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A general version of Kelmans transformation
and its applications on graphs and matrices

Student: Louis Kao Advisor: Chih-wen Weng

Department of Applied Mathematics

National Yang Ming Chiao Tung University

abstract

A Kelmans transformation of a simple undirected graph G is a new graph
Gy obtained from picking two vertices a, b in G and moving the edges incident
on b and not on a to be incident on a. We generalize this concept to nonneg-
ative matrices. With minor constraints, the first result of this thesis shows
that the largest real eigenvalue of a nonnegative matrix will not decrease after
a Kelmans transformation.

A mixed graph is a simple graph whose edges are either directed or undi-
rected, and hence has a nonnegative adjacency matrix which is not necessary
symmetric. The general version of the Kelmans transformation is applica-
ble on the adjacency matrix of a mixed graph and this helps us to define
the Kelmans transformation G} of a mixed graph . We extend the relation
G < GY into a partial order on the set G(n, m) of the isomorphism classes of
mixed graphs of order n and size m; then characterize the maximal /minimal
elements in some of the subposets and weak subposets of (G(n,m), <).

We also apply the general version of the Kelmans transformation on the
researches of the spectral theory of A,-matrices, which combines the spectral
theories of adjacency matrix and signless Laplacian matrix. In particular,
we show that for a € [0, 1] and a mixed tree T' of order n and size m, the
A,-spectral radius p,(T') satisfies

pa(T) < % (om +van? —4a2(n — 1) +4(1 — a)2(m —n + 1)) :

Base on the knowledges and tools we introduced, we give new sufficient
conditions of the Hamiltonicity of graphs. First we prove that except some
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specific graphs, if the A,-spectral radius of a graph is large enough, then
the graph is Hamiltonian. Next, conditions for the graphs G; and Gg are
given to ensures that the Cartesian product graph G;0JG5 is Hamiltonian.
The Hamiltonicity of the maximal graphs in G(n,m) is also characterized.
Finally, we show that with given constraints, the graph P,[1H is Hamiltonian
whenever the graph P,[1H;' is Hamiltonian.

Keywords: Kelmans transformation, mixed graphs, A,-spectral radius, Hamiltonian

graphs, Cartesian product.
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1 Introduction

Extremal graph theory is a branch of graph theory that studies the properties of
graphs which are maximal or minimal in some prescribed parameters. For example, it
is an old and famous problem to characterize the graphs with largest/smallest spectral
radius within a specific family of graphs. The study of the adjacency matrix is called the
A-spectral theory and the study of the signless Laplacian matrix is called the Q-spectral
theory. In 2017, Nikiforov [33] introduced the theory of the A,-matrix. The spectral
theory of the A,-matrix merges the A- and @)-spectral theories.

Many tools are used in the study of extremal graph theory. A tool called “Kelmans
transformation” has been used frequently. Kelmans transformation of graphs reduces the
possibilities of candidates of graphs with desired properties [29]. However, although the
Kelmans transformation has been introduced [27] for about 40 years, it is only applied on
a specific type of matrices associated to a specific type of graphs. This thesis studies a

general version of the Kelmans transformation that applies to matrices.

1.1 Main results

In this section, we will state the main results of this thesis.

Let C' = (¢;;) be a nonnegative square matrix of order n and the notation [n] denote
{1,2,...,n}. For k C [n], let C[k] denote the principal submatrix of C' restricted to the
entries in |k| x |k|. Fix a 2-subset {a, b} of [n], and assume that C' is symmetric on {a, b},

that is

s t
Cla,b] =
t u
for some scalars s,t,u. The Kelmans transformation of C' from b to a is the following

matrix of order n :



N Cij o Cio Tl Gy — 1

a __

b — )
a | vt Coj TS, vt Caat ko Cap
N Cba e — k|

when ¢;, s; and k are nonnegative with some constraints. See Section 3.1 for details.

