matrix of G. Thus, by eigenvalues
interlacing, A\,(G) < M(G\U). Also, by Corollary 3.2.1, A\;(G) > A\ (G\U) with strict
inequality if G is connected and U is proper and non-empty. Thus, p4(G) > va(H)
with strict inequality if H is a proper induced subgraph of G and G is connected. [

The join of two vertex disjoint graphs G, G is the graph G, G2 obtained from
their union by including all edges between the vertices in G; and the vertices in Gbs.
There are graphs G with ¢4(G) > n. For integer 1 < k < n — 1, let G(n,k) =
K,V K, _j, the join of Kj, the complete graph of order k, with the n — k independent
vertices of K, _, the complement of K,_,. The characteristic polynomial of G(n, k)

is AT O+ DFLN2 — (K — )X — k(n — k)] [3, p. 57]. Tt follows that

pa(Gn, k) = ((k — 1)* + 4k(n — k)=
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It is straightforward to check that @ 4(G(n,k)) > n when (n+1)/3 <k <n—1 and
that p4(G(n,k)) is maximal when k = |2n/3]|. If G = K,, and H = G(n, |2n/3]),
then 4 (H) > n = p4(G) when n > 4, and so the monotonicity property may fail for
graph spread. The inequality p4(H) < ¢4(G) does hold for some classes of graph H
of G.

Let w4(n) be the maximal possible spread for all graphs on n vertices. The
following conjecture has been checked by [2] for the graph of order n < 9 and is
supported by some observation. If H is a graph on n — 1 vertices and G is any
connected graph on n vertices having H as an induced subgraph, then ¢ 4(G) > pa(H)

by Lemma 3.2.3 Therefore, v 4(n) is strictly.increasing.

Conjecture 3.2.4. The maximal spread ¢4(n) of the graphs of order n is attained
only by G(n, |2n/3)); that is pa(n) =1/ (4/3)(n2—n + 1)] and so

V3

An — 2°

(%xzn = i) < %)m S 1)t

The complete multipartite graphs G giving equality in Theorem 3.1.3 are natu-
ral candidatestfor graphs. with-maximal spread p4(n). 'As supporting evidence for
Conjecture 3.2.45 we now verify that if-G is one of these graphs on n vertices and
G has maximal spread; then G' = G(n, [2n/3]). Af'k'= 1, then G is complete bi-
partite and so, by Theorem.3.1.1, p4(G) =2y/e < n < pa(n) when n > 3, and
G = Ky = G(n,[2n/3]) when n = 2df k= 2, then G is (complete) tripartite and by
the following Proposition 3.2.7 implies that ¢4(G) < @a(n) when n > 35. Also, [2]
shows that if G is complete tripartite, then p4(G) < @4(n) when 5 < n < 34 and,
when n = 3,4, it is easy to check that G = G(n, |2n/3]). If k = 3, the extremal graphs
G in Theorem 3.1.3 are the complete (k4 1)-partite graphs with & parts of size ny and
a single part of size ny > ny. Denote such a graph by G(n, k,n;). For this case, we
first show that ny = 1. Since p4(n) is strictly increasing, only graphs without isolated
vertices needed to be examined. Thus, n = kn; +ny. It follows from the discussion in
the proof of Theorem 3.1.3 that the extreme eigenvalues A, A, of G(n, k,ny) are the

zeros of the middle factor of the characteristic polynomial (3.1.7) or, equivalently,
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they are the roots of the quadratic equation A\* — ny(k — 1)\ — knyny = 0. Thus,
G(n, k,ny) has spread

A — A = (P2(k — 1) + dknyng) V2. (3.2.1)

Since kny =n —ny and ny(k — 1) < n —n; — 1 with equality if and only if ny = 1, it
follows that, for k > 3, the spread is largest when n; = 1, as required. When n; =1,
G(n,k,1) = G(n, k). Taking n; = 1 in (3.2.1)gives pa(G(n,k)) = ((k — 1)* + 4k(n —
k))'/2. This quadratic is maximal when k is an integer closest to (2n — 1)/3, that is,

when k = |2n/3], as claimed at the outset. As already mentioned in Conjecture 3.2.4

2 2n/—1
0a(n) > 0alGln, L?nj)) S "\/g ~.1.1547n — 0.5774.

On the other handj because \; > 2e/n; Theorem 3.1.1-implies that

G <A 1 /2e= X < Ap+ (/uXp s A< 1+f

For all graphs of order n. Thus, @4(n) < 1:2072n. This compares favorably with the
conjectured value of p4(n) (roughly, 1.1547n — 0.5774) in Conjecture 3.2.4. Now, we
conclude with some necessary conditions that-a graph /G on n vertices must satisfy if

it has maximal spread ¢ 4(n):

Lemma 3.2.5. [2] Let G bewa_graph with e edges‘and let « > 1. If p4(G) > an, then
e must satisfy the quadratic inequality 8¢* — (4o + 2)n%e + a’*n? < 0.

Proof. Since p4(G) > n, Theorem 3.1.1 implies that e > n?/4. Thus, an — 2¢e/n <
(2 — (2¢/n)?)Y/? by (3.1.2). Since an > n > 2¢/n, taking squares preserves the

inequality. The quadratic inequality then follows by rearranging terms. [

Remark 3.2.6. Lemma 3.2.5 asserts that if ¢4(G) > an > n, then the number
e of edges in G must lie between the roots of the quadratic 8z% — (4a + 2)n’x +
a?n?. For example, if ¢ 4(G) > 2n/+/3 (an approximation to the conjectured value of
©0a(n)), then 0.346n* < e < 0.481n%. By comparison G(n,|2n/3]), the graph that is
conjectured to attain ¢ 4(n), has roughly 0.444n* edges.
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Proposition 3.2.7. [2] If p4(G) = @a(n) and n > 35, then G is not tripartite.

Proof. If pA(G) = pa(n), then ps(G) > pa(G(n,[2n/3])) > an with o = (2n —
1)/nv/3 > 1 when n > 4. The quadratic inequality in Lemma 3.2.5 then implies that
e >n?(2a+1— (4a+1—4a?)Y?)/8. If G is tripartite, then e < n?/3 [4, p. 6]. Thus,
to show that G is not tripartite, it is sufficient to show that n*(2a + 1 — (4 + 1 —
402)'/2) /8 > n?/3. This simplifies to 6 —5 < (4a+1—4a?)/2. Since 6a—5 > 0, we
may square and simplify to get 9a® — 12ac + 2 > 0. This will hold when « is greater
than the largest root of the quadratic, that is, when (2n — 1)/nv/3 > (2 4+ v/2)/3, or
n > 34.72. [

Proposition 3.2.8. [2] If p4(G) =@al(n), then G must be connected.

Proof. Suppose that G is not connected.. Then G'= GyU G4 for some vertex disjoint
subgraphs G1, Ga. | Thus, X,(G) = min{\(G1), \(Ga)}l. Let G = Gy V Go, the
graph obtained from G by inserting all-edges between the vertices in GG; and the
vertices in G9. " Then G is a proper subgraph of the connected graph G and so
M(G) < /\1(@). Since Gy, Gy are induced subgraphs of G, by Lemma 3.2.3, M(G) <
min{\,(G1), \(G2)} = Xu(G). Thus

~

a(G) MG = M(E) > MGV =NUC)Z9i(G) = pa(n),
a contradiction. O

If A is the adjacency matrix of a'graph G of order n, then by (3.0.2),
i,

where the maximal is taken over all pairs z,y of unit vectors in R” and is attained
only for orthonormal eigenvectors of A corresponding to the eigenvalues Ay, A\, re-
spectively. The entries of x may always be assumed to be non-negative (and positive
if G is connected). We call such an ordered pair of orthonormal eigenvectors x,y of
G with x > 0 an extremalpair of eigenvectors of G. The following three lemmas are

immediate results of (3.2.2) and Proposition 3.2.8.
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Lemma 3.2.9. [2] Suppose 0A(G) = pa(n) and x,y is an extremal pair of eigenvec-
tors of G. Then distinct vertices i,j of G must be adjacent whenever x;x; — y;y; > 0

and non-adjacent whenever x;x; — y;y; < 0.

For vectors =,y € R", let G(x,y) be the graph, where distinct vertices i and j are
adjacent, if and only if z;x; — y;y; > 0.

Lemma 3.2.10. /2] pa(n) = @a(G(z,y)) for some graph G(z,y) with x,y € R"

orthonormal and x positive.
For real numbers a, let a* equal a if a > 0 and 0 otherwise.

Lemma 3.2.11. [2] pA(n)=max,, >, (@23 =yy;)", where the mazimal is taken

over all pairs x,y of erthonormal vectors in R™ with = _positive.

3.3 The lower bound

Lemmas 3.2.9 and 3.2.10 imply that in determining ¢4 (n), only graphs of the
form G = G V G5 need to beconsidered, where G is the subgraph of G = G(z,y)
induced by the vertices ¢ with y; > 0 and (z5'is the subgraph induced by the remaining
vertices. For such graphs, the following lower bound.on ¢ 4(G), 3 < k < n—2, follows

from generalized interlacing 3, p. 19].

Proposition 3.3.1. Let G = G V. Gy, where each G; is a graph with n; vertices, e;

edges and average degree d; = 2e;/n;. Then @A(G) > \/(dl — dy)? + 4nyns.

Remark 3.3.2. For n = n; + ny fixed, it is straightforward to check that the lower
bound in Proposition 3.3.1 is maximal when G = G(n, [2n/3]). This leads further
support to Conjecture 3.2.4.

Now we consider the smallest possible spread for connected graphs. The next
proposition shows that induced subgraphs are not the only subgraphs H of a graph
G for which the monotonicity property, p4(G) > ¢a(H), holds.
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Proposition 3.3.3. [2] If H is a bipartite subgraph of a graph G, then p(G) >
pa(H).

Proof. Since adding isolated vertices to H will not change @(H), we may assume
that G and H each has n vertices. Also, by relabeling the vertices if necessary we
may assume that the adjacency matrices of G and of H and a non-negative \;(H)

eigenvector of H are, respectively, of the form

Al B O C u
A= M= Lz = ,
BT A2 OT O (Y

with B > C. By (3.0.1).¢u(G) > 2"Az = 4" Ay = 4u"Bv. Since H is bipartite,
M(H) ==X (H), 50 @alH) =2\ (H) = 20" Mz =4u"Cv < 4u"Bv < ps(G). O

Remark 3.3.4. Equality need not be strict in Proposition 3.3.3. For example, if G

and H are regular, H is bipartite and the complement of 'H is not connected, then
0a(G) = pa(H)=n.

3.4 The minimal spread

We shall show«that.the path P, of order n has‘the minimal spread among the
connected graph of orderwn.Let pg(\) be the characteristic polynomial denoted by
det(A\] — A(Q)), and if e € E(G), then G — e, G — [¢] denote the graphs arising from
G by removing the edge e and the endpoints of e, respectively.

Lemma 3.4.1. [5] If G is a tree (moreover, forest) and e € E(G), then

pa(A) = pa—e(N) — pa—ig(A).

Proof. As G is a tree we can label its vertices in such a way that e joins the points
k and k + 1 and there is no other edges between a point ¢ (1 < ¢ < k) and a point j
(k+1 < j <mn). Now the Laplacian expansion of the determinant det(\ — A(G))
by its first & columns gives the equality of this lemma. O
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Now introduce the following more complicated but better applicable notation: let
G’ < G if and only if pe/(N\) > pa(A) for every A > A\ (G). Obviously, G’ < G implies
M(G) < M (G).

Lemma 3.4.2. [5] If G’ is a subgraph of a tree G, then G' < G.

Proof. We may assume G’ = G —e. Let A > A\ (G). By Corollary 3.2.1, A >
A (G — [e]), thus pg—[g(A) > 0, hence by Lemma 3.4.1,

pG()\) = pre()‘) - pG*[e}()O < pre<)‘)'
[

Lemma 3.4.3. [5] Let G, G" be trees (forests) of nipoints. e € E(G), e’ € E(G'), and
assume that G' e’ <G —e-G— le] < G' —[¢/]. Then G' < G.

