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The Terwilliger Algebra of the Folded n-Cube and Its
Applications

Student: Bo-Cheng Huang Advisor: Prof. Chih-wen Weng

Department of Applied Mathematics
National Yang Ming Chiao Tung University

Abstract

The paper [1], written by Junie T. Go, contains lots of interseting results of the Terwilliger algebra
T(Qy) of the hypercube Q,,. Inspired from the paper, we derive some results related to the Terwilliger
algebra 7 ([J,,) of the folded n-cube [J,,. To construct the folded n-cube [J,,, we may either use @Q,, by
quotient method or use @,,—1 by merge method. We use the irreducible 7 (Q,,)-module (or 7 (Qy—1)-
module) of the Terwilliger Algebra of hypercube to construct the irreducible 7 ([J,,)-module of the Ter-
williger Algebra of the folded n-cube. We discover that the adjacency matrix A and the dual adjacency
matrix A* of the irreducible 7 (0J,,)-module with the diameter D of [J,, and endpoint r of the Terwilliger

Algebra of the folded n-cube satisfy the relations

A2A* —2AA* A+ A*A% = 4A% + 164" — a1,

APA - 2A*AA* + AA*? = 4(AA* + A*A) + 4(n — 1)A,
for some scalar a,, . Suppose that a; o = 4 and a4pm+2,2m+1 = —16(2m + 1) for m > 0. Then

4n?, r =0,
an,r =

ap—2r—1 — 16 1<r< L%J

We obtain the center of the algebra generated by symbol A, A* subject to the above two equations.

Keywords: Terwilliger algebra, folded n-cube, Askey-Wilson relation
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1. Introduction

Throughout the thesis, I" denotes a finite simple connected graph with nonempty vertex set X. Let

Jr denote the path-length distance function of I'. The diameter D of T is defined by

D = max Or(z,y).
z,yeX

Given any x € X and let
Li(z)={ye X |or(z,y) =1} fori=0,1,...,D.

For short, I'(x) = 'y (z). We call I distance-regular whenever forall i € {0,1,...,D}andallz,y € X

with Or(x, y) = i, the numbers
ITi(z) AT(Y)l,  Tipa () AT(Y)],  [Tica(z) NT(y)]

are independent of x and y.

Foralli =0,1,..., D, the i-th distance matrix A; € Matx (C) is defined by

L ifor(z,y) =1,
(Ai)zy =

0 ifdr(z,y) #i

for all x,y € X. We abbreviate A = A; and A is called the adjaceny matrix of T.
Let n be a positive integer. The hypercube @), of dimension n, i.e. n-cube, is a graph with vertex set

VQ,, and edge set £Q),, as follows

VQn ={a1az---ay : a; € Fa},

EQ, ={zy : z,y € VQ, differ at exactly one position},

where Fo = {0, 1} is the finite field of two elements. For a € Fo, let @ denote 1 — a, and for x =

aias - an € VQ,, let T denote a1as - - - @y,



The folded n-cube [, is the graph obtained form @,, with vertex set V[, and edge set £, as follows

VO, ={{a1a2 - apn-1an,@1G2 - An-1Gn} : a; € Fa},
El:ln :{{l‘,j}{y,y} LY € Van

x and y (or z and y) differ at exactly one position}.

The method of constructing [,, above is called quotient method.

{010,101} {110,001}

{000, 111} {100,011}
Q3 L5

Figure 1.1: Using quotient method to gets [3 from ()3

For z = {a1as---an_1an, @0z - ap_1a,} € V0O,, we might assume a, = 0 and use 2’ =

aiasg - - - ap—1 to represent x. Then for z,y € VI,

vy € EO, &2y € EQ, 1ory =2’

010,101} 01
{000, 111 110,001} 00 11
100,011} 10

Before After

Figure 1.2: Neighbors of {000, 111} in [Js



Hence we can use another method to obtain [1,, form (),,_1 by adding an edge between every pair of

vertices at distance n — 1, i.e.

VO, ={a1az--an—1: a; € Fo} =VQy 1,
EO, ={zy : z,y € VQ,_ differ at exactly one position}

U{zZ : 2 € VQn_1}.

The method is called merge method. By using the merge method, the adjacency matrix of [J,, could be

written as

AO,) = A(Qn-1) + An—1(Qn-1)-

So we use either quotient method or merge method to obtain a folded n-cube from a hypercube.

01 11 01 11

00 10 00 10
Q2 L5

Figure 1.3: Using merge method to gets [ from ()5

In the thesis, every algebra is a unital associative algebra. Given a nonempty finite set Y, let
Maty (C) be the algebra consisting of the complex square matrices indexed by Y. The goal of this thesis
is to decompose the Twilliger algebra of folded n-cube with the matrix representation of adjacency matrix
and dual adjacency matrix.

The thesis is organized as follows: In Section 2, we introduce some background about Terwilliger
algebra and facts of the hypercubes related to the folded n-cubes. In Section 3, we will apply tensor
product and equtiable quotient to decompose the Terwilliger algebra of [J,,. In Section 4, we discover

that the adjacency matrix A and the dual adjacency matrix A* of the irreducible 7 ([J,,)-module with the



diameter D of [,, and endpoint r of the Terwilliger Algebra of the folded n-cube satisfy the relations

AZA* —2AA* A+ A* A% = 4A% 4 16A* — appnl,

AZA - 2ATAA* + AA*? = 4(AA* + A*A) +4(n—1)A

for some scalar ap ,,. We obtain the center of the algebra generated by symbol A, A* subject to the

above two equations.



2. Preliminaries

In this section, we will introduce the definition of Terwilliger algebra [2]—[4] and the decomposition

of the hypercube [1].
Definition 2.1. If I" is distance-regular with diameter D, then for all 0 < ¢ < D, the numbers a;, b;, ¢;
defined by
a; = [Li(z) NT(y)], b = [Liga(z) NT(y)], ¢ = [Tica(z) NI(y)]
for any x,y € X with dr(x,y) = i are called the intersection numbers of T

If I is distance-regular, we observe that
AA; = b1 Ai1 + a; Ay + e Aigr (2.1)

forall 0 < ¢ < D, where b_1A_; and c¢p11Ap4q are interpreted as zero matrices in Matx (C).