We prove the following theorem in Chapter 3.

e Theorem 3.1 : The largest real eigenvalue of C' is no larger than the largest real

eigenvalue of Cy'.

A mixed graph is a simple graph whose edges are either directed or undirected. When
C' is the adjacency matrix of a mixed graph G, in Section 4.1 we show that C} is unique
and is denoted by G. We show in Proposition 4.3 that the relation G < G extends to a
partial order on the set G(n, m) of the isomorphism classes [G], where G is a mixed graph
of order n and size m. Let T (n,m) denote the subposet of G(n,m) restricting to mixed
trees. We determined the maximal elements of 7 (n,m) in Proposition 4.5 and use this

to show the following two theorems.

o Theorem 5.6 : Ifa € [0,1] and [T] € T(n,m), then the largest real eigenvalue

pa(T) of the Ay-matriz of T' satisfies

pa(T) < % (om—i— Van? —4a2(n — 1) +4(1 — a)2(m —n + 1)) :

Moreover, the mized star of order n and size m with mazximum out-degree n — 1

attains the above upper bound.



o Theorem 5.8 : Let [T] € T(n,m), and set k = [—-—]. Then

2n—m—1
pa(T) > IOOC(Pk)a

where Py is a path of order k.

The Kelmans transformation of undirected graphs defined by A.K. Kelmans [27] is a
special case of our definition. Here we list our results related to the Kelmans transfor-
mation G¢ from vertex b to a of a simple undirected graph G. Let UG(n, m) denote the
subposet of G(n,2m) restricting to undirected graphs. A version of Kelmans transforma-
tion restricted on trees is considered in Chapter 4.4. Denoted by d(a, b) the distance of
vertices a, b in G. Let UT (n) denote the subposet of UG (n,n — 1) restricting to trees. We

prove the following proposition.

o Proposition 4.9 : Let [T] € UT (n). Then [T] is minimal in UT (n) if and only if
the subgraph T, of T induced by {v : Op(v,€) < 3} is a path for each leaf £ in T.

We consider another restricted version of the Kelmans transformation that each trans-
formation G¢ is applied only when the distance between a,b is 2. Let (UG(n,m), <) de-
note the weak subposet of (UG (n, m), <) restricting to the above version of the Kelmans
transformation. We show that the maximal elements in (UG(n,m),<5) do not contain

six given induced subgraphs. The forbidden graphs are shown in Figure 5 in Chapter 4.4.

« Proposition 4.11 : Let [G] € UG(n,m). Then [G] is mazimal in (UG(n,m), <s)
Zf and Only ZfG 18 {P5, 05, Kl V 2K2, Kl V P4,?5, Hl}-free.

Based on the knowledges and tools we introduced in the first five chapters on the
thesis, we give new sufficient conditions of the Hamiltonicity of graphs in Chapter 6.

The first one is a condition using A,-spectral radius p,(G) of a graph G.



o Proposition 6.9 : If G is a graph on n > 3 wvertices, G # Ky V (K1 U K,,_3),
G # Ky V K3, and the A-spectral radius po(G) satisfies

pa(G) >n—1-2a, ifael0,1/2);
Pa(G) >n—3+2a, ifac[l/2,1],

then G is Hamiltonian.

We prove the following theorem on the Cartesian product graph G0G,.

e Theorem 6.11 : Let Gy be a traceable graph and Gy a connected graph with

mazximum degree A(G3). Statements (a) and (b) are given as following:

(a) Gy has a perfect matching and G contains at least A(Gy) vertices.

(b) Go has a path factor and the order of Gy is an even integer which is at least
AA(Gy) — 2.

If one of (a),(b) holds, then the Cartesian product Gi0OGs of G1 and Gy has a

Hamiltonian cycle.

It will be explained in Chapter 6 that after reordering the vertices, the adjacency
matrix of a maximal element in UG(n, m) is stepwise, i.e. a;;j41) = 0 if a;; = 0 for ¢ # j.
Let M,, be the n-by-n binary matrix with M, (¢,j) = 1 if and only if i # j,i + 7 < n+ 2.
Then M, is an example of stepwise adjacency matrix with % 1’s when n is odd, and
% 1’s when n is even.