Proof. Let A > \(G). Then, by Corollary 3.2.1, A > A\ (G — ¢) and thus by the
assumption, pae(N) < par—e(N). Again, by Corollary 3.2.1, A > \(G —¢e) >
M (G =€) > X(G — [€]), hence pa_ig(A) < per—je(A). By Lemma 3.4.1,

Pa(A) FPcee(N) = pé—g(AN) £ par=e A) — perLian(N) = par (V).

Theorem 3.4.4. [5] If G is a tree with n vertices then P, < G.

Proof. Consider a tree G such that there is no other tree G’ such that G’ < G; we
have to prove G = P,. Assume indirectly that there exist vertices of valency > 3
in G. Let x be a point of valency > 3 such that a certain component of G — x
does not contain further points having valency > 3 in G. This component is a path
(ay,...,ax), a; being joined to z. Let e = (x,b) another edge incident with = and
put ¢ = (ag,b), G' = G —eU¢. It is easy to see that G has more endpoints than G’,
hence G 2 G'. Furthermore, G —e = G’ — €’ and G — [e] is isomorphic to a subgraph
of G’ —[¢/]. Hence by Lemmas 3.4.2 and 3.4.3 we obtain G’ < G, a contradiction. []
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Corollary 3.4.5. If G is a connected graph of order n, then pa(G) > pa(P,).
Equality holds if and only if G = P,.

Proof. Let T be a spanning tree of G. Since T is bipartite, p4(G) > @a(T). Thus,
to prove the result, it is sufficient to prove that if 7" is a tree other than a path, then
0a(T) > @a(P,). Since T and P, are bipartite, by Theorem 3.4.4, p4(T) = 2\ (T') >
2M(Fn) = pa(Fy). O

In the latter chapters, we consider the more well-known matrix, Laplacian matrix

and signless Laplacian matrix. And some property is still useful to them.
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The bounds of the Laplacian

eigenvalues of ‘a graph

Let A(G) be.the adjacency-matrix of G and let D(G) be the diagonal matrix of
vertex degrees. The Laplacian matrix of Gis L(G)=D(G) — A(G). Note that L(G)
is real symmetric and positive semi-definite. From this fact and Gersgorin’s theorem,
it follows that its eigenvalues are nonnegative real numbers: Moreover since its rows

sum to zero, zerois the smallest eigenvalue of L(G). Now, denote the eigenvalues of

L(G) by pi1 > po 20> iy = 0.

4.1 Zero eigenvalues of Laplacian matrices

Lemma 4.1.1. For any n x m matriz N, the two matriz N* and NN have the

same nullspace. i.e. {x € R"|NTz =0} = {x € R"|NNTz = 0}.

Proof. (C) It’s clearly true.
(D) Suppose NNTz = 0. Then ||[NTz|]> = (NT2)T(NTz) = tNTNTz = 0. O

Proposition 4.1.2. Let G be a graph with ¢ components. Then 0 is a Laplacian

eigenvalue of G with multiplicity c.

23
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Proof. 1t suffices to prove the nullspace of N7 has dimension ¢. And N71 = 0.
Assume ¢ = 1 first. (G is connected) To prove the vectors in the nullspace of NT
has the form s1, for some s € R. Let 2 € null(NT) and suppose z; # x;, for some
i,7. Choose such pair 4,7 with distance 9(i,7) in G is smallest. Note that i, j have
an edge ij = e. Hence (NTx)e = +(x; — x;) # 0, which is a contradiction. Then
dim(null(NT)) = 1. In general, NT has the block form N7 = diag(N{, NI, ... NTI),
where N; is the incidence matrix of the i-th component of G. Each NI has the
nullspace span by 1, which can be extended to a vector in null(NT) by filling zeros.
Hence the nullspace of N7 is the linear combination of the ¢ independent (0, 1)-vectors

that form a partition of 1. O

4.2 Eigenvalues alternating property

In Lemmas2.2.1, 2.2.2-and-Corollary 3.2.2;, we follow the same result for mono-
tonicity property from adjacent spread. That is, if G' is a graph, then the Laplacian
eigenvalues of an induced subgraph of G.interlace the Laplacian eigenvalues of G. And
we have not only true fordinduced-subgraph of G. The following is called eigenvalues

alternating property.

Lemma 4.2.1. For e € E(G), the Laplacian eigenvalues of G' = G — e interlace
those of G- i.c., jun(G) SANGTZ (@I = ma(G) > ... > 1a(G) = i (G) = 0.

Proof. Let N be the incidence matrix of an orientation G° and L(G) = NN7. Let
N’ be the incidence matrix of an orientation (G — )7 is obtained from N by deleting
a column. Hence NN’ is a principal sub-matrix of NTN. By Corollary 3.2.2, the
i-th largest eigenvalues of NTN is not less than that of NTN’. Since NNT and
NTN have same nonnegative eigenvalues, p,_i(G) < pini1-i(G") < pins1-:(G), we
have 11;(G) = 1i(G") = pi-1(G). O

Remark 4.2.2. Use the same method, it’s also true for the signless Laplacian eigen-

values.
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Corollary 4.2.3. Let G be a connected graph, and let H be a subgraph of G. Then,
wi(H) < i (G), and equality holds if and only if H = G.

Proof. By the Corollary 3.2.2 and Lemma 4.2.1, the result follows. O]

4.3 The bounds of ;(G) and pu,1(G)

Define the degree of v is d(v) and m(v) = 3_ () d(w)/d(v), where m(v) is the
average of the degrees of the vertices adjacent to v. Denote A(G) be the maximal
degree of G and N; is the neighbor of the vertex v;. In the next two sections, we will

show the following equations 1 ~ 6 which will be used in Chapters 5 ~ 7 Chapters.
L m(G) <n,
2. i (G) < max{d(v;) £d(z;) :v;v; € E(G)},
3. (G) <max{m(v;) +dvi): vi € V{G)],
4. 111(G) <max{d(v;) + d(vj) —|N;AN;| : 1 <i'< j <n,vv;, € E(G)},
5. i(G) > A(G)+ 1,
6. 0 < pp_1(G)= 1.

And we also called (@) and =y (G). is-ealled a spectral radius and algebraic con-

nectivity of GG, respectively.
Theorem 4.3.1. Let G be a connected graph of order n > 2. Then
mu(G) < n, (4.3.1)

with equality if and only if the complement graph of G is disconnected.

Proof. Since a graph G is connected if and only if 1,1 # 0. And L(G) + L(G) =
nl — J, it implies that u;(G) = n — p,_i(GQ), for 1 < i < n — 1. In particular,
1 (G) = n — p,_1(G) < n. Therefore i (G) < n with equality if and only if G is

disconnected. O



26

Lemma 4.3.2. Let G be connected graph. If G is bipartite graph, then L(G) and

|L(G)| are unitarily similar.

Proof. If G is bipartite graph, then L(G) = D(G) — A(G) and |L(G)| = D(G)+ A(G)
are unitarily similar by a diagonal matrix D with diagonal entries +1. (that is,

|L(G)| = DL(G)D™") 0

Theorem 2.3.1 shows that u; < 2max{d(v) : v € V(G)}. Anderson and Morley

improved this upper bound on the spectral radius by showing the following theorem.

Theorem 4.3.3. [6] (Anderson and Morley(1985)) Let G be a graph. Then
pa (G) < max{d(v;) + d(v;) < vw;.€ E(G)}. (4.3.2)

If G is connectedy. then the-equality holds if and only if G is bipartite and all vertices

in the same part of the bipartition have.the same walency. . i.e., G is said bireqular.

Proof. Since NE(G)N(G) — 21 is the adjacency matrix of the line graph of G, where
N(QG) is the vertex-edge incident matrix of G. Note that: |L(G)| = N(G)NT(G),
since N(G)NT(G) and NT(G)N(G) have the same nonnegative eigenvalues. Since
line graph of G has maximal degree at most max{d(v;).+ d(v;) : viv; € E(G)} — 2,
which is larger than its largest eigenvalue known t6 be p; — 2, where p; is denoted by
the largest signless Laplacian eigenvalue of G.-The equality holds if and only if the
line graph of G is regular. By Theorem 2.1.8, we have

1(G) < (@) < max{d(vy) + d(vy) : v, € E(G)).

And the equality holds through if and only if G is bipartite and the line graph is

regular. [

Theorem 4.3.4. [7] (Merris) If G is a connected graph, then

w1 (G) < max{m(v;) + d(v;) : v; € V(G)}. (4.3.3)
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Proof. If G has no edges, both sides of equation are zero. Otherwise, it suffices
to prove the result for connected graphs, and the inequality follows by applying
GerSgorin’s theorem to the rows of D™Y(G)|L(G)|D(G), the matrix whose (i, j)-entry

is

d(v;) ifi=y
—d(l)])/d(’UZ) if V;Vj S E(G)
0 otherwise
Then
b= d)]

IN

11(G) masc{d(v;) > vy € B(Q)}

P U
7 miax{d(vi) +m(v)oo; e Vi(G)}.

Remark 4.3.5. (4.3.3) improves (4.3.2) is clear.
Theorem 4.3.6. [8] (Rojo) If G is a_graph on verter set-V. = {vy,va,...,v,}, then
1 (G) < max{d(v;) +d(vp)—A|NeoRNhude< i <j <, vv; € E(G)} (4.3.4)

N; N\ N;| is the number.of common neighbors of v; and v;. Moreover, this upper bound
J g j

for u1(G) does not exceed. n.

Proof. If G has no edge, both sides of (4.3.4) are zero. Otherwise, it suffices to
prove the result for at least one edge in the graph G. Let x;, K = 1,2,...,n be the
eigen-components of the eigenvector X corresponding to the eigenvalue p;(G) of the
Laplacian matrix L(G). Assume that one of the eigen-components (say z;) is equal
to 1 and the other eigen-components are less than or equal to 1 in magnitude. i.e.,
z; =1 and |z <1 for all k. Also let x; = ming{xy, : v;uy € E(G)}. Let Cj; be the
number of common neighbors of v; and v;. Therefore, C;; = |N; N N;|. Since x; < xy

for all k such that v;v, € E(G),

> o vivn € E(G),vjur € E(G)} > (d(vi) — i)z,
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and since z, < 1 for all &,

> kv € E(G), v € E(G)} < (d(v;) — cij).-

k
We have LX = py X. This implies pz; = d(v;)x; — > {zk : vivy € E(G)}, e, 1y =
d(vi) = > i {zk - vivg € E(G)vju, € E(G)} — > {zk - vivy € E(G),vju, & E(G)}.
From the j-th of LX = 13X, we have pyz; = d(vj)z; — Y {xr - vjup € E(G)}, ie.,
iz = d(vj)x; — > {zk cvue € E(G),vivp € E(G)} = > {zk - vjup € E(G),vvp, &
E(G)}. By subtracting, we get

p(l—x;) = d(v) —dlv)e; = Z{xk cvup € B(G),vju, € E(G)}
k

+ 0> At v € B(G), v E(G)}
< d(og)—d(vy)z; — (d(vi) = cij)wi+ (d(v)) — ci)
= (d(vi)= d(vy) +cij) (L= 25):

If z; = 1, then'zy = 1 for all k such that v,v, € E(G). Therefore, u; = d(v;) —
Youlzk t vivy € B(G)} = d(v;) = d(v;) = 0. But it is not possible for at least one
edge in the graph. Therefore; z; # 1. And so u; < (d(v;) — d(vj) + ¢;;), where
viv; € E(G). Henee, py < amax{d(v;) + d(v;) —ciy +:1L.< i < j < n,uv; € E(G)},
ie., w1 < max{d(v;))+dw;) — |N; " N;| : "< i.< j < nuv; € E(G)}. It’s
obvious that max{d(v;) 4 d(v;)—=|NaAN;| : 1T < i < j < nuv; € E(G)} <

max{d(v;) + d(v;) — |[N; N N;| : 1 < i <5 <n}. O

Remark 4.3.7. max{d(v;) + d(v;) — [N; N N;| : 1 < i < j < n,vv; € E(G)} <
max{d(v;) + d(v;) : v;v; € E(G)}. Hence the bound is better than (4.3.2).