Definition 2.2. The Bose-Mesner algebra M of T is the subalgebra of Matx (C) generated by A; for all

0<i<D.

Indeed,
M = SpanC{A07 A17 s 7AD*17 AD}v

where we denote Span the algebra span under C.
Inspired from the recurrence relation (2.1) of distance matrices with intersection numbers, we use it to

obtain any ¢-th distance matrices by the adjacency matrix and the lemma below follows.
Lemma 2.3. IfT is distance-regular, then {A°, A*, ... AP} is a basis for M.

From now on, we suppose that I is distance-regular. Since A is real symmetric and dim M = D+ 1,

it follows that A has D + 1 mutually distinct real eigenvalues 6y, 01, . . . , #p. Consider the linear system:
1 | | Ey I
9() 0 --- 0 D Eq A
60 9P o2 ) \Ep AD



Since the Vandermonde matrix of {6;}2 , is invertible, there exist unique Ey, Fy, ..., Ep € M such that
{Ei}igo form another basis for M [5, Section 4.1]. The matrix E; is called the i primitive idempotent

of I associated with 6; for 0 < ¢ < D. Clearly,

Besides, from the linear system and [5, Section 4.1] we know that

D D D
ZAEi - A<2Ei> =A= Z&Ei
=0 =0 1=0

and

AFE; =0;E; forall0 <i<D.

Definition 2.4. Let B and C' be n x m matrices. Then we define B © C' to be the n x m matrix given by
(B©C)ij = Bi;Cyj

foralll <i<mnand1l <j<m.

A graph I is said to be Q-polynomial with respect to the ordering { E; } ZD:O if there are scalars a}, b7, ¢!

R )

such that b7, = ¢ =0, b;_;c7 # 0forall 0 < < D and

1 k * k
E\0F = m(biniq +a; B+ c; 1 Eiq)

for 0 <¢ < D, where b* | E_1, C*D_HEDH are interpreted as zero matrices in Matx (C).

Fixz € X. Forall 0 <i < D, let Ef = E(x) denote the diagonal matrix in Matx (C) defined by

1 ifop(z,y) =1,

0 ifdp(z,y) #1
forally € X. Since E} E} = 6;; L, the matrices { £ D, are called the i dual primitive idempotent
of I' with respect to z.

Definition 2.5. The dual Bose-Mesner algebra M* of I is the subalgebra of Matx (C) generated by E;*



forall0 < < D.

Indeed,

M* = Span{E}, EY,...,Ep}.

Forall 0 < i < D, the it dual distance matrix A;* = A;* (z) is the diagonal matrix in Matx (C) defined
by
(A7)yy = | X|(Ej)gy forally € X.

The matrices { A} }2, form another basis for M* [6, Section 3.1]. We abbreviate A* = A} and A* is
called the dual adjacency matrix of I' with respect to x € X. Like Lemma 2.3, we use the recurrance
relation of primitive idempotents {Ei}ZD:O to obtain any dual distance matrices by the dual adjacency

matrix A*.
Lemma 2.6. (/2, Lemma 3.11]) If T has Q-polynomial property, then A* generates M*.

After defining the Bose-Mesner algebra and dual Bose-Mesner algebra of I', we use them to construct

the Terwilliger algebra of I' and there is a useful theorem about it.

Definition 2.7. The Terwilliger algebra T (I') of I" with respect to x is the subalgebra of Matx (C) gen-
erated by M and M*.

Theorem 2.8. If T is distance-regular with Q-polynomial property, then T (I') = (A, A*).

2.1 The adjacency matrix and dual adjacency matrix of the

hypercube

Let V denote the vector space consisting of all column vectors over C indexed by vertex set X where

| X'| = 2"™. We will use the isomorphism

CT = =2 C?®--- @ C2

n times

with standard basis {e;, @ €;, ® - @ €;, , @ €;, : i; € Fa} of (C*)®" to represent the matrices of

hypercubes @, folded (n + 1)-cube [J,, 1 of merge method and {e;, ® e;, - - R e;, , Ve;, : ij €



Fo, {i1ig - -+ in0, 4102 - inl} € V1) of (C?)®™ to represent the matrices of folded (n + 1)-cube
Op+1 of quotient method. For the Terwilliger algebra 7 (I') of T, the vector space V' has a natural 7 (I')-
module structure and it is called the standard 7 (I")-module. If I" is distance-regular with Q-polynomial
property, then it is sufficient to use A(I") and A*(T") to represent 7 (I"). In this subsection, we show some
lemmas related to the construction of some matrices of J,, by induction on n [6, Section 3.2]. We will

construct the related matrices of [J,, in the next section based on these results.

Lemma 2.9. Let A,,(Qy,) be the n-th distance matrix of Q. Then for n > 2, we have

An(Qn) = An—l(Qn—l) & A(Ql)

Lemma 2.10. Let A(Qy,) be the adjacency matrix of Qr. Then A(Q1) = Jo — Iz and for n > 2,

A(Qn) = A(Qn-1) @ I + Iyn-1 @ A(Q1).

Lemma 2.11. The eigenvalues of A(Qy,) are

0;(Qn) =n—2i

with corresponding multiplicity m; = (7) fori=0,1,...,n.

Lemma 2.12. Let E;(Q,,) be the i'™ primitive idempotent of Q,, associated with 0; fori = 0,1,... n,
where 0; is same as the eigenvalue of A(Qy,) in Lemma 2.11. Then Ey(Q1) = %Jg, Ei(Q1) =1 — %Jg

and forit=0,1,...,n,

Ei(Qn) = Ei(Qn-1) @ Eo(Q1) + Ei—1(Qn-1) ® E1(Q1). (2.2)

Note that E_1(Qpn—1) and E,(Q,—1) are interpreted as the zero maps.

Lemma 2.13. Let A*(Q.,,) be the dual adjacency matrix of Q,, with respect to a vertex © € Q. Then

A*(Q) = diag(1, —1) and for n > 2,

A*(Qn) = A*(Qn—l) ® Iy + ]anl X A*(Ql)



Lemma 2.14. The eigenvalues of A*(Q,,) are
0; (Qn) =n—2i

with corresponding multiplicity m; = (7) fori=0,1,...,n.