Write A > B when the matrix A — B is non-negative. An equivalent condition of

Hamiltonicity of maximal elements in UG(n, m) is given as follows in Chapter 6.

« Proposition 6.30 : Let [G] be a mazimal element in UG(n, m) with a stepwise

adjacency matriz A. Then G is Hamiltonian if and only if A > M,,.

We use the knowledges of Kelmans transformation and Cartesian product graph to

deduce the following corollary.



e Corollary 6.34 : Let H be a connected bipartite graph. Let n be an even integer
and n > AA(H) — 2. If there ezist a,b € V(H) such that P,OH; is Hamiltonian,

then P,L0H is Hamiltonian.
The contents of the following papers are included in this thesis :

1. L. Kao, C.-W. Weng, A note on the largest real eigenvalue of a nonnegative matrix,

Appl. Math. Sci. 15(12) (2021) 553-557.

2. L. Kao, C.-W. Weng, The relation between Hamiltonian and 1-tough properties of

the Cartesian product graphs, Graphs Combin. 37(3) (2021) 933-943.

3. L. Kao, Hamiltonian properties of Cartesian product graphs, Master Thesis, Na-

tional Chaio Tung University, (2016) < https://hdl.handle.net/11296/q89fq7 >.



2 Preliminaries

In this chapter, we recall some definitions, notations and results on which our study

is based.

2.1 Spectral theory

For a square matrix M over real numbers, the polynomial char(M) := det(A — M) in
A is called the characteristic polynomial of M, where det(A — M) is the determinant of
A — M. The following lemma is immediate from the definition of characteristic polynomial

of M.

Lemma 2.1. For an n X n nonnegative matriz M, if

v M, M, o M, 0 |
0 Ms My My
where My, M3 are square matrices, then char(M) = char(My) - char(M,). |

A submatrix of M restricted to the entries in R x L is a matrix obtained from M
by removing rows and columns which are not in R and L, respectively. If R = L, then
the submatrix is a principal submatriz, denoted by M[R]. For an n x n matrix M and a

partition Il = {my,mo...,m} of {1,2,...,n}, the £ x ¢ matrix II(M) = (m],), where

Z mij (1<ab< i),

1€Tq,JETY

1
ml, = |
a

|7
is called the quotient matriz of M with respect to II. That is, the entries m/, of II(M) are
equal to the average row sum of the |m,|-by-|m,| submatrix of M restricted to the entries
in m, X m. Furthermore, if Zjerb mi; =miy, forall 1 <a,b </ and i€ m,, then II(M) is

called the equitable quotient matriz of M with respect to II. For instance, the matrix

\V)

10
M =

w

0 2

e}

11



is the equitable quotient matrix of

01 1{1({0 O
1 0 1(1{0 O
1 1 0[1{0 O

00O0j1]1 0

with respect to II = {{1, 2,3}, {4}, {5,6}}.

The spectral radius p(M) of a square matrix M is defined to be the largest absolute
value of its eigenvalues. Perron-Forbenius theorem shows that the spectral radius of a
nonnegative square matrix is equal to its largest real eigenvalue. The following lemma is

useful on the calculating of spectral radius. See [2, 8, 41] for recent proofs.

Lemma 2.2. ([2, Theorem 2.5]) If1I(M) is an equitable quotient matriz of a nonnegative
matriz M, then p(M) = p(II(M)). u

For two matrices M, N of the same size, we use the notation M < N if the matrix
N — M is nonnegative. The following is a well-known consequence of Perron-Frobenius

theorem [6, Theorem 2.2.1].