Theorem 4.3.8. (Grone and Merris (1994)) Let G be a graph of order n > 2

containing at least one edge. Then
i (G) > A(G)+1 (4.3.5)

where A(G) is the mazimal degree of G. The equality holds if and only if A(G) = n—1.
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Proof. Since the star K o) has the largest Laplacian eigenvalue 1 + A(G) and it’s
a subgraph of GG, then this follows from Corollary 4.2.3. O

A vertex v of a graph G, is called a pendant vertex of G, if v has exactly one

neighbor. In the following theorem we consider the boundary on g, _1(G).

Theorem 4.3.9. [9] Let G be a simple connected graph of order n > 2. If G has a

pendant vertex v, then
0 < pn1(G) < 1. (4.3.6)
with equality if and only if the neighbor of v is adjacent to every vertex of G.

Proof. The highest degree of the complement graph-of graph G is n — 2. Since G
has a pendant vertex and.n->-2, therefore, the complement graph G has at least one
edge. Therefore, the largest eigenvalue.of G is y1(G) = n.— 1, from Theorem 4.3.8.
And L(G) + (@) =md=J it implies that 11,(G) =n — ft,_(G), for 1 <i <n—1.
Then we get ey (G) = n=py(G) < 10 Let us construct a tree T' of order n such that
one isolated vertex connected to the pendant vertex of a.star graph of order n — 1.
Using Theorem 4.3.8, we get 4;(77) > n — 1. Since pendant vertex is not adjacent
to the highest dégree vertex (highest degree is'n —2).. Then T is a subgraph of G.

Therefore, 111 (G) > (T) > n — 1, that is, p,=1(G) < 1. O

Let W be the set of all ¢column vectors x and e be the all 1 vector such that
xTx = 1,27e = 0. If L is positive semi-definite then the second smallest eigenvalue
is equal to min,ecy 7 Lz by Rayleigh principle in Lemma 2.2.1. We use the principle

for the other property.

Theorem 4.3.10. [10] If Gy, G4 are edge-disjoint graphs with the same set of vertices
then pn—1(G1) + pin-1(Ga) < pin—1(G1 U G3).

Proof. We have L(G1UG3) = L(G1)+L(G3). Thus p,_1(G1UGs) = mingew (27 L(Gy)x+
2T L(Gy)z) > mingew 27 L(Gy)z + mingew 27 L(Go)r = i 1(G1) + pin_1(G2). O
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Corollary 4.3.11. The function p,_1(G) is non-decreasing for graphs with the same
set of vertices. i.e. p,—1(G1) < pn—1(G2) if Gy C Gy (and G, Gy have the same set

of vertices).

In the latter chapter, we consider the Laplacian spread of a graph G, which is
defined by ¢ (G) = 1 (G) — pn—1(G). Hence, for a graph G and H a subgraph with
the same set of vertices of G, Laplacian spread doesn’t have the monotonicity as the

adjacency spread (¢4(G) > pa(H)).




5
The Laplacian spread of trees

The Laplacian spread of graph G is defined to be ¢ (G) = 1u1(G) — pn-1(G).
Note that in the definition-we-consider the largest eigenvalue and the second smallest

eigenvalue, as the smallest-one always equals zero.
n—1

Example 5.0.12. (i) K, has Laplacian spectrum: 0,7,.. ., n.

(ii) Assume that n <.m,
m—1 7n—1
K, has Laplacian spectrum: 0,7, .. .7,0n,. .., m,m+n.

SDL(Kn,m) = (m + n) - (n) =m.

In particular, K ,_; has Laplacian spectrum: 0,1,...,1,n.
QDL(KLn,l) =N — 1

(iii) P, has Laplacian spectrum: 2 — 2 cos(™),0 < k <n — 1.

on(Py) = 2{1 + cos(g) - cos(%)]} - 4008(%).

31
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Adouble star T(n,p) with n—2 >
gE=—2) )2
Fig 5.1.

5.1 The maximal Laplacian spread of trees

If G is disconnected, then'f,,_1(G) = 0. "We only consider connected graphs G in
which case j,,—1(G).> 0. So we first consider the extremal Laplacian spread of trees.
Let P,, S, be denoted by-a-path and a.star of order n, respectively. Let 7" be the
one with maximal Laplacian-spread-among all trees of order n. Now, we prove T' is

necessarily a double star of order n.

Lemma 5.1.1./11] Let T be the one with maximal Laplacian spread among all trees

of order n. Then/I' is a double star T'(n,p), for some p withn —2>p>n—2/2.

Proof. Let T be a tree of order n, then for any edge wv of T, d(u) + d(v) = |N(u) U
N(v)| < n, with equality ifand-only if T'="T(n,d(u) — 1), [assume d(u) > d(v)]. In
addition, the star S, = T'(n,n = 2) and ¢.(S,) = n — 1. For any tree 7" which is
not a double star, then by the above discussion and Theorem 4.3.3, we have p;(T) <
max{d(u) + d(v) : uwv € E(G)} < n —1, then ¢r(T) = 1 (T) — ppn1(T) <n —1, as
tn—1(T) > 0. Then the result follows. O

Proposition 5.1.2. The characteristic polynomial of L(T (n,p)) is

det(M — L(T(n,p))) = A\ = 1)" (A =n)(A = 1>+ p(n -2 —p)A.
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Proof. We have the quotient matrix of L(T'(n,p)) is

1 —1 0 0

-p p+1 —1 0
QL(T(np)) = :

0 -1 p+2—n n—-1-—p

0 0 -1 1

then det(M — Qrrmypy) = (A —n)(A —1)* 4+ p(n — 2 — p)A. Since 0 is an eigenvalue
with multiplicity 1 and observe that null(L + I) = n — 4, that is, —1 is an eigenvalue
with multiplicity n — 4. By Lemma 2.2.3 and above argument, we have det(\ —

L(T(n,p))) = MA = 1)" (A —n)(A = 1)2 + p(n — 2 — p)Al. O
Remark 5.1.3. Denote
foun,p)i=O=n) AN =1)72+ p(h<2—p)A\. (5.1.1)

Then the charaeteristic polynomial of L(S,) is A(A — 1)™*f(\;n,n — 2). For any
double star T'(n,p) with (n — 2)/2 < p < n— 3 and n >:5, by Proposition 5.1.2,
(0 pin—1(T(nyp)) < 1. And by Theorem 4.3.8, ui(T(n,p)) > d(T(n,p)) +1 =
p+ 2 > 4. Hence the eigenvalue uy (T'(n, p)), tin—1(T(n,p)) are both roots of the
polynomial f(Ayn,p). Inaddition, all roots of .f (\; n,/p) must be positive as they are
nonzero eigenvalues of L(T'(n, p)). In the followingywe shall prove that for (n—2)/2 <
p<n—3and n > 5% (T(np)) < ¢pr(T(ngm =2))=n — 1. By this inequality and
Lemma 5.1.1 , we than get/the result that the star is the unique tree with maximal
Laplacian spread among all trees with given order. There are exactly two double stars
T(5,2),T(5,3) of order 5, and by the next lemma above inequality holds for n = 5.
There are exactly three double stars 7'(6,2),7(6,3),7(6,4) of order 6, ¢ (7(6,3)) <
wr(T(6,4)). And ¢(T(6,2)) < ¢r(T(6,4)) can be obtained by computation. By
(5.1.1), f(X;6,2) = (A — 6)(\ — 1)2 4 4\, which has roots (5 4+ /17)/2,3. Therefore,
or(T(6,2)) =17 <6 —1=5.

Lemma 5.1.4. Forn > 5,

or(T(n,n —3)) < op(T(n,n—2)) = pr(S,) =n—1.
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Proof. By Proposition 5.1.2, the eigenvalues p,—1(T'(n,n — 3)), p1(T'(n,n — 3)) are
both roots of the polynomial f(A;n,n —3) = A3 — (n +2)A? + (3n — 2)\ — n. Note
that

1 23+ 3
2 4 — 39n + 9n?
f(n—g,n,n—?)) = T>0,

if n > 5. If there is a A’ > n — 2/3, such that f(\;n,n —3) <0 then f(\;n,n — 3)
has two roots both greater than n —2/3, and hence the sum of its root is greater than
2n — 4/3. However, the sum of all.roots (necessarily be positive) of f(A;n,n — 3) is
r+ 2 < 2n — 4/3, which 18 contradiction, for n.<.4. So, ui(T(n,n —3)) < n —2/3.
Similarly, we get p, 2. (T(n;n—3)) > 1/3. Hence; ¢ (T(n,n—3)) < (n—2/3)—1/3 =
n—1. [

Next, we consider the Laplacian spread of T'(n,p) with (n —2)/2 <p <n —4.

Lemma 5.1.5.:[11] For(n—2)/2 <p<n—4 andn > 6:

(T (n, p)) < oL(T(n,n=2)) = »r(S)=n — 1.

Proof. Denote p1 (T(n,p)), fin—1(T(n, p)) by pi1, pn-i,respectively. Observe that ¢ (T (n,n—
2)) = r(T(n,p)) = (W= 1) =1 — pn—1) = (2= p) = (1 — ptn—1). By (5.1.1), if A > 0,
the image of f(u;n,p) is obtain from: f(A;n,n — 2) by adding a positive function
p(n —2 —p)A. By Mean Value Theorem,

f(nyn,p) — f(uisn,p)  np(n —2—p)
f(

n—p = fl,n p) o f,(§1§n7p)
1—pu — f(Lin,p) — f(pn- 1§”ap):p(n—2_p)
n—1 f'(&;m, p) F(Ernp)

for some & € (u1,n) and & € (pn-1,1), where f'(A;n,p) denote the derivative of
f(A;m,p) with respect to A. If we can show np(n — 2 — p)/f'(&;n,p) > p(n —
2 —p)/f(&;n,p), or nf'(&;n,p) > f'(&1;n,p), the result will follow. Note that
f'(A\in,p) = 3N2=2(n+2)A+2n+1+p(n—2—p). Thus f'(\;n,p) is strictly decreasing
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on the open interval (0, (n + 2)/3) and is strictly increasing on ((n + 2)/3,00). Note
that 0 < & < 1 < (n+2)/3, and by Theorem 4.3.10, n > & > gy > p+2 >
(n—2)/2+2 > (n+2)/3. Therefore, nf'({&2;n,p) > nf'(1;n,p) = np(n — 2 — p),
f'&sn.p) > f(nin,p) = (n—1)* + p(n — 2 — p). Then f'(&;n,p) — f'(&;in.p) >
(n=Dpn-2-p)—(n=1)]. As(n=2)/2<p<n—-4,pn—-2-p) —(n-1) =
2(n—4)—(n—1)=n—717. So, if n > 7, the result follows. If n = 6, then p = 2 and

this case verified prior to Lemma 5.1.4. [
By Lemmas 5.1.1, 2.2.3 and 5.1.4, we get the main result.

Theorem 5.1.6. For n > 5, the star is the unique tree with mazximal Laplacian

spread among all trees of order .

5.2 The minimal Laplacian spread of trees

The line graph of the tree 7', denoted by T is the graph-whose vertices are exactly
the edges of T with two vertices being adjacent if and only if the corresponding edges
in T are incidént. Note that 7" is‘connected, and P! = P,_,. Also, we denote the

eigenvalues of A(G) by \j = X\ = ... >\,

Lemma 5.2.1. [11] Forwany tree T of order m > 3, the Laplacian spread of T is
ezactly the (adjacency) spread-of Thiver; op(T) = pA(TY).

Proof. As T is bipartite, the matrix |L(T)| = N(T)NT(T) = D(T) + A(T) is
unitarily similar to L(7) = D(T) — A(T), and hence they have the same spec-
tra. Note that NT(T)N(T) and N(T)NT(T) have the same set of nonzero eigen-
values, and NT(T)N(T) = A(T') + 2I,,_;. Hence, the eigenvalues of A(T') are
M(T) —=2,(T) —2,...,0_1(T) — 2, and the Laplacian spread of T is exactly the
(adjacency) spread of T". O

Theorem 5.2.2. [11] For n > 5, the path is the unique tree with minimal Laplacian

spread among all trees of order n.
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Proof. Let T be any tree of order n > 5, which is not a path. Then 7" is a connected
graph of order n — 1 which is not a path. Then by Lemma 5.2.1 and Corollary 3.4.5,

we have

oL(T) = @a(T") > @a(Pu1) = 0a(P) = or(Pn).