2.2 The Terwilliger algebra of the hypercube

The hypercube @)y, has vertex set V' Q),, = F3' and for x,y € V@), there is an edge between x and
y if = and y differ at exactly one position. Hence, each vertex of @),, has n neighbors. Note that the

intersection numbers of (),, are

ai(Qn) =0, bi(Qn) =n—1, ¢c(Qn)=1

forall i = 0,1,...,n. Recall the following results in [1], we have all the irreducible modules of the

Terwilliger algebra 7 (Q,,) of @, and know the dimension of the Terwilliger algebra of the hypercube.

Theorem 2.15. For each 0 < r < | 3], up to isomorphism there exists a unique irreducible T (Qy)-
submodule W, of the standard module V := CV 9" such that W,NE}(Q,)V # 0and W,NE}(Q,)V =

0 fori < r. Moreover W, has a basis 8 = (wo, w1, . .., wn_2.), where w; € E}_(Qn)W,, such that

0 n—2r 0
1 0 n—2r—1
[A(Qn)]s = 2 0 ,

0 n—2r 0

[A*(Qn)]p =diag(n — 2r,n —2r —2,...,2r —n).

Theorem 2.16. For any positive integer n,

dim7(Qn) = (” "?f 3) .



3. The Terwilliger algebra of the folded

n-cube

From [4, p.196-197], we know that the folded n-cube is a distance-regular graph with Q-polynomial
property. We want to decompose the Terwilliger algebra of the folded n-cube in this section. Before we
construct the adjacency matrix and dual adjacency matrix of [,,, there are some properties of [J,, worth
to mention. Let {z, 7}, {y, 7} be vertices in [J,,, where 2,y € V(Qy). Then either dg, (z,y) < 5 or

0q, (z,7) < 5. Hence, 0o, ({z, 7}, {y,7}) < 5. Ifnisevenwith 9y, (z,y) = §, wehave dg,, (z,7

~—

2 so the diameter of [, is 2. If nis odd with 9, (z,y) = 5%, we have 0o, (z,y) = 4L, 99, (T, y) =
2t 9g, (T, 7) = "5, so the diameter D of O, is 25*. In summary, D(CJ,) = | %]. A similar argument

shows that

same as those of @), for all ¢ < D, with one exception in the case that n is odd and ¢ = D =

nTil’aD(Dn) =D+ 17 bD(Dn) = 0and CD(Dn) = D.

3.1 The adjacency matrix and dual adjacency matrix of the

folded n-cube

In this subsection, we construct the adjacency matrix and dual adjacency matrix of the folded n-cube

0, from the hypercubes Q,,, form <n .
Remark 3.1. [, is isomorphic to );.

By Remark 3.1, we have A((y) = Jo — Iz and E([y) = I — %Jg. Next, we want to find recurrence

relations for A((J,,) and A*(0J,,).

10



Lemma 3.2. Let A(O,,) be the adjacency matrix of O,,. For n > 3, we have

A(Dn) = A(anl) + Anfl(anl)

= A(anQ) ® Is + (IQn—2 + Anf2(Qn72)) ® A(D2)

Proof. Immediately from Lemma 2.9 and Lemma 2.10. O

Remark 3.3. For n > 4, we have

AO,) =A(0O-1) @ I+ Ign—2 @ A(0g) — Ap—2(Qn—2) ® 2E(O2).

Lemma 3.4. Forn > 3, the eigenvalues of A(Oy,) are

0;(0,) =n —4i

with corresponding multiplicity m; = (Z) fori=0,1,...,D =

I.

(SIS

Proof. When n = 3, since A(Os) = Jy — 14, the eigenvalues of A((3) are 3, —1 with corresponding
multiplicity 1, 3, respectively. By Lemma 2.11, we know the eigenvalues of A(Q,—_1). Let v be an
eigenvector of A(Q),,—1) corresponding to the eigenvalue 6;(Q,—1) =n—1—2j, where0 < j <n—1.

Then

(A(Qn-1) + Ap—1(Qn-1))v
=A(Qn-1)v + Ap_1(Qn-1)v
=(n—1-2j)v+AP"HQ1)(v1 @va @ - v,_1)
=(n—1-2j)v+ (—1)%v

(n — 2j)v, for even 7,
(n —2j —2)v, forodd j,

=(n — 4i)v,

where i = (%1 So 0;(00,,) = n — 4¢ with corresponding multiplicity (;:11) + ("2;1) = (3;) for

i=0,1,...,[2]. O

11



Lemma 3.5. Let E;(0J,,) be the i™ primitive idempotent of O, associated with 0;(0,,), same as the

eigenvalue of A(O,,) in Lemma 3.2, fori =0,1,...,D = |§]. Forn > 3and 0 < i < D, we have

Ei(0,) = Eoi—1(Qn-1) + E2i(Qn-1),

where E;(Qp,) with j < 0 or j > m are zero map for m > 1.

Proof. By Lemma 2.12, since

A(0n)(E2i-1(@n-1) + E2i(Qn-1))
=(A(@n-1) + An1(Qn-1))(E2i-1(Qn—1) + E2i(Qn-1))
—(n — 4i + 1) Boi—1(Qn_1) + (n — 4i — 1) E2i(Qn_1) — Esi—1(Qn_1) + E2i(Qn_1)
=(n — 4i)(E2i—1(Qn-1) + E2i(@n-1))

=0;(0n) (E2i—1(Qn-1) + E2i(Qn-1))

for0 <4< [%] and

L%J n—1
(E2i-1(Qn-1) + E2i(Qn-1)) = Z Ei(Qn-1) = Izn—1,
i=0 i=0
the proof follows. O

Remark 3.6. Besides, forn > 3 and 0 < ¢ < D, we have

Ei(0,) =(F2i-1(Qn-2) + E2i(Qn—2)) ® Eo([2) + (E2i—2(Qn—2) + E2i—1(Qn—2)) ® E1(0z)

=E;(0,-1) ® Eo(02) 4 (E2i—2(Qn-2) + E2i—1(Qn—2)) ® E1(O2),

where E;(Q,,) with j < 0 or j > m are zero map for m > 1.

Lemma 3.7. Let A*(O,) be the dual adjacency matrix of O, with respect to a vertex x € [,. For

n > 3, we have

A*(Dn) = AT(Qn—l) + AS(Qn—l)

= A" (On-1) ® Iz + (Ign-2 + A"(Qn-2)) ® A*(02).