The result follows. U

v

\ 1596,




6

The Laplacian Spread of Unicyclic
graphs

In this chapter, continue-the work on the Laplacian spread of graphs, and deter-
mine the unique unicyelic graph with maximal Laplacian spread among all unicyclic
graphs of fixed'order, which is obtained from a star by adding one edge between two
pendent vertices. And we also-determine the minimal Laplacian spread among all
unicyclic graphs.-of fixed order. Note that a graph is called unicyclic if it contains
exactly one cycle. And |[V(@)| = |E(G)], throughout this chapter we always assume

that all unicyclic graphs are connected.

6.1 Graphs with a cut edge

Let G = Ghiu : vGy be the graph obtained by joining the vertex u of the graph
(G1 to the vertex v of the graph G5 by an edge. Note that uv is a edge of GG. Let
the characteristic polynomial det(zI — L(G)) is denoted by p(L(G)). If v € V(G),
let L,(L(G)) be the principal submatrix of L(G) obtained by deleting the row and
column corresponding to the vertex v. In order to search the characteristic polynomial

of some special graphs. We need the following lemma.

37
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Lemma 6.1.1. [13] Let G = Giu : vGy be the graph obtained by joining the vertex u
of the graph G4 to the vertex v of the graph Go by an edge. Then

p(L(G)) = p(L(G1))p(L(G2)) — p(L(G1))p(Ly(G2)) — p(L(G2))p(Lu(G1)).

Proof. Let L(GY) (L(G%)) be the principal submatrix obtained by deleting the row
and column corresponding to vertex v (u) from L(Gyu : v) (L(Gov : u)), where Giu : v
is the graph formed from G, by joining a new pendent vertex v to u. Without loss of

generality, we may assume that

=B, L(G5)

where Ey; is the |V (Gy)]-by-|V(G2)| matrix whose .only non-zero entry is a 1 in

position (1,1). By the Laplace expansion Theorem; we have

PUE(@)) = ptL(Gn) )p(L(C3) —p(La(G1))p(L,(G2))-

Since

By combining all the equation, we have

P(L(G)) = p(L(G1))p(IAGa)) = PIE(GL))p(Ly(G2)) — p(L(G2))p(Lu(Gh)).

6.2 The maximal Laplacian spread

We introduce three unicyclic graphs of order n in Fig 6.1: Ui(r,s;n),r > s;
Us(r,s;m),s > 1; Us(r,s;n),r > s. Here r, s are nonnegative integers, which are
respectively the number of pendant vertices adjacent to v and v; moreover parameters

n,r,s are related by n=r+s+3,n=r+s+4.
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Fig 6.1
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Lemma 6.2.1. [12] Let G be the graph with mazimal Laplacian spread among all
unicyclic graphs of order n > 7. Then G is among the graph U;(n — 3,0;n),U;(n —
4,1;n),Us(n —5,1;n) and Us(n —4,0;n).

Proof. Let vv; be an edge of G. Then d(v;) + d(v;) — |[N(v;) N N(v;)| = |[N(v;) U
N(v;)| < n, with equality if and only if G is one of graphs in Fig 6.1 for some r
or s. Therefore, if G is not a graph in Fig 6.1 , then by Theorem 4.3.6, u1(G) <
n — 1 and hence ¢ (G) = u1(G) — pin-1(G) < n —1, as p,—1(G) > 0. In addition,
o (Ui(n —3,0;n)) =n — 1. So G must be one graph in Fig 6.1. Assume that n > 7
in the following discussion. For the graph U;(r, s;n), by Theorem 4.3.4 ,

U ; < 2= 2
w1 (U (r, s;)) < max{r + 2 + +2,5+ +5+2

} =«

Note that r > s and hénce r +2 > (n — 3)/2 +2 >/n + 1. If r <n —5, then

n-+1 n+1
r

1 1
ul(Ul(r,s;n))SagmaX{Q—I—n;— ,n—3+n+3}<n—1,
n_
and hence py (Ui(r, s;n)) <n — L.
For the graph Us(r, s;n) of Fig 6.1..By Theorem 4.3.4,
n=1 n+1
: < 1 .
Ml(UQ(T7san>)—ma’X{s+ +8+17T+3+7"+3}
Asn—4>5>1, then
n—1 n—1 n+1
1 < 24— n—3 <n-—1.
s+ —|—8+1_max{ + R +n—3} n
If (0 <)r <n—6, then
n+1 n+1 n+1
3+ ——< 3+—n—3 <n-—1.
r3t g s34 ot <

Hence, for n > 7, r < n — 6 and arbitrary s, pi(Us(r,s;n)) < n — 1 and hence
or(Us(r,s;m)) <n—1.
For the graph Us(r, s;n) of Fig 6.1. By Theorem 4.3.4,

n

U. : < 2
p1(Us(r, s;n)) < max{r+ 2+ )

n
+24+—} =8
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Note that r > s and hence (n —4)/2 <r <n—4. If r <n —5, then
n n

w1 (Us(r, s;m)) < §max{2+§,n—3+—3} <n-—1.
n_

and hence ¢ (Us(r,s;n)) < n — 1. By the above discussion, if G is a graph with
maximal Laplacian spread among all unicyclic graphs of order n > 7, then G is
among the graphs Uj(n — 3,0;n),Uy(n — 4,1;n),Us(n — 5,1;n) and Us(n — 4,0;n)
with the Laplacian spread value n — 1. The result follows. [
Lemma 6.2.2. [12/ Forn > 7, ¢ (Ui(n —4,1;n)) < ¢ (Ui(n — 3,0;n)) =n — 1.
Proof. Write puy(Uy(n —4,1;n)), g1 (Ur(n —4,1;n)) as p1, pin—1, respectively. Use
Lemma 6.1.1, the characteristic polynomial of L(U,(n—4,1;n)) is p(Uy(n—4,1;n)) =
AA=1)"2[M — (n 4 5)A% 4 (6n + 3)A\? — (9In —5)X+3n]. By Theorems 4.3.1, 4.3.8,
n > pu; > n—12>06,and by Theorem 4.3.9, p,,. 1 < 1. So 1, p,—1 are both roots of
the polynomial

fiA) ;=2 = (n + 5)A° + (61 +=3)\* — (9n =5)\ + 3n.
The derivative
fiN) = 4X° = 3(n £ 5) 2+ 2(6n 4+ 3)A 4 (9n — 5),
And the second derivative
7(X) = 120 =6(nd 5)\+ 2(6n + 3).

Observe that wup(Up(n —3,0;n)) — pur(U(n —4,1;n)) = (n — p1) — (1 — pon—1). If we
can show n — py; > 1 — p,_1, the result will follow. By the Mean Value Theorem,
fi(n) = fi(pr) = (n—p) fi(&), for some & € (u1,n). As fi(x) is positive and strictly
increasing on the interval (u;,+00) and py < n,
_ filn) = film) >n3—6n2~|—8n: n(n —2)(n —4) >n—4'

fi(&) fi(n) (n—=1)(n*=2n-5)" n-1
By the Lagrange Remainder Theorem,

n—u

(&)

filpn—1) = f1(1) + f1 (1) (1 — 1) + 12! (ftn—1 — 1)%,
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for some & € (pn—1,1). As f{(1) =0, f1(1) =4 —n, and f](z) is positive and strictly

decreasing on the open interval (0,1),

2 2(n—4) 2n—-4) n-—4
Ummal="pey < TR0 " 3m-2)

Ifn>7 (n—4)/(n—1) > y/(n—4)/3(n —2), and hence n — y; > 1 — i1, the

result follows. ]

Lemma 6.2.3. [12] For n > 6, ¢ (Us(n —5,1;n)) < ¢ (Ui(n —3,0;n)) =n — 1.

Proof. Write py(Us(n — 5,1;n)), pin—1(Us(n — 5,1;n)) as u, pn—1, respectively. Use
Lemma 6.1.1, the characteristic pelynomial of L(Us(n—5,1;n)) is p(Uz(n—>5,1;n)) =
AA=1)" [N —(n+2)A*+(3n—2)\—n]. By Theorems 4.3.1, 4.3.8,n > u; >n—1>
5, and by Theorem 4.3.9, u,, 1 < 1. SO 1,44, are both roots of the polynomial

FoAN) =2 = (4 2N + (B~ 2)A ="h.

To show that m= p; > 1= p, 1. By the Mean Value Theorem,

foln) =falpa) _ n*=3n _14 2n — 2

f3(&) filn) n2—n—2

for some &; € (py,m), where the inequality holds as fi; < n and f5(\) = 3\2 — 2(n +

n—u =

2)A + (3n — 2) is positive and.strictly incresing on (7, +00). Note that the function

g(z) := (2x — 2)/(z* — v —2)/is strictly decreasing on the whole real axis. Hence

5

(n— ) — (1 = ptn—1) > pin—1 — 9(n) > pin—1 — g(6) = pin—1 — o

In addition, fo(5/14) = —2535/2744 — 11n/196. So u,—1 > 5/14, and the result
follow. ]

Lemma 6.2.4. [12] Forn > 5, o (Us(n —4,0;n)) < ¢ (Ui(n —3,0;n)) =n — 1.

Proof. We simply write u1(Us(n — 4,0;n)), pn—1(Us(n — 4,0;n)) as pq, fin_1, re-
spectively. Use Lemma 6.1.1, the characteristic polynomial of L(Us(n — 4,0;n)) is
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p(Us(n —4,0;n)) = AA — 1)"5(X = 3)[A\® — (n + 3)A\? + (4n — 2)\ — 2n]. By Theo-
rems 4.3.1, 4.3.8, n > pu; >n —12>4, and by Theorem 4.3.9, p,,_1 < 1. So pi1, fbn—1

are both roots of the polynomial
f3(0) == XN — (n+3)A* + (4n — 2)\ — 2n.

By the Mean Value Theorem , for some & € (uq,n) and & € (pn—1, 1),

fs(n) — fs(u) > n? —dn
f3(&1) f3(&)
fs(1) = f3(pn—1) _n—4
f3(&2) f5(&2)

If we can show n/f5(&1) > 1/f5(&2), the result will follow. Note that fi(A) = 3y —

2(n+3)A +4n — 2. As fi(X).is positive and strictly.decreasing on the interval (0, 1),

n—ur =

1 — Hn—1 =

and is positive and strictly increasing on (uq;+00). nfi(&) > nfi(l) = 2(2n — 5),
f4(&) < fi(n) =n? = 2n —2_Then nf3(&) — f4(&1) > n? — 3n — 2 > 0. The result
follows. O

By Lemmas 6.2.1 to 6.2.4 and Fig 6.2, we get the main result.

Theorem 6.2:5. For n > 4, the graph Uy(n = 3,0;n) of Fig 6.1 is the unique graph

with mazimal Laplacian spread among all unicyclic graphs of order n.

6.3 The minimal Laplacian spread

In this section, we characterize the unique unicyclic graph with minimal Lapla-
cian spread among all connected unicyclic graphs of given order. By the definition
of Laplacian spread and the property of the complement which from the proof of
Theorem 4.3.1, it is clearly to check that

er(G) = m(G) +m(G) —n. (6.3.1)

Lemma 6.3.1. Let G be a graph of order n with minimal degree 6(G) and mazimal
degree A(G). Then

or(G) > A(G) — §(G) + 1. (6.3.2)
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Proof. By Theorem 4.3.8 and (6.3.1). The lemma follows. O
Lemma 6.3.2. Let C,, be a cycle with n vertices. Then ¢r(C,) < 4.

Proof. Note that p;(C,) < 4 by Theorem 4.3.3 and the equality holds if and only if
n is even. Thus we have ¢ (C},) < 4 — p,_1(C,) < 4. The result follows. O

Theorem 6.3.3. Let G be an unicyclic graph of order n with A(G) > 4. Then
pr(G) = 4> ¢r(Cy).

Proof. Let G be a unicyclic (connected) graph with A(G) > 4, then §(G) = 1. By
Lemmas 6.3.1 and 6.3.2; we have @ (G) > 4=1+1 =4 > ¢(C,). The result
follows. ]

Now, we assume that G-isunicyclic graph with A(G) = 3. And by the interlacing

property, we have the following lemmas.

Lemma 6.3.4. For e ¢ E(G), the Laplacian eigenvalues of G and G' = G + e
interlace. i.e., y1(G") = i (G) 2 1a2(G") = pa(G) > ... 2 n(G') = p1n(G) = 0.

Proof. 1t follows from Lemma 4.2.1. ]

Remark 6.3.5. In"Lemma 6.3.4, if v is a pendent vertex of G and e the pendent
edge incident with v, then py (G'— 1) = u(G = €) < 1 (G).

Lemma 6.3.6. [14] Let G be a connected graph of order n. If v is a pendent vertex
of G, then

wi(G) < pio1 (G —0),2 <i<n.
In Particular, pin,—1(G) < pn—1(G — ).

Proof. Let e = uv be the pendent edge of G, then G — e = G' Uv, where G' = G — v,
so by Lemma 6.3.4, we have 1;(G) < p;1(G —e) = i1 (G'Uv) = pu;1(G') =
wi—1(G —v)(2 <i <n). Particularly, p,—1(G) < pin—1(G — v). O
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Lemma 6.3.7. Let G be an unicyclic graph of order n with A(G) = 3. Then
er(G) = oL(G —v),
where v is a pendent vertex of G.

Proof. Let G be a unicyclic (connected) graph with A(G) = 3, then 6(G) = 1. Let v
be a pendent vertex. By Lemmas 6.3.4 and 6.3.6 , we have u;(G) > 1 (G — v) and

b 1(@) < prus(G—). Hence p5(C) = i (C)—ur(G) > in(G—)— i (G—v) =
QOL<G — U). ]

Let C% + v be the cycle (% added a pendent vertex v. By Lemma 6.3.7, we have

the following theorem.

Theorem 6.3.8. Let G be-an unicyclic graph of order.n with A(G) = 3 and the
length of the cycle be k. Thenpp(G) >0 (Cr+ v).

Remark 6.3.9. Note that: p, 1(C,) =2(1— cos(27/n)). Then by the calculation,

we have the following lemma.
Lemma 6.3.10. The algebraie connectivity of C,, is a decreasing function on n.

Lemma 6.3.11. [15] Let G' be a simple graph with at least one edge, then py(G) is

at least the maximal of

\/d? +2d; — 2d; — 2+ \/(d? + 2d; +2d; + 4)2 + 4(d; — cij — 1)(dj — ci5 — 1)

5 (6.3.3)

where the maximal is taken from all i, j with v;v; € E(G), d; and d; are are the vertex
of degrees of v; and v; respectively, and c;j is the cardinality of the set of common

neighbors between v; and v;. O

Lemma 6.3.12. [16] If k > 61, then ¢ (Cy +v) >4 > ¢ (C,), where n(n > 3) is

an arbitrary positive integer.



47

Proof. Let u be the neighbor of v and let w be another neighbor of w. Then d; =
deg(u) = 3 and d; = deg(w) = 2. Note that ¢;; = 0. By Lemma 6.3.11, the right hand
side of (6.3.3) is equal to /(9 + v/537)/2 > 4.0408. By Lemmas 6.3.6 and 6.3.10
and direct calculation we have g, 1(Cy + v) < pp—1(Cr) < pn-1(Ces1) = 0.0106, for
k > 61. Thus, we have ¢r(Cy +v) >4 > ¢L(C,). O

Lemma 6.3.13. [16] If 9 < k < 60, then ¢.(Cx+v) >4 > pr(C,), where n(n > 3)

is an arbitrary positive integer.

Proof. 1f 24 < k < 60, then 1 (Coy+v) & 4.38298 and p1,, 1 (Cr+v) < piy_1(Coy+v) =
0.06251. Thus, 1. (Cr+v) > wr (CiiEv) & 4.38298—0.0625 = 4.32047 > 4 > 1 (C,).
If 9 < k < 23, then op(Cp+ v) > (Cot v) ~4.37720 — 0.34891 > 4 > ¢ (C,).

OJ

The lemma follows.
By Theorem'6:3.8 and Lemmas 6.3.12, 6.3.13. We have the following corollary.

Corollary 6.3.14. Let G be an unicyclic graph of order.n. with A(G) = 3 and the
length of the cycle be k. If k=9, then @i (G) > or(Cy).

Lemma 6.3.15: [10] Let G-be an-unicyclic.graph of orderm with A(G) =3 and the
length of the cycle'be k =0,7;8. Then @p(G)> ¢ (Ch):

Proof. When k = 8, we consider two cases aceording to the order of G.

Casel : k=8 and n = 9.

Then G = Cs + v and ¢ (G) ~ 4.39276 — 0.41309 > 3.87939 — 0.46791 ~ ¢ (Cy).
Case2 : k=8 and n > 10.

Let Cs = vivs...vgv; and let G have a subgraph Cs + viv. Since n > 10 and
A(G) = 3, G has a subgraph obtained by adding a vertex u to Cs 4+ vjv. There exist
five such non-isomorphic graphs. The graph which attains the minimal Laplacian
spread among these five graphs is Cg + v1v + vsu. By gradually deleting pendent
vertices from GG, G can be transformed into Cg 4+ vyv + vsu. By Lemma 6.3.7, we have
orL(G) > ¢r(Cs+v1v +vsu) ~ 4.15632 > ¢ (C,). When k = 6,7, similar to the case
k = 8, then the result follows. O
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Lemma 6.3.16. [16] Let G be an unicyclic graph of order n with A(G) = 3 and the
length of the cycle be k = 5. Then pr(G) > ¢r(C,).

Proof. If n = 6, then G = C5 4+ v for some v. Thus, we have ¢ (G) ~ 4.30278 —
0.69722 > 3 = ¢ (Cs). When n > 7, let C5 = vyvy ... vsv; and v be a vertex adjacent
to v1. Then Cj + v; is a subgraph of G. Note that n > 7 and A(G) = 3. A new
vertex u may be adjacent to v, vy, v3, vy, or vs. We consider the following two case:
Casel : u is not adjacent to vs.

By computation, the minimal Laplacian spread value of Cs + vv + zu, for x €

v

{v,v9,v4,v5} is attained when x = vy or vs. By Lemma 6.3.7, we have ¢ (G)
or(Cs + v1v + vou) =~ 4.65109 = 0:62280: >4 > ¢ (C,).

Case2 : u is adjacent to v

Subcase2.1. n = 7ythen G = O5 + 010 + vsu and ¢ (G) ~ 4.41421 — 0.51881 =
3.8954 > 3.04892 & (1, (C7)-

Subcase2.2. n >8, by computation, the minimal Laplacianspread value of C5+wvv+
vsu + zy, for y.€ {v, vy, u, vg, vs5} is attained when y = v or u. By Lemma 6.3.7, we
have ¢ (G) > @p(Cs + v1v +vsu+ zv) ~ 4.48119 — 0.32487 > 4 > ¢ (C,,). Thus this

lemma follows. O

Lemma 6.3.17. [16] Let G be an unicyclic graphsof order n with A(G) = 3 and the
length of the cycle be'k =4.“Then p(G) >@L(C).

Proof. Casel : n =5. Then G = €y +v for some v and ¢ (G) ~ 4.48119 —0.82991 =
3.65128 > 2.36606 =~ ¢, (Cs).

Case2 : n > 6. Let Cy = v1vy...v4v; and v be a vertex adjacent to vy. Then G
contains the subgraph Cy + vyv. Since n > 6 and A(G) = 3. A new vertex u may be
adjacent to v, vy, v3, or vy. By direct computation, the subgraph which attains the
minimal Laplacian spread is Cy + v1v + vu, where the value is ¢ (Cy + viv + vu) &~
4.56155 — 0.43845 > 4 > . (C,). By deleting pendent vertices from G, G can be
transformed into Cy +vyv+vu. Then by Lemma 6.3.7, ¢ (G) > ¢ (Cy+viv+vu) >
4> o (C). O
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Lemma 6.3.18. [16] Let G be an unicyclic graph of order n with A(G) = 3 and the
length of the cycle be k = 3. Then pr(G) > ¢r(C,).

Proof. If n =4, then G = C3+wv for some v. Hence ¢ (G) =4—1=3> 2 = ¢ (Cy).
Let C5 = v1v9 ... v3v; and v be a vertex adjacent to v;. Then C5 4 vyv is a subgraph.
If n > 5, a new vertex u may be adjacent to vs,v3, or v. According to the vertex
induced subgraphs of GG, we have

Casel : (34 v1v +v9u is a subgraph of G. Let G; = C5 4+ v1v 4+ vou, Go = C35+vv +
vt +vx = C5+v1v +vu+ux, Gz = C3 4+ v1v 4 veu + v3x, for some z. If n = 5, then
G = Gy and ¢r(G) =~ 4.30278 — 0.69722 = 3.60556 > 2.23606 ~ ¢ (C5). If n = 6,
then G = G;(i = 2,3). By ealculation, ¢, (G;) > ¢.(Cs) = 3. Suppose n > 7. By
direct computation, the minimal Laplacian spread value among all 7-vertex unicyclic
graphs containing O34-01v+vou is pr (CsFviv+vutve+vsy) ~ 4.0322424 > ¢ (C,,),
for some = and y."By Lemma-6.3.7, we have @5, (G) > ¢@p(C5 +v1v+vau+ve +v3y) ~
4.0322424 > 4 201 (Ch)-

Case2 : (34 v+ w3u is a subgraph of . Since v, and v3.are symmetric in Cs + vyv,
this case is similar to Casel.

Case3 : (5 + viv + vu is a subgraph of G. Let-Gy = O3+ v1v + vu, G5 = C5 4+ vv +
vu+ux, Gg = Cy+vw +oustvx, Gy = Cs+ o0 +ou +vx = C5 4+ v1v + vu + v3,
for some z. If n =&, then G = G4 and ¢ (G) '~ 3.65128 > 2.23606 ~ ¢ (C5). If
n = 6, then G = G;(j'=/5,6,7). “By-ecalculation, we have ¢.(G;) > ¢(Cs). When
n > 7, similar to Casel the graph Cs +vv + vu + uz + xy for some x and y attains
the minimal Laplacian spread value among all 7-vertex unicyclic graphs containing
C3 + v1v + vu. By Lemma 6.3.7, we have ¢ (G) > ¢r(Cs + v1v + vu + ux + xy) =~
4.22833 — 0.22538 > 4 > ¢ (C,,). All possible cases are exhausted, and the proof of

lemma is complete. [
By Corollary 6.3.14 and Lemmas 6.3.15 to 6.3.18 , we have the following theorem.
Theorem 6.3.19. Let G be a unicyclic graph with A(G) = 3. Then ¢r(G) > ¢r(Cy).

Combining Theorems 6.2.5, 6.3.19, we arrive at the main result.
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Theorem 6.3.20. Let G be a unicyclic graph of order n. Then ¢r(G) > ¢ (Cy) and
the equality holds if and only if G = C,,.




7

The Laplacian Spread of bicyclic
graphs

In this chapter, we work-on-the Laplacian spread of graphs, and prove that there
exist exactly two bicyclic graphs with maximal Laplacian spread among all bicyclic
graphs of fixed order, which are obtained from a star by adding two incident edges
and by adding two non-incident edges between the pendent vertices of the star, re-

spectively.

7.1 The maximal.Laplacian spread

Lemma 7.1.1. Let G be a graph By(n—4,0;n) or By(n—5,0;n). Then ¢ (Bi(n —
4,0;n)) = @r(Ba(n —5,0;n)) =n — 1.

Proof. By Theorems 4.3.8 and 4.3.9, we can get the result easily. 0

In the following, we will prove that the graph Bi(n —4,0;n) and By(n —5,0;n)
are the only two bicyclic ones with maximal Laplacian spread. We first narrow down

the possibility of the bicyclic graphs with maximal Laplacian spread.