12



Proof. Giveny € Fg_l, let ¢, denote the coefficient of 7 in El(Qn,l)(A)@”*l with respect to the basis

{:f;}xngfl for V@Q,—1 and d, denote the coefficient of 3 in E1(0,)0%"~1 with respect to the basis

{:f:}xe]Fg_l for V,,. We have

A*(Qn-1) = 2" eyg, A*(O,)g = 2" dyy.

Since
El(l:ln) = El(anl) + EQ(anl)
= El(Dn—l) ® EO(DQ) + (EO(Qn—Z) + F; (Qn—Q)) ® E1(D2)
1 1

= El(Dn—l) ® 5:]2 + (WJQn—Q + El(Qn—Z)) ® El(DQ),

we have
1 1
dy = Sdiys,ya 1) T (Gazz T Crpn1))dyn-

Hence

* ~ n— ~ n— 1 1 A
A*(On)g =2 1dyy =2 1(§d(y17.-~,yn_1) + (2717_2 + C(yl7--~7yn—1))dyn)y

= A1 ® Qn-1) Qi+ 1 Q-+ ® fn1 @ A*(D2)

+ A" (Qn—2)(i1 ® -+ @ Jn—1) @ A*(O2)Gn-

O

Let 035(0,) > -+ > 91‘% | (O,,) be the eigenvalues of A*(0,,) and 6 (0J,,) have multiplicity m; for

all0 < i < |2]. By Lemma 3.7, the largest eigenvalue 6;5(CJ,) of A*(0J,) is (5) and the smallest

*

eigenvalue 0 (Op) of A*(Oy,) is — | 5 |. Forn > 2, eigenvalues of A*(0, 1) are 07 (O,,) & (n — 2i)

I3 IS

for 0 < i < |%]. Thus we derive Lemma 3.8.

Lemma 3.8. The eigenvalues of A*(0,,) are

1

with corresponding multiplicity m; = ("fl) + (Zj) fori=0,1,....,D = [§].
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Proof. The differences of {07 (0,,)}2 | are —2(n — 1), —2(n — 3),...,—2(n + 1 — 2D). So

0 (0,) = (Z) —o(n-i—i?) = <;‘> — 2i(n — 1)

fori =0,1,...,D. The multiplicity m; of 8} (0J,,) depends on the number of vertices in distance i from

n—1
n—i

a given vertex in [,,, so m; = oy 4 by the merge method constrution. ]
g i

n | eigenvalues with multiplicity
2 11

3 3, 15

4 6,04, —23

5 10, 25, —219

6 15,56, —115, =310

Table 3.1: Eigenvalues of A*((J,,) for2 <n <6

We take a look on irreducible modules between the hypercube and the folded n-cube. With quotient
method from @Q,, to OJ,,, for odd n, every irreducible 7 (Q,,)-module W, is of even dimension for 0 < r <
|5 |. Deduce W, to T (0, )-module WT, V[A/; is of dimension | § | — r + 1. For even n, every irreducible
T (Qn)-module W, is of odd dimension for 0 < » < | §]. Deduce W, to 7 ([J,,)-module I/IfZ,, VVT is of
dimension |5 | — 7 + 1 if 7 is even and W, is of dimension | 5] — 7 if 7 is odd. On the other hand, with
merge method from @, to [J,,, the irreducible 7 (Q,,—1)-module W, would be decomposed into two
nonisomorphic 7 (J,,)-modules for 0 < r < | §]. For odd n, W, is decomposed into one 7 (1, )-module
of dimension | § | —r + 1 and one 7 (0J,,)-module of dimension | 5 | —r. For even n, W, is decomposed
into one 7 (0,,)-module of dimension |5 | —r + 1 and one 7 (0, )-module of dimension |5 | — 7 — 1 if
7 is even and two nonisomorphic 7 (0, )-modules of dimension |5 | — 7 if 7 is odd.

By Proposition 4.1 and Proposition 4.9 in [7], we have known that the isomorphism class of irre-
ducible 7 (0, )-module is determined only by r. To compare with all irreducible 7 (Q,,)-modules in
Table 3.2 made from the results of [1], we summerize the dimension of all irreducible 7 (CJ,,)-modules

in Table 3.3 from the results of [7].

14



dimensions with multiplicity
@1 2
Q2 3, ]_
Q3 4,2?
Qs 5,3, 17
Qs 6,44 2°
Qs 7,5°,3%,1°

Table 3.2: The dimension and multiplicity of the nonisomorphic irreducible 7 (Q),,)-module of
standard 7 (@,,)-module for 1 <n <6

dimensions with multiplicity
‘:‘2 2
Us 2,12
Ly 3,13,12
Uy 3,24, 1°
U 4,2° 2"
D7 4, 36’2147 114

Table 3.3: The dimension and multiplicity of the nonisomorphic irreducible 7 ([J,,)-module of
standard 7 ((J,,)-module for2 <n <7

Consider the merge method of [J,,, we need to find out the matrix representation of A, _1(Qp—1)

before we decompose the Terwilliger algebra of the folded n-cube.

Theorem 3.9. For each 0 < r < | 3], the irreducible T (Qyn)-module W, with basis 3 from Theorem

2.15, we have

Proof. By the intersection numbers of (),,, we have the following linear system,

A(Qn)* = nl +242(Qn),

A(@n)A2(Qn) = (n = 1)A(Qn) + 343(Qn),

15



By Theorem 2.15, we know that the matrix form of [A(Q),,)] g with respect to a given basis /3 of W,.. Thus

we use the recurrence relations of distance matrices to get the form of [A4,,(Qy)]s- O

Theorem 3.10. Let D be the diameter of O, and {0} i';o be the eigenvalues of the dual adjacency matrix

AX(Oy,) with 05 > 67 > --- > 05,

1. When n is odd, for each 0 < r < D, up to isomorphism there exists a unique irreducible T (OJ,,)-
submodule W,. of the standard module V := CVPr such that W, 0 EX(0,)V # 0 and W, N
Ef(O,)V = 0fori < r. Moreover W, has a basis v = (wo,w1,...,wp—_y), where w; €

B (On)W,, such that

0 n—2r 0
1 0 n—2r—1

[A(DTL)]’Y = 2 )
0 D—r+2
0 D—r (-1)"(D—-r+1)
(A (D) =diag(6], 8741, - 0p).
2. Whennisevenand 0 <r <D,
(a) for evenr, W, is with basis v = (wo, w1, . ..,wp—r), where w; € E;_,(0,)W,, such that
0 2(D—r) 0
1 0  2D-r) -1
2 0
[A(8n)]y = :
D—r+2
D-r—1 0 D—r+1
0 2D — ) 0

(A" ()], = diag(6;, 0714, 0p).

Especially, [A(O,)]y is same as the matrix representation of [A(0,)]y on basis ' =

(wo, w1, ..., wp—) of irreducible T (Dy(p_,))-module I/I/?O.
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(b) Foroddr, W, has a basis B = (wo,w1, ..., wp_r_1), wherew; € E’_;(0,)W,, such that

T

0 2(D—r) 0
1 0 2D —r)—1
[A(G)]y = 2 0 :

D—7r+2

0 D—-—r—-1 0

[A*(Dn)]v = d1ag(9;’f, 0:—&-17 s 793—1)'

Especially, [A(O,)], is same as the lefi-top (D — r, D — r) block of [A(O,)], on basis
7' = (wo, w1, ..., wp—) of irreducible T (Dy(p_,))-module Wo.
(c) If D is odd, then Wp_1 is with basis v = (wo, w1), where w; € EY,_, ,(0,)W,, such that
0 2
[A(O)], = and [A*(O,,)]y = diag(0},_,07,) but Wp is of dimension 0.
2 0
(d) If D is even, then both Wp_1 and Wp are of dimension 1 and [A(O,)], = (0) with

[A*(Oy)]y = (65)_,) and [A*(O,)]y = (67)), respectively.

Proof. We apply algorithms to construct the basis of W,. from Theorem 2.15.
(Merge) Let V[A//T be the irreducible 7 (Q,,—1)-module at endpoint r. Let 5 = (wo, w1, ..., Wp—27-1)

be the basis of WN/T mentioned in Theorem 2.15 and Theorem 3.9. Then we have

0 n—2r—1 0
1 0 n—2r—2
[A(Qn-1)]p = 2 0 :
1
0 n—2r—1 0
0 (=1)"
[An—1(Qn-1)]p =
(=1)" 0
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1. When n is odd, first we need to rearrange the basis from 3 to

B = (wo, w1, W2p—2r, -+, Wp—p, WD—p41)-

Then we do equitable quotient from [A(Qn—1) + An—1(Qn-1)] Fto [X], for some .

(a) Ifriseven, then v = (wp, w1 + wWap—2py ..., Wp—p + Wp—ry1).
(b) Ifris odd, then v = (wo, W1 — W2D—2py -+« oy WD—y — wD_TH).
Restrict v from CY@»-1 to CVP». Since the dimension of Span(y) is D — r 4+ 1, Span(y) N

Ef(0,)V # 0 and Span(y) N EX(0,)V = 0 for i < r, [A*], follows the dual distance matrices

and we obtain the desired result.

2. When n is even, first we need to rearrange the basis from S to

/6 5 (’LUO, w1, W2D—-2r—15+++WD—r—1, WD—r+41, war)‘

Then we do equitable quotient from [A(Qpn—1) + An—1(Qn-1)] sto [X], for some .

(a) Ifriseven, then v = (wp, w1 + Wap—2r—1y.- ., WD—p—1 + WD—p41, WD—7)-
(b) Ifris odd, then v = (wo, W1 — W2D—2p—15--- s WD—p—_1 — wD,T+1).
Restrict 7 from CY®»-1 to CVP». Since the dimension of Span(y) is D — 7 + 1 for even  and

D — r for odd r, Span(y) N E;((,)V # 0 and Span(y) N E(0,)V = 0 fori < r, [A*], follows

the dual distance matrices and we obtain the desired result.

(Quotient) Let W, be the irreducible T (Qr)-module at endpoint r. Let 5 = (wg, w1, ..., w,_2,) be

the basis of I;er mentioned in Theorem 2.15. Then we have

0 n—2r 0
1 0 n—2r—1
[A(Qn)]p = 2 0

0 n—2r 0
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1. When n is odd, first we need to rearrange the basis from 3 to

B = (W0, W2ap—2r41, W1, W2D—2p5 - - -, WD—ps WD—p41)-

Then we do equitable quotient from [A(Q,,)] Fto [X], for some .

(a) Ifriseven, then v = (wo + W2p—9r+41, W1 + W2D—-2p, ..., WD—p + 1UD_7«+1).

(b) If r is odd, then v = (wo — W2p—2r41, W1 — W2D—2ps - - -, WDy — WD—p41).

Restrict v from CY@n to CVP» (For all vectors in 7, the values of antipodes are the same.). Since
the dimension of Span(v) is D — r + 1, Span(y) N E;(0,)V # 0 and Span(y) N E*(,)V =0

for i < r, [A*], follows the dual distance matrices and we obtain the desired result.

2. When n is even, first we need to rearrange the basis from S to

/6 = (’U}O, Ww2p—2r, W1, W2D—-2r—15+ -y WD—yr—1, WD—r+1, wD*T‘)'

Then we do equitable quotient from [A(Q,)] jto [X], for some .

(a) Ifriseven, then v = (wo + w2p—2, W1 +W2p—27 1, -, WD—p—1 + WD 41, WD)

(b) Ifris odd, then v = (wo — w2p—2;, W1 — Wap—27—1,- -+, WD—p—1 — WD—r41).

Restrict v from CY %" to CVPr (For all vectors in +, the values of antipodes are the same.). Since
the dimension of Span(~y) is D — r + 1 for even r and D — r for odd r, Span(vy) N E}(0,)V # 0
and Span(y) N E*(0,)V = 0 for i < r, [A*], follows the dual distance matrices and we obtain

the desired result.