Lemma 7.1.2. [17] Let G be a graph with mazximal Laplacian spread among all bi-
cyclic graphs of order n > 9. Then G is among the graphs Bi(n — 4,0;n), Bi(n —

o1



Bq(r,s;1n)

810(?', 55 .P‘I.)

Fig 7.1.
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0, 1; TL), B2<n_57 Oa TL), B2<n_67 L; TL), B3<n_57 Oa TL), B5<n_67 L; TL), B6<n_77 L; TL), Bg(TL—
6,0;n), Bo(n —5,1;n), Be(0,n — 4;n).

Proof. Let v;v; be an edge of G. Then
d(v;) + d(v;) = [N(vi) O N (v;)] = [N (v:) UN(vj)] <n,

with equality holding if and only if G is one graph in By to Bjy for some r or s.
Therefore, if G is not a graph in B; Bjg, then by Theorem 4.3.6, 11(G) < n —1
and hence ¢r(G) < n —1, as pu,—1(G) > 0. However, by Theorem 4.3.9, ¢ (Bi(n —
4,0;n)) = pr(Ba(n —5,0;n)) =n — 1. So G must be one graph in B; Bjg. For the
graph By(r,s;n) in Fig 7.1 with 0 <'s <7 < n — 4, by Theorem 4.3.4,

3+

RN e d Al
Notethatr+32”7_4+3>\/n—|—3. If r <n-—06and n>9, then

n+3 n+3

p1(By(rys;m)) € max{r+ 3+

3 3

w1 (Bi(r,s:m)) < a < max{3 + %,n e (e 5
n_

Hence, if n > 9.and r < n — 6, then oz (B;(r, s;n)) < n—d; as p,_1(G) > 0.
For the graph Bs(r, s;n) in Fig 7.1 with 0 <'s,r < n — 5, by Theorem 4.3.4,

}<n-—1

n=1 n+3
B ; < 2 R I 4 .
w1 (Ba(rys; m)).< max{s + +5+2’T+ +’r—|—4}
For n > 9 and r < n < 7, and.an arbitrary s;
S+2+n+ < mqu+n+,n—3+n+ }<n-—1,
5+ 2 n—3
r+4+214 SIMM4+z}ﬂn—3+Zj3}§n—L

Hence p1(Ba(r,s;n)) <n—1, pp(Bs(r,s;n)) <n— 1.
For the graph Bs(r, s;n) in Fig 7.1 with 0 < s,7 <n — 5, by Theorem 4.3.4,
n+ 2 n+ 2

B : < 3 3 .
p1(Bs(r, s;n)) < max{r + +T+3,s+ +s+3}
For n > 8 and » <n — 6,
2 2
p1(Bs(r, s;n)) gmax{3+i,n—3+ n }<n-1.

3 n—3



54

Hence ¢ (Bs(r,s;n)) <n — 1.
For the graph By(r,s;n) in Fig 7.1 with 0 < s <r <mn — 6, by Theorem 4.3.4,

n+1 n+1

B : < 3 3 .
p1(By(r, s;m)) < max{r + +r—|—3’8+ —|—S+3}
For n > 7 and an arbitrary r, s,
1 1
,ul(B4(r,s;n))Smax{3+i,n—3+n+3}§n—l.
n_

Hence ¢ (By(r, s;n)) <n — 1.
For the graph Bs(r, s;n) in Fig 7.1 with 1 < s <n—>5,0 < r < n—6 by Theorem 4.3.4,

n —1 n+3
B c < 1 4 )
p1(Bs(r, syn)) < max{s + +S+1,r+ +7“+4}
For n > 9 and r £ n =7, and.an arbitrary s,
-1 -1 =1
5+1+S+1 < max{2+nT,n—4+Z_4}§n—1,
n+3 n—+3 n—+3
4 < 4+ ——"n—3 <n-—1.
i +7’+4 < max{4+ 1 n +n_3}_n

Hence ¢ (Bs(rgsin)) < n—A.
For the graph Bg(r, s;n) in Fig 7.1 with I’ <'s <n—6;0 <7 < n—7 by Theorem 4.3.4,

n —1 n+3

B y < 1 Z 5
p1(Bg(m s;m) )< max{s + —|—S+1,7~_|_ +r—i—5

}.

For n > 9 and » < n — 8, and an arbitrary s,

1 1 _
S+1+Z+1 < max{2+nT,n—5+Z_ }<n-—1,
n+3 n -+ 3 n+3
5 < 54 ——n—3 <n-—1

r+ +T+5 < max{5+ E N +n_3}_n

Hence ¢ (Bg(r,s;n)) <n — 1.
For the graph Br(r, s;n) in Fig 7.1 with 1 < s <n—>5,0 < r < n—6 by Theorem 4.3.4,

n +3+n—|—2
T
s+2’ r+3

p1(Br(r,s;m)) < max{s+2+

}.
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For n > 8 and arbitrary r, s,

n n n
2 < 3+—-—nm—-3+ —=11<n-—-1
s+ +S+2 < max{ +3,n +n_3}_n ,
n -+ 2 n n -+ 2
3 < 34+—=n—3 <n-—1.
r+ +r—|—3 < max{ —|—3,n +n_3}_n

Hence ¢ (Bq(r,s;n)) <n— 1.
For the graph Bg(r, s;n) in Fig 7.1 with 0 < s,7 < n — 6, by Theorem 4.3.4,

n_ygp Dt
,
s+2’ r+44

}.

p1(Bs(r,s;m)) < max{s+2+

For n > 8 and r < n — 7, and_an arbitrary s,

n n
2 < 24 —m—4+ —1V1<n-1
s+ +s—i—2 < max{ +2,n +n_4}_n ,
n+2 n n+ 2
4 < 4+ —n-—3+——1<n-—1.
r 4 +7"+4 < max{ +4,n +n_3}_n

Hence o (Bs(rys;n))<-n — 1.
For the graph Bg(r, s;n)in Fig 7.1 with 0 <7 <n—5,1 < s.< n—4, by Theorem 4.3 .4,

n+ 3 n+ 2
Bo(r, ;1)) < 3 2 .
(i (Byg(r, s;m)) < max{r + +7‘+3’S+ + $+2}
Forn>9and r <n —6,and s <n —5,
n—+3 n n+3
3 < == = 3 <n-—1
r+ +r—i—3 < max{ +3,n +n_3}_n ,
n—+ 2 n n+2
2 < 3+—n—3 <n-—1.
s+ +3+2 < max{ +3,n +n_3}_n

Hence ¢ (By(r,s;n)) <n — 1.

For the graph Bjo(r, s;n) in Fig 7.1 with 0 < s <r <n — 6, by Theorem 4.3.4,
n+1 n+1

3
7”—1—3’8jL +s+3

}.

p1(Bio(r, s;n)) < max{r + 3+

For n > 7 and arbitrary r, s,

n—+1 n-+1
,n—3+
n—3

p1(Bio(r, s;n)) < max{3 + }<n-—1.
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Hence ¢, (Bio(r,s;n)) <n — 1.

By the above discussion, if G is one with maximal Laplacian spread of all bicyclic
graphs of order n > 9, then G is among the graphs By(n—4,0;n), B;(n—5,1;n), Bs(n—
5,0;n), Bo(n—6,1;n), B3(n—>5,0;n), Bs(n—6, 1;n), Bs(n—7,1;n), Bs(n—6,0;n), By(n—
5,1;m), By(0,n — 4;n). The result follows. O

Next, we show that except the graph Bj(n — 4,0;n) and By(n — 5,0;n), the
Laplacian spreads of the other graph in Lemma 7.1.2 are all less than n — 1 for a
suitable n. Thus by a little computation in Fig 7.1 of small order B;(n — 4,0;n) and
Bs(n —5,0;n) are proved to be the only two bicyclic graphs with maximal Laplacian
spread among all bicyclic.graphs of‘order n > 5. In the following Lemmas 7.1.3 to
7.1.10, for convenience we simply write u(Bi(r, 8;m)), pin—1(B;i(r, s;mn)), for 1 < i <

10, as 1, n_1, respectively, if no confusions occur.
Lemma 7.1.30/17 For n>7, pr(Bi(n —5,1;n)) <n =1.

Proof. Use Lemma 6.1.1, the characteristic polynomial p(B;(n — 5,1;n)) = A\ —
D" 5\ = 2)[M= (n+6)\* + (Tn+ A% — (11n — 6)\ + 4n]. By Theorems 4.3.1 and
4.3.8, n > puy >m —1 > 6, and by Theorem 4.3.9; 1,1 < 1@ So uq, pi,—1 are both the

roots of the following polynomial:
fi(A) == A = (e 6)N* + (Tn +£4)A* = (11n — 6)\ + 4n,
with the derivative
i) = 4N = 3(n+6)A* + 2(Tn + 4)\ — (11n — 6),
and the second derivative
V(A) = 1202 — 6(n + 6)A + 2(Tn + 4).

Observe that (n — 1) — pr(Bi(n —5,1;n)) = (n — p1) — (1 — pin—1). If we can show
that n — gy > 1 — pp,—1, the result will follow. By Lagrange Mean Value Theorem,
fi(n)— fi(pr) = (n—pa) f1 (&), for some & € (u1,n). As fi(x) is positive and strictly
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increasing on the interval (py, +00) and puy; < n, n— puy = (fi(n) — fi(p))/ f1(&) >
(n®—7n*+10n)/fi(n) =n(n—2)(n—5)/(n—1)(n* =3n—6) > (n—5)/(n—1). By
Lagrange Remainder Theorem,

Flpcr) = £+ D~ 1)+ D2 0, 12

for some & € (pin—1,1). As f{(1) = 0 and f](x) is positive and strictly decreasing on
the open nterval (0, 1), (1=, 1)? = 2(n—5)/ (&) < 2n—5)/ f{(1) = (n—5)/4(n—
2). Ifn>17 (n—5)/(n—1) > /(n—5)/4(n — 2), and hence n — py > 1 — pi,—y. O

Lemma 7.1.4. [17] Forn > 7, ¢p(Bay(n —6,1;n)) <n — 1.

Proof. Use Lemma 6.1.1;:the characteristic polynomial p(Ba(n — 6,1;n)) = A(A —
D8N = 3)[M = (n+5)A*+ (6n + 3)A\? — (9n—5) A+ 3n]. By a similar discussion
to the proof of Lemma 7.1.3, both gy and f,, ; are the roots of the polynomial:

A = XM=+ 5)A% (61 + 3)A? — (97— 5)\ + 3n,
) = 4X° —3(n + 5\ +2(6n+3))\— (9n —5),
Q) = 1202 —6(m+5)\ + 2(6n + 3).

And
= fa(n) = folpr) ¢ n*—6n*+8n _ aln=2)(n—4) n—4
f3(€1) fa(n) (n=1)(n*—2n—5) " n—1
for some & € (p1,n). In additions fo(ti=1)= f2(1) + f3(1) (ttn—1 — 1) + f3 (&) (-1 —
1)2/2!, for some & € (pn_1,1). Note that f5(1) = 0, we have (pp,—1 — 1)*> = 2(n —
D/E) < 2n— /) = (n—2)BR—2). n <7, (1—D/m-1) >
v/ (n—4)/3(n — 2), and hence n — py > 1 — p1,,_1. The result follows . O

Lemma 7.1.5. [17] Forn > 6, ¢.(Bs(n —5,0;n)) <n —1.

Proof. Use Lemma 6.1.1, the characteristic polynomial p(Bs(n — 5,0;n)) = A\ —
D" 5N — (n+ 8)A + (9n + 18)A3 — 3(9n + 2)A? + (31n — 10)\ — 11n]. So p; and

lin—1 are the roots of the polynomial:

f3(0) =A% — (n+8)A* + (9n + 18)A* — 3(9In + 2)A? + (31n — 10)A — 11n,
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and

fs(n) = f3(i) _ ' =90 +250 —21ln 4n® —25n* 4 40n — 10
f3(&1) fi(n) - n* —5nd +19n — 10 ’

n—u =

for some & € (p1,n). Note that the function

423 — 2522 + 402 — 10
xt — 523 +192 — 10

gi1(x) ==

is strictly decreasing for + > 6. Hence (n — 1) — (1 — pin_1) = pin_1 — g1(n) >
fn-1 — g1(6) = pn_1 — 97/160. Observe that a star of order n has eigenvalues :
0',n',1""% and hence has (n—1) eigenvalues not less than 1. As B3(n—>5, 0; n) contains
a star of order n — 1, by Eigenvalues Interlacing Theorem (that is, \;(G) > \(G —e)
fori =1,2,...,n. If we delete an edge e from.a graph of order n, G3(n — 5,0;n) has

(n — 2) eigenvalues.not less than 1o Now f5(97/160) /& —5.2557 — 0.2595n < 0. So

o7

55 < 1, a contradictions The result follows . [

tn—1 > 97/160; otherwise pp—o-<
Lemma 7.1.6. [17/"For n > 6, ¢.(Bs(n —6,1;n))<n — 1.

Proof. Use Lemma 6.1.1, the characteristic polynomial p(Bs(n — 6,1;n)) = A\ —
D" 5N = 2)(A=4)[\* — (n +2)\*+ (3n — 2)X — n]. SO pyand p,,_; are the roots of
the polynomial:

fa) =22 — (n +2)M\% 4+ (3Bn<2)A — n,

By Lagrange Mean Value Theorem,

- 2 M — 2
n— = Ja(n) — fa(p) - n* —3n :1_n—’

f1(&1) fi(n) n?—mn—2
for some & € (uy1,n). Note that the function go(x) := (22 —2)/(2* — x — 2) is strictly

decreasing for all . Hence (n — 1) — (1 — ptn—1) > pn—1 — g2(n) > pn_1 — g2(6) =
tn—1 — 5/14. By a similar discussion to those in the last paragraph of the proof of
Lemma 7.1.5. As fi(5/14) = —(2535/2744) — (11n/196) < 0, pt,_1 > 5/14, and the

result follows. ]

Lemma 7.1.7. [17] Forn > 7, ¢(Bsg(n —7,1;n)) <n — 1.



59

Proof. Use Lemma 6.1.1, the characteristic polynomial p(Bg(n — 7,1;n)) = A(A —
DA =2)(A=3)[N* = (n+2)A* + (3n — 2)XA — n]. So u; and p,_; are the roots of
the polynomial:

fsA) =X = (n+2)A* + (3n —2)\ —n,

which is the same as fy(\) in the proof of Lemma 7.1.6. Hence, for n > 7, n — g >
1 — pt,_1. The result follows . O

Lemma 7.1.8. [17] Forn > 6, ¢.(Bs(n —6,0;n)) <n — 1.

Proof. Use Lemma 6.1.1, the charagteristic polynomial p(Bg(n — 6,0;n)) = A\ —
D" 5\ =2)(A = 3)[A* = (n +3)A*+(dn— 2)A ~ n]. So p1 and p,_; are the roots of
the polynomial:

Fs(N) =23 (net 3)0° + (4n— )\ =,

By Lagrange Mean Value Theorem,

fs(n) = f5(pu1) U n? =4n

n —

(&) fien)
1= flpeif = fs(1) = f5(pn-1) J n—4
v fi(&) (&)

for some & € (puy,n) andi&s € (pn_1,1). If we can show n/fl(&) > 1/fi(&), the
result will follow. Note that fL(AY=38X> =2(n + 3)\ + 4n — 2. As fI()\) is positive
and strictly decreasing on the interval (0, 1), and is positive and strictly increasing on
the interval (u1, +00). nfi(&) > nfi(l) =n(2n —5). fi(&) < fi(n) =n* —2n — 2.
Then nfi(&) — fi(&) > n* —3n+2 > 0. The result follows. O

Lemma 7.1.9. [17] For n > 6, ¢r(Bo(n —5,1;n)) <n — 1.

Proof. Use Lemma 6.1.1, the characteristic polynomial p(Bg(n — 5,1;n)) = A(A —
)"0\ — (n 4+ 8)A* + (In+ 17)A% — (26n + 2)A* + (27n — 13)A — 8n]. So iy and ji,—1

are the roots of the polynomial:

f6(N) =X — (n+8)A + (9n + 17)A* — (261 + 2)A\* + (27Tn — 13)\ — 8n,
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And

fo(n) — fo(pr) _ n*—9n3 4 25n% — 21n 4n3 — 26n* + 44n — 13
n—u = =1— _
" f6(&1) fe(n) n* —5n3 —n24+23n — 13
Note that the function

423 — 2622 + 44z — 13
2t —bad — 224+ 23z — 13"

g3() =

is strictly decreasing for = > 6, we have (n — p1) — (1 — ptn—1) > pn—1 — g3(6) =
fin1 — 179/305. As f(179/305) ~ —5.17633 — 0.405628n < 0, f1n_1 > 179/305. The

result follows. ]
Lemma 7.1.10. [17] For n.>5; ¢r(Bio(0,n — 4;n)) <n — 1.

Proof. Use Lemma 6:1.1, the characteristic polynomial p(Bio(0,n — 4;n)) = A\ —
D" (A — 4) [N —(n+3)\? + (411 = 2)A=2n]. So pyand p, ; are the roots of the

polynomial:
fr(A) =X — (n+3)A\° + (4n — 2)A — 2n,

And

fl)= folin) _ Fin) [l -2

f1(&) (&) n2=2on—2
Denote g4(z) := (22 —2)/(z* — 20 — 2). Then.we have (n — uy) — (1 — pin_1) >
fin—1 — 94(6) = ftn_1 = 5/11. Noting that fz(5/11) = —(1910/1331) — (47n/121) < 0.

We have p,—; > 5/11. The'result follows . O

n—p =

Let G be one with maximal Laplacian spread of all bicyclic graphs of order n > 5.
From the first paragraph of the proof of Lemma 7.1.2, the graph G is necessarily
among graphs in Fig 7.1. If the order n > 9, by Lemmas 7.1.2 to 7.1.10, G is the
graph Bi(n — 4,0;n) or By(n — 5,0;n). For the order n > 8, the graph(s) with
maximal Laplacian spread are among the graphs in Fig 7.1, and can be identified by

a little computation, or by lemmas of this chapter.

Theorem 7.1.11. For n > 5, B1(n —4,0;n) and By(n — 5,0;n) in Fig 7.1 are the

only two graphs with mazximal Laplacian spread among all bicyclic graphs of order n.
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PR
Lok,

Fig 7.2.

7.2 Concluding Remarks

Remark 7.2.1. A tricyclic graph is connected graph in.which the number of edges
equals the number of vertices plus two. In the unicyclic and bicyclic cases, the max-
imal Laplacian spread are ebtained from a star'by adding edges. By the same ways,
with the Theorems 4.3.1; 4.3.4;4.3.6 and~4.3.9. We have the five graphs, with the

maximal Laplacian spread is equal to n — 1. [18§]

Remark 7.2.2. Tt seems likely that the graphs which share the maximal Laplacian
spread among all connected graphs of order n are the graph G with the induced

subgraph K ,_1, and with the maximal value n — 1.

Conjecture 7.2.3. Let G be a graph of order n, then ¢ (G) =n — 1 only if K,
is a subgraph of G.
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The Signless Laplacian Spread

Research on signless Laplacian matrices has become popular recently. The signless
Laplacian matrix. Q(G) =-D(G)-+ A(G) is symmetric and nonnegative, and, when
(G is connected, it’s irreducible. If /N is the n.X e vertex-edge incidence matrix of
the (n,e) graph'G,, then Q(G) = NN*. Thus Q(G) is positive semi-definite and its
eigenvalues cambe arranged as: p1(G) > p5(G) = ... > pu(@) > 0. Motivated by the
definition of pi(G), we define the signless Laplacian spread of the graph G, denoted

by pQ(G), as polG) = pi(G) = pu(G):

8.1 The bipartite. graph case

We show in this section that when G is bipartite, g(G) = ¢(G) = p1(G).

Proposition 8.1.1. [19] If G is connected, then p,(G) = 0 if and only if G is bipartite.
Moreover, if G is bipartite, then Q(G) and L(G) share the same eigenvalues.

Proof. Let 27 = (x1,23,...,2,). For a non-zero vector x we have Qx = 0 if and only
if N2 = 0, where N is the vertex-edge incidence matrix of a graph G. The later
holds if and only if z; = —x; for every edge, i.e. if and only if G is bipartite. Since
the graph is connected, x is determined up to a scalar multiple by the value of its

coordinate corresponding to any fixed vertex i. O

62
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By Proposition 8.1.1, it immediately have the following proposition.

Proposition 8.1.2. If G is a bipartite graph, then 11 (G) = p1(G) = po(G).

8.2 The regular graph case

A graph G is called k-regular if dy = dy = ... = d, = k. If G is k-regular, it
is easy to see that A\ (G) = p1(G) + k and \,(G) = p,(G) + k. Thus, we have the

following proposition.

Proposition 8.2.1. If G is k=regular, thenwa(G) = po(G).

8.3 The upper bound

We use the notation of-majorization.. Suppoese (z) = (z1,zs,...,x,) and (y) =
(Y1, Y2, - - -, Yn)vare two non-increasing sequences of real numbers, we say (z) is ma-
jorized by (y),-denoted by () < (y);if and only if ST  @p= 327"y, and S20_ 2, <

Zzlyi forall'j =1,2,..4,n.

Proposition 8.3.1. Let G be @ graph with signless Laplacian spectrum (p) = (p1, p2,-- -, Pn)
and the degree sequence(d) = (dy,ds, ..., d,). Then (d) < (p).

Proof. 1t is well that the spectrum of a positive semi-definite Hermitian matrix ma-

jorizes its main diagonal (when both are rearranged in non-increasing order). 0
Corollary 8.3.2. p, < d,.

Proof. By Proposition 8.3.1, it follows that (d) < (p), then dy +dy + ... + dp_1 <
pr+pe+...+pnranddy+do+...+d, =p1+p2+ ...+ pn. Hence p, <d,. [

Let m(v) = >_,c ) d(w)/d(v). The next result gives upper and lower bounds for
p1(G).
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Proposition 8.3.3. [20] Let G be a connected graph on n(n > 2) vertices. Then.
min{d(v) + m(v) : v € V(G)} < p1(G) < max{d(v) +m(v) : v € V(G)},

where equality holds in both of these inequalities if and only if G is reqular or semi-

reqular bipartite.

Proof. The inequality follows by applying Gersgorin’s theorem to the rows of the
matrix D™Y(G)Q(G)D(G), whose (i, j)-entry is

d(vi) if i =7,
d(v;)/d(v;) if vv; € E(G),
0 otherwise.
Then
p1(G) < max{d(v;)+ i Zizji 105 € B(G)} = max{d(v) + m(v) : v € V(G)}.
J=LgE

The lower bound can-be proved in a similar way. Suppose that the equality holds.
Then, p1(G) =d(v;) + m(v;), for all ©. = 1,2,.. . n. Since G-is connected graph. G is

regular or semi-regular bipartite {21} O

Remark 8.3.4.If G is a connected bipartite graph, by Proposition 8.1.2 we can
conclude that the bounds for p;(G) in Proposition'8:3.3 are also bounds for ¢q(G).
Thus, Proposition 8.3:3 alsogives bounds for.¢g(G) when G is a connected bipartite
graph.

Remark 8.3.5. Consider the graph tree with the maximal and minimal signless
Laplacian spread. Since tree is bipartite, by Proposition 8.1.2 and Theorem 4.3.1,

the maximal signless Laplacian spread is ¢q(S,) = p1(S,) = n. And the minimal

signless Laplacian spread is obtained from path, by Propositions 8.1.2, 8.3.3,
wo(Py) = p1(P,) < max{d(v) +m(v):v e V(P,)} =3.

If G is a tree is not a path, that is, there is a vertex v, with deg(v) > 3. By
Theorem 4.3.8 and Proposition 8.1.2, we have ¢g(G) = u1(G) > 3+1 = 4. Then the

result follows.
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Lemma 8.3.6. [22] If G is a graph with at least one edge, then pi(G) > i (G) >
A(G) + 1. If G is connected, the first equality holds if and only if G is bipartite, the
second equality holds if and only if A(G) =n — 1.