Here are some examples to construct a basis y of an irreducible 7 (CJ,,)-submodule W, of CV~,

Example 3.11. We want to construct an irreducible 7 (C)4)-submodule W), there are two methods:

1. With merge method, let 5 = (ego0, €100 + €010 + €001, €011 + €101 + €110, €111) be a basis of an
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irreducible 7(Qs)-submodule Wy. Then by Theorem 2.15 and Theorem 3.9,

03 00 0 0 01
1 020 0 010
[A(@3)]s + [A3(Q3)]s = +
02 01 0100
0030 1 0 00
0 3 01
1 0 30
0 3 01
1 0 30
Changing the ordering of 3 to 5 , we have
013 1|0
110 03
[A(Q3) + A3(Qs)]5 = :
110 03
03 1|0

where 8 = (ep00, €100 + €010 + €001, €111, €011 + €101 + €110). Restrict v = (egoo, €100 + €010 +

eoo1 + €111, €011 + €101 + €110) from CV@s to CVH4, we have

2. With quotient method, let 8 = (ego00, €1000 + €0100 + €0010 + €0001, €1100 +€1010 + €1001 +€0110 +

€0101 + €0011, €0111 + €1011 + €1101 + €1110, €1111) be a basis of an irreducible 7 (Q4)-submodule
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V%. Then

[AQuls=]10 2 0 2 0

Changing the ordering of 3 to B , we have

where 5 = (eo000, €1111,€1000 + €0100 + €0010 + €0001; €0111 + €1011 + €1101 + €1110, €1100 +

1010 + €1001 + €o110 + €o101 + €oo11). Finally, restrict ¥ = (egoo0 + €1111, €1000 + €0100 + €0010 +
1%

eooo1 + €o111 + €1011 + €1101 + €1110, €1100 + €1010 + €1001 + €0110 + o101 + €oo11) from C @1

to CYP4, we have

0 40

where v = (6{0000,1111}7 €{1000,0111} T €{0100,1011} T €{0010,1101} T €{0001,1110}s €{1100,0011} T+

€{1010,0101} + €{1001,0110})-

Example 3.12. We want to construct an irreducible 7 (Og)-submodule W7, there are two methods:

1. With merge method, let 5 = (egoo01 — €00010, €00101 + €01001 + €10001 — €00110 — €01010 —

€10010, €01101 + €10101 + €11001 — €01110 — €10110 — €11010, €11101 — €11110) be a basis of an

irreducible 7 (Q5)-submodule 7.
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ﬁ = {w07 w1, W2, 'I.Ug}

Figure 3.1: An irreducible 7 (Qs)-submodule W; of CV?5

Then by Theorem 2.15 and Theorem 3.9,

03 00 0 0 0 -1
1 0 2 0 0 0O -1 0
[A(Qs5)]s + [A5(Qs5)]s = +

0 2 0 1 0 -1 0 0
00 3 0 -1 0 0 0

0 3 0 -1

1 01 0

- 0 1 0 1

-1 0 3 O

Changing the ordering of 3 to 5, we have

013 —-11]0
1 /0 0|1
[A(@s) + A5(Qs5)]5 = ,
—110 0 |3
01 110
where E = (e00001 — €00010;€00101 + €01001 + €10001 — €00110 — €01010 — €10010; €11101 —

€111105 €01101 +€10101 +€11001 — €01110 — €10110 — 611010)- Restrict v = (600001 — €00010, €00101 +
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% VO
€01001 + €10001 — €00110 — €01010 — €10010—(€11101 — €11110)) from CV95 to CV56, we have

[A0s)], =

Fo(l‘) Fl(.CU) FQ(ZE) Fg(ilf)

x = 00000 N o~
. /// \\\ /// \\\ .
/N €op1o1 €00110 | \ /N
cogor | CTOL | I i
N “ | €p1001 €01010' | ‘ “ \ 7N
(D T U B o S0l TR I N G
NG oo e | ol o N
‘ €10001 €10010' | |
e o | o
\ / \ \ / \ /
\ / \\\ /
N i // N i /
Wo wh
Wit e e :
v = {wo, w1 }

Figure 3.2: An irreducible 7 ((Jg)-submodule W, of CV"s

2. With quotient method, let 8 = (eo00001 — €0000105 €000101 + €001001 + €010001 + €100001 — €000110 —
€001010 — €010010 — €100010, €001101 + €010101 + €011001 + €100101 + €101001 + €110001 — €001110 —
€010110 — €011010 — €100110 — €101010 — €110010; €011101 + €101101 + €110101 + €111001 — €011110 —

€101110 — €110110 — €111010, €111101 — 6111110) be a basis of an irreducible T(Q6)-submodule Wl.

Then

—_
o
w
)

o o O

[A(Qe)ls=1] 0 2 0 2
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Figure 3.3: An irreducible 7 (Qg)-submodule W, of CV@s

Changing the ordering of 3 to 3, we have

[A(Qs)]

™

Il
_
o
o
o
w

where § = (€000001 — €000010, €111101 — €111110, €000101 + €001001 + €010001 + €100001 — €000110 —
€001010 — €010010 — €100010> €011101 + €101101 + €110101 + €111001 — €011110 — €101110 — €110110 —
€111010, €001101 1+ €010101 + €011001 + €100101 + €101001 + €110001 — €001110 — €010110 — €011010 —
€100110 — €101010 —€110010)- Finally, restrict ¥ = (eooo001 —€o00010—(€111101 — €111110), €000101 +
€001001 1+ €010001 + €100001 — €000110 — €001010 — €010010 — 6100010:@%9&%@

v vo
€111001 — €011110 — €101110 — €110110 — €111010)) from CV?6 to CV56, we have

(AL, = :

wherey = (6{000001,111110}—6{000010,111101}7 €{000101,111010} T€{001001,110110} +€{010001,101110} T

€{100001,011110} — €{000110,111001} — €{001010,110101} — €{010010,101101} — 6{100010,011101})-
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Figure 3.4: An irreducible 7 (CJg)-submodule W; of CVs

By Theorem 3.10, we determine the dimension of the Terwilliger algebra of the folded n-cube.
Theorem 3.13. For positive integer D, we have

(D +1)(D? + 2D + 3)

(Z) dim’T(DQD) =

3 9y
. . D+1)(D+2)(2D+3
(ZZ) dlmT(DQD_H) = ( )( 6 )( )
Proof. (1) Whenn = 2D, if D is odd, then
2
dimT (O2p) =2 (2i)* = (D +1)°
i=1
(D +1)(D? + 2D + 3)

3

If D is even, then

dim7 (Oyp) =2 x (12 + 3>+ -+ (D +1)%) — (D + 1)

D+1 z
=2 x (212—2(22‘)2) — (D +1)?
=1 =1
(D +1)(D? +2D + 3)

3
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(i) When n = 2D + 1,

D41
. . D+ 1)(D+2)(2D+3
dim7 (Dap1) = ;:1 2 _ D+ 1)( g )(2D +3)

O

Consider the matrix representation of [A(Cly)],, of the irreducible 7 ((J,,)-module W, at endpoint r

for 0 < r < | 5| with basis v in Theorem 3.10. We have found the eigenvalues of each matrix.