Proof. Since |L(G)| = D(G) + A(G) = Q(G), and G is connected, it follows that
A(G) and therefore Q(G) is nonnegative and irreducible. By Theorem 2.1.8, we
have p1(G) > pi1(G). Now suppose that pi(G) = u1(G), then by Theorem 2.1.8,
D(G) — A(G) = U(D(G) + A(G))U™!, where U is a diagonal matrix with diagonal
entries of absolute value 1. Assume that G is not bipartite. Then G has an odd cycle

U Ug . . . UgpUopr1Ur. Hence,

(D(G) L\ A(G))Uluz = Uulul x1x Uil

uu "

S0, Uyyuy, = —Uuyug- Repeating this argument; one can ebtain that U,,u, = —Uyyu, =

Usiugs - U, = Uy and U,

) Y UL+ 1 ULk 1 U2k 41Uk +1
tite.

= — U, u,, Impossible. Thus G is bipar-

Conversely suppose that G is a bipartite graph and S, Tis a bipartition of V(G).
Then it is not.to verify that W/(D(G)— A(G))W~! = D(G) + A(G), where W =
diagWyy = u € V(Q)), and W= 1ifuw e S and W, = —1 if w € T. Thus
11(G) = p1(G). H

Now, we consider some upper and lower bounds for ¢o(G), and determine the
unique unicyclic graph"with maximal-signless Laplacian spread among the class of
connected unicyclic graphs of order n.

The next result gives bounds for ¢ (G), when G is a connected graph.
Theorem 8.3.7. If G is a connected graph, then
di — d, + 1 < pg(G) < max{d(v) + m(v) : v € V(G)},

where the upper bound holds if and only if G is reqular bipartite or semi-reqular

bipartite.

Proof. Lemma 8.3.6 and Corollary 8.3.2 implies the strict lower bound. And the
upper bound follows from Proposition 8.3.3. O
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8.4 The lower bound

Let G = (V,E), it 0 # V4 C V(G), by the average degree of V;, say dy, we
mean that do = 3, () d(v)/|Vi]. Denote the (n,m) graph is a graph G(V, E)) with
V| =n and |E| = m.

Theorem 8.4.1. [20] Let G be a connected (n,m) graph with n > 2. Suppose G
contains a nonempty set T of t independent vertices, the average degree of which is

dy. Then,

20(G) > ——/(ndo)2 + 8(m — tdo) (2m — ndy).

n—i

Proof. The t independent vertices give rise to.a partition of Q(G) with quotient matrix

do do :
B = . The eigenvalues of B are

tdo 4m—3tdg
n—t n=t

2(n'=1t) 2(n —t) v/ (ndo)? +8(m — tdy)(2m — ndy).

Bl?BZ =

By Lemma 2.2.3, p; > (152 = p,,which implies the required inequality. [

Remark 8.4.2. If G is k-regular, then ndy.= 2m and Theorem 8.4.1 gives p4(G) =
vo(G) > nk/(n —t), where't and d;, are denoted as in Theorem 8.4.1. Solving for ¢
gives Hoffman’s bound on #.when G is k-regular:

i@l
~ k= pa(G)
Thus, Theorem 8.4.1 may be regarded as a generalization of Hoffman’s bound to
irregular graphs. There are may graphs for which the bound in Theorem 8.4.1 is
attained. For if G is k-regular, the bound is attained if and only if G has a set T" of
independent vertices that attains Hoffman’s bound. Also, if G = G(X,Y') is bipartite
and T is either of its two vertices parts, then m — tdy = 0 and Theorem 8.4.1 gives
p1 = po(G) > nm/t(n —t). Here, rank(B) = 1 in the proof of Theorem 8.4.1, and
equality holds in the bound if and only if G is semi-regular. By Theorem 8.4.1, it

immediately has the following corollary.
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Corollary 8.4.3. Let p be the number of pendent vertices of G. If G is a connected

(n,m) graph with n > p > 1, then
1

n—p

vo(G) > V/n? 4+ 8(m — p)(2m — n).
Equality holds, for example, if G = K -1 and p =n — 1.

If d(u) = dy, then w is also an independent set of G. By Theorem 8.4.1, we have

the following corollary.

Corollary 8.4.4. If G is a connected (n,m) graph with n > 2, then

; =V (nd1)? & 8(m — di)(2m — ndy).

va(G) 2

Equality holds, for example, if G = K,,.
By the proof of Theorem 8:4.1, we have the following remark.

Remark 8.4.5. If G is a connected (n,m) graph and contains (1 <t < n) indepen-
dent vertices, the average degree of which is d,, then

4m + nd, — 4td, / 1
2(n — t) 2(n—t)

p1(G) >

V(nd,)? + 8(m —td,)(2m — nd,).
Also, with thessame methed as Corellary 8.4.4, we have the following remark.

Remark 8.4.6. If G is a connected (n,m) graph with n > 2, then

4m + ndy = 4d, 1 :
2(n—1) b 2n —'1) Vndy)? +8(m — dy)(2m — ndy).

p(G) >

Let G be a connected (n, m) graph. Suppose G contains (1 < ¢ < n) independent

vertices, the average degree of which is d,. Then, the t independent vertices give rise

do —d
to a partition of L(G) with quotient matrix B = ( _tz y ¢ )
n—t ot

Lemma 8.4.7. If G be a connected (n, m) graph and contains (1 < t < n) independent
vertices, the average degree of which is d,. Then, py > nd,/(n —t). In particular, if
G is a connected k-reqular graph, then py > nk/(n —t). Equality holds, for example,
if G2 K,.
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121 L]

The graph H. Fig 8.1.

As shown in the next example, the bounds.in Remark 8.4.6 and Lemma 8.4.7 are

sometimes better than the bounds in Lemma &.3.6.

Example 8.4.8. Let H be-the graph as shown in Fig 8:1. Clearly, 7" = {vy, v} is
an independentwvertex. set, and d, = 4. By Lemma 8.4.7; it follows that p;(H) >
nd,/(n—1t) =65 =dy+ 1. Actually; p,(H) = 6. Thus, the bound in Lemma 8.4.7
can be attained. If we replace dy by 4 in Remark 8.4.6, then we have p;(G) > 5.78,
which is also better than pi(G)>dj+ 1'==5 in Lemma, 8.3.6.

Proposition 8.4.:9. [20/ Suppose G has two induced subgraph G1, G, where G; has
n; vertices and e; edges forvi.= 1,2, V(Gy) O V(Gs) = 0 and ny + ny = n. Let
a1 = ,cviay) Av)/m andlag = 37 6,y Aw)/na, then

2e1  2eq age1 G162
G) > )2 - 16(— + —).
e )_\/(a1+a2+n1+n2) (n1 +n2)

ni ni

2eo 2eg
az — 4 G+ =

261 261
. . . ap + - ap — =
Proof. Note that Q(G) has B as it quotient matrix, where B = ( )

Obviously, B has two eigenvalues

1
51,52:§[a1+a2—|——+—:|: a; + ag+ — + —)2 — 16(— + —)]

261 262 ( 261 262 a92€1 a1€2
ny L) nq L) ny L)

Then Lemma 8.4.7 implies the result. ]
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Fig 8.2.

The join of two vertex disjoint graph G, Gy is the graph G V G5 obtained from

their union by including alliedges between the vertices in G; and the vertices in Gs.

Corollary 8.4.10. Suppose G = G V G, whereeach G; is a graph has n; vertices
and e; edges for .= 1,2. Then

4 4
ool@) > \/(n—ir i | + 2)2 — 16(eg + o +

ny no ning '

46162

Equality holdsyfor example, if G = K.

PTOOf. Note that G = Gl V GQ, then ay — 261/711 = Ny and a9 — 262/712 = Na. By
Proposition 8.4.9; the conclusion follows.. When G = K, it is readily checked that
equality holds because o (K,) = n. O

In the following, letU,, denote.the class of ¢onnected unicyclic graphs of order n.
Let Uy(n — 3,0;n),Ur(n — 4, 1;n) be the unicyclic graphs as shown in Fig 8.2.
Lemma 8.4.11. /23] Ifn > 8 and G € U,\U;(n — 3,0;n), then pi(G) < p1(Uy(n —
4,1;n)), where equality holds if and only if G = F,.

Theorem 8.4.12. [20] Ifn > 8 and G € U,\U;(n—3,0;n), then oo(Ui(n—3,0;n)) >
eqQ(G).

Proof. By a straightforward computation, we have

p(Ui(n=3,0;n)) = (z—1)" " fi(z),
p(Ui(n—4,Ln)) = (z—1)""fo(z),
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@M

W,
Fig 8.3.

where fi(z) = 2% — (n + 3)&*+ 3nw — 4y and fo(x) = 2° — (n + 5)z* + (6n +
3)z® — (In — 1)x* + (3n+ 8)a— 4. By Lemma 8:4.11, we only need to prove that
wo(Ui(n —3,0;n)) > pi(Ui(n — 4,1;n)), because p1(G) < p1(Uy(n —4,1;n)) and
pu(G) > 0. Since F(0) = =4<10, f1(0.2) = 0.56n — 4112 > 0, fi(n) = —4 < 0, and
filn+1) =n?~n+6 > 0,by-the equality it follows that 0 < p, (U;(n—4,1;n) < 0.2
and n < p1(U(n—+3,0;n) < n+ 1. Thus; og(Us(n —3,0;m)) = p1(Ui(n —3,0;n)) —
on(Ur(n — 3,0;1)) > n — 0.2, Since fo(0) = —4 < 0, f,(0:3) = 0.2439n — 1.468 > 0,
f2(1) =4 —n <0, f2(2) = 20~ 8> 0, f2(6) = 2024 — 306n < 0, and fy(n —0.2) =
0.8n* — 5.44n® ¥ 5.272n% + 7.1184n — 5.59232 > 0,/by the equality it follows that
6 < p1(U1(n—4,1;m)) <n—0.2. Thus, p1(Uy(n—4,1;m) < n—0.2 < ¢o(Ui(n—3,0;n).
This completes the proof of this result. O

Remark 8.4.13. If G is a regular graph, then by Proposition 8.2.1 p4(G) = pqo(G).
By examining the spectrum of A(G) and Q(G) for graphs on five vertices (for example,
see [3, p. 273-275]and [19] ), we see that the inequality ¢4(G) < po(G) often holds.
But for the graph W; shown in Fig 8.3, we have w4 (W) > 5.744 > 5.657 > ¢q(Wh).
It is natural to consider when the strict inequality p4(G) > ¢o(G) is necessary and

when it is sufficient.

Remark 8.4.14. In Proposition 8.1.2, it implies that ¢ (G) < ¢g(G) always holds
for bipartite graphs G. But for the graph W, shown in Fig 8.3, we have ¢ (W) >
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4.123 > 4 = pg(W3). Thus, we could also consider the conditions for the inequality
or(G) > o(G) to hold.

Conjecture 8.4.15. In Theorem 8.4.12, we determine the unicyclic graph with max-
imal signless Laplacian spread among all connected unicyclic graphs of order n. But
the graphs which share the maximal signless Laplacian spread among all connected
graphs of order n are still unknown. Let K! be the graph on n vertices obtained

by attaching a pendant vertex to K, ;. Then pg(K}) = v4n? —20n + 33. So,

0o(K}) < 2n —4 when n > 5. A computer run [20] on connected graph G of order
n for 3 < n < 8 indicates that if n # 4, then pg(G) < pg(K}) and that, when
n = 6,7,8, equality is attained only when G/=.K!. Note that if G is disconnected,
then it is straightforward to check that ¢ (G)< 2n — 4 and the equality is attained
only if G = K,,_1 + Ky, which is the complete graph on n — 1 vertices together with a
single isolated vertex. Because-of the computer run and because K! is obtained from
the disconnected maximizer K, | + K by adding a single'edge, it seems likely that
0o(G) < po(K,) for connected graphs G of order n.< 5.
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