Proposition 3.14. (i) For a > 0, assume that

0 2a+1 0
1 0 2a
Bi(a) = 2
0 a+2
0 a a+1
Then the eigenvalues of B1(a) are 2a + 1,2a — 3,...,—(2a — 1).
(ii) For a > 0, assume that
0 2a+1 0
1 0 2a
B_i(a) = 2
0 a+2
0 a —(a+1)
Then the eigenvalues of B_1(a) are 2a — 1,2a — 5, ...,—(2a + 1).
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(iii) For a > 0, assume that

0 2a 0
1 0 2a-1
2 0
By(a) =
a+2
a—1 0 a+1
0 2a 0
Then the eigenvalues of By (a) are 2a,2a — 4, ..., —2a.
(iv) For a > 1, assume that
0 2a 0
1 0 2a-1
Bs(a) = 2 0
a+2
0 a—1 0
Then the eigenvalues of Bs(a) are 2a — 2,2a — 6, ..., —2a + 2.

Proof. The following are trivial cases:

* The eigenvalue of B (0) = (1) is 1.

* The eigenvalue of B_;(0) = (—1) is —1.

* The eigenvalue of B2(0) = B3(1) = (0) is 0.
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(i) Consider det(Bq(a) — xI). Fora > 1,

det(Bi (a) — 1)

-z 2a+1 0
1 -z 2a
= 2
- a+2
0 a a+l-—=x
—x 2a+1—2 --- 204+1—=x
1 1—2
= 2

a—1—z 2a+1—=2x

0 a 20+1—2x
—1—z 2a 0
1 —1—2 2a-1
2
- —1l-x a+2
a—1 —-1-=2 0
0 a 20+1—x

=(2a+ 1 — z)det(Bs(a) — (x + 1)I).

Since the eigenvalues of Bs(a) are 2a — 2,2a — 6, ..., —2a + 2, we know that the eigenvalues of By (a)

are 2a + 1and 2a — 3,2a — 7,...,—2a + 1.
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(ii) Consider det(B_;(a) — zI). Fora > 1,

det(B_1(a) — )

-z 2a+1 0
1 -z 2a
= 2
-z a+2
0 a —(a+1)—2x
—x 2a+1+z —(2a+1+x) (-1 (2a 41+ 2)
1 —1—-z 20+1+4+2x
= 2
—(a—1)—=x 20+ 1+
0 a —(2a+1)—=z
1—2 2a 0
1 l1—2 2a-1
2
- -z a+2
a—1 1—-= 0
0 a —(2a+1)—=x
=(—2a — 1 — z)det(B3(a) — (1 — x)I).
Since the eigenvalues of Bs(a) are 2a —2,2a—6, . .., —2a+ 2, we know that the eigenvalues of B_1(a)

are —2a — land 2a — 1,2a — 5,...,—2a + 3.

29



(iii) Consider det(Bz(a) — zI). Fora > 1,

—x 2a 0
1 -z 2a-1
det(Bs(a) — aT) = 2
a—+2
a—1 —2 a+1
0 2a —x
—x 2a—1  --- 2 — x
1 l—2 2a—=x
2 2—x
- 20 —x
a—1 a-1—-2 2a—=x
0 2a 2a —x
—1—-z 2a 0
1 —1—2 2a-1
2
- —-1—-z a+2
a—1 —a—-1-=2 0
0 2a 20 —x

= (2a — x)det(B_i(a — 1) — (x + 1)I).

Since the eigenvalues of B_j(a — 1) are 2a — 3,2a — 7, ..., —2a + 1, we know that the eigenvalues of

Bsy(a) are 2a and 2a — 4,2a — 5, ..., —2a.
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(iv) Consider det(Bs(a) — «I). Fora > 2,

—x 2a 0
1 -z 2a-1
det(Bs(a) — zI) = 2 —x
a—+2
0 a—1 —x
—r %2a—1 .- 2 —
1 l—2 20—z
= 2 2—x
2a — x
0 a—1 a—-1—-2x
—1—-—2 2a-1 0
1 —1—2z 2a-2
. 2 —-1-z
a+1
0 a—1 a—-1—=x
=det(Bi(a—1) — (x + 1)I).
Since the eigenvalues of Bi(a — 1) are 2a — 1,2a — 5, ..., —2a + 3, we know that the eigenvalues of
Bs(a) are 2a — 2,2a — 6, ...,—2a + 2. Ol
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4. Applications

First, we define the Askey-Wilson algebra. Let {Y, Z} denote YZ + ZY.

Definition 4.1. ([8]) Fix scalars 3,v,7", 0, 0*,w,n,n* € C. The Askey-Wilson algebra is the algebra

generated by Y and Z subject to the following Askey-Wilson relations

Y2Z - BYZY + ZY? —~A{Y, 2} — 0Z = v*Y? + wY 411,

Z2Y —BIZYZ+YZ? — Y, Z} — 'Y =4Z% + wZ + n*l.

Given a graph I'. Choose Y = A and Z = A*, where A is the adjacency matrix of I' and A* is the
dual adjacency matrix of I' with respect to a vertex x € VI'. By [1, p.399], if I' = @, then A and A*

satisfy the Askey-Wilson relations with

Throughout this section, we use programming to test the cases under the folded n-cube [J,, for n < 10.

For general A = A(0J,,) and A* = A*(,,), we observe that (A, A*) satisfies
AA - 2A%AA* + AA*E = 4{A, A"} + 4(n — 1)A.

Under this assumption, the scalars are § = 2,7* = 4,0" = 4(n — 1),w = v = n* = 0. Butitis
not obvious to find the other equation with proper o, 7 for large n. So we take a look to the irreducible
T (0,)-module W, at endpoint » for 0 < r < [%]. Consider the algebra generated by [A(0,,)]g and

[A*(On)]p where 3 is a basis of W, in Theorem 3.10. We denote this algebra by 7 (L) Iy, -

4.1 The center of 7(0J,) 1y,

r

In this subsection, we let A = [A((J,)]g and A* = [A*(0,,)]3. Before we give the general relation

of 7(Un) Iyy, , we consider the case when r = 0. For two generators A and A* of T(U,,) [y, » we have
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the relations

AZA* —2AAA+ A*A% = 4A% +16A* — 4n?1,

A2 A —2A4% AA* + AA? = 4{A, A"} +4(n — 1) A.

This observation gives us an idea that 7(0,,) [y, is a special case of Askey-Wilson algebra and for the
relations of 7 (CJ,,) [y, , only the coefficient of 1 changes. More precisely, 7 (Cp) [y, is isomorphic to a

special case of the Hahn algebra.
Definition 4.2. ([9]) The Hahn algebra has 2 generators I/(\l, I/(\g subjected to the relations
o~ — ) — —~
[[Kl, KQ], Kl] =aK, + bKl + co Ko + dgl,
K, (K1, K] = a{ K1, Ko} + bKs + e Ky + dil,
where [A, B = AB — BA and a, b, ¢1, cg, dy, dy are structure constants.

With similar idea of » = 0, the following proposition gives the coefficient of 1 in the general relations

of 7(0n) Iy, -

Proposition 4.3. For A and A* of T(Oy) Iy, where W, is the irreducible T (Oy,)-module with the

diameter D of 0, and endpoint r, let the coefficient of constant term be a,, ,. Then A and A* satisfy

AZA* —2AA* A+ A*A? = 4A% + 16A* — a1,

APA - 2A%AA* + AA* = 4{A, A"} + 4(n — 1) A.
Suppose that a1 o = 4 and a4m+2 2m+1 = —16(2m + 1) for m > 0. Then

4n?, r =0,
A4m+2 =
ap—2r—1 — 16 1<r< L%J

By [9, p.1531], we transform the relations of 7 (L) [y, to a simple form with new generator By, B.

Proposition 4.4. For T (O,,) [WT, where W, is the irreducible T (O, )-module at endpoint r, let B; = %A
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and By = $(A* + 25L), then

[[B1, Bo], Bi] = —2B} — 4By + 6,1,

[Ba, [B1, Ba]| = —2{B1, B2}
for some 6y, ;.
Lemma 4.5. Forn > 2 and 0 < r < D, if the irreducible T (O,,)-module W, exists,

5 (n—2r+1)°>-3
n,r — 2 .

Ly 6 Ls 13,1

Ly 22,6,-2 L5 33,13,1
Ue 46,22,6 U7 | 61,33,13,1
Us | 78,46,22,6,-2 || Uy | 97,61,33,13,1

Table 4.1: 26, , of irreducible 7 (0J,,)-module W, for 2 <n <9

Next, we introduce another algebra subjects to different relations with additional terms related to

generators.

Definition 4.6. ([10, Definition 2.1]) The Heun algebra H of the Lie type is generated by X and W with

the following relations

[X, W], X] = 2ol + 21X + 22X + 23W,

[Wv [X, WH =0l + le + y2X2 + y3X3 + W + JJQ{X, W},

where z; and y; are free parameters for i = 0, 1, 2, 3.

Since the Heun algebra of Lie type is isomorphic to the Hahn algebra, we can find the center of the

Hahn algebra and the central element of 7/(C,) [y, [10, p.3].

Theorem 4.7 ([10]). In the Heun algebra ‘H, the following element

Q=X + 2W + 23{X, W} + 24 XWX + 25 X>+

W2 4 27([X, W])? + 2 X3 + 29 X*
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is central if the parameters z; are given by

T3y3
2

T3ys

2

21 =2y — , 22 = —Tox3 + 2T0, 23 = T1, 24 = 2x2,

22 Y3
, 26 =13, 27 =1, 28 = y 29 = .

St ERR

Theorem 4.8. For T(0,) Iy, , where W, is the irreducible T (O, )-module at endpoint r,
Q= ((n—2r+1)°>—11)By — 4B1 B2 By — 4B3 + ([B1, Ba))*

is the central element of T (O,,) [y .

T

Proof. Let X = By = %A and W = By = %(A* + "T_l) Consider the relation of Heun algebra, we

have
rg=0,12 = —2,x3 = —4dandxr1 =yo=y1 = y2 = y3 = 0.
So
22:26_8,34226:_4727:1311(121223225:758229:0
by Theorem 4.7. O
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5. Conclusion

In this thesis, we use two different views of folded n-cubes to find the matrix form of A((J,,) of the
irreducible 7 (0,,)-module W, and the center of 7(C1,,) [y, forall 0 < r < [§]. The observation of
this thesis is mainly done by programming. For example, it is easier to perform the recurrence relation of
distance matrices for the matrix form of A,,(Q,,) by programming in Theorem 3.9. To find what relations
subject to the algebra 7 (U, ) [y, , we quickly experiment the relations for different possible scalars and
use them to find the central element of 7(CJ,,) [y, . For some theorems proved by programming in this
thesis, we wish that the general proofs would be discovered in the future. With some variation of the
hypercube, such as halved n-cube %Qn, folded n-cube OJ,,, hamming graph H (D, q), etc., we have a
wide view of the Terwilliger algebra related to distance-regular graphs with Q-polynomial property.

We give a conjecture related to the folded hamming graph H (D, q).

Conjecture 5.1. Consider the hamming graph H (D, q). Let ajay...ap € VH(D,q). If we collect g
verticesajas - - -ap,ajaz - -ap+1,...,a1as - - - ap+q—1tomakeanew vertex {ajas - - -ap,ajaz - - ap+
1,...,a1as---ap+q—1} in the folded hamming graph H (D, q), then H (D, q) is distance-regular with
@-polynomial property.

Problem 5.2. How to decompose the Terwilliger algebra 7 (H (D, q)) of the folded hamming graph

H(D,q)?
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