Lemma 2.3. If N is a nonnegative square matrix and M is a nonnegative matriz of the

same size with M < N, or M is a nonnegative submatriz of N, then p(M) < p(N). =

2.2 Graphs

A graph G is a triple consisting of a vertex set V(G), an edge set E(G) and a relation
that associates with each edge two vertices (not necessary distinct), called its endpoints.
Based on different situations, the endpoints of an edge are either ordered or unordered. A

loop is an edge that associates with only one endpoint. Multiple edges are edges associating

7



with the same ordered/unordered pair of endpoints. A simple graph is a graph without
loops and multiple edges. The graphs throughout this thesis are all simple. If the pair of
the endpoints of an edge is an unordered pair {u, v}, then it is an undirected edge, denoted
by uv. We say that u is adjacent to v if uv is an edge. If the pair of the endpoints of an
edge is an ordered pair (u,v), then it is called a directed edge or an arc, denoted by ud.

The order of a graph G is defined to be the number of vertices of G. A graph G is
isomorphic to a graph H if there exists a bijection f between the vertex set of G and H
such that u,v are endpoints of an undirected edge in F(G) if and only if f(u), f(v) are
endpoints of an undirected edge in E(H); and (u,v) is an ordered pair of the endpoints
of a directed edge in F(G) if and only if (f(u), f(v)) is an ordered pair of the endpoints
of a directed edge in F(H). Let [G] denote the class of graphs that are isomorphic to G.

A subgraph of a graph G is a graph whose vertex set and edge set are subset of V(G)
and E(G), respectively. For convenience, sometimes we use the edge E(H) to denote the
subgraph H of G. An induced subgraph H of a graph G is a subgraph of G such that E(H)
contains all the edges of G that have endpoints in V(H). A graph G is called H-free if
H is a graph and G doesn’t contain an induced subgraph which is isomorphic to H. A
spanning subgraph H of G is a subgraph H of G with V(H) = V(G).

A graph is a mized graph if for each pair of vertices u, v, at most one of @0, 0% and uv
belongs to E(G). From now on, for simplicity uv is referred to as an edge and ub as an
arc. We define the size of a mixed graph G to be the number of arcs in E(G) plus twice
the number of undirected edges in E(G).

Matrices are nice tools to represent graphs. For a graph with finite order n with vertex
set V(@) and edge set E(G), the adjacency matriz A = (a;;) is defined to be an n-by-n
binary matrix with rows and columns indexed by V(G) such that a;; = 1 if and only if
ij € E(G) or ﬁ € E(G). Notice that the adjacency matrix of a mixed graph is not always

symmetric and the size of a mixed graph is the number of 1’s in its adjacency matrix.



The eigenvalues of a graph is defined to be the eigenvalues of its adjacency matrix.

2.3 Undirected graphs

An undirected graph (or graph for short) is a mixed graph without arcs. The complete
graph of order n, denote as K,, is a graph whose vertices are pairwisely adjacent. The
complement G of a graph G is a graph with vertex set V(G) and uwv € E(G) if and only
if wv € E(G) for distinct u,v € V(QG).

Two vertices u, v € V(G) are called connected if there exists a sequence u, vy, ..., vy = v
of vertices in GG such that every two consecutive vertices in the sequence are adjacent. If
u,v € V(QG) are connected, the smallest k above is called the distance of u and v, denoted
by g (u,v). Write dg(u,v) = oo if u, v are not connected.

We call a graph to be connected if its vertices are pairwisely connected. A discon-
nected graph G contains several connected subgraphs and a connected subgraph is called
a component of GG if it is not a proper subgraph of any connected subgraph of G. The
number of components in G is denoted by ¢(G).

The diameter of G is defined to be max, ey () 0(a,b). Note that the diameter of a
disconnected graph is co. The neighbor set Ng(v) of vertex v in G is the set {u : u €
V(G), 0c(u,v) = 1} and the closed neighbor set Ng[v] is defined to be Ng(v) U {v}. The
degree deg(v) of vertex v in G is the number of neighbors of v in G, that is, |[Ng(v)|. A
vertex of degree 1 is called a leaf. The symbol d(u,v), N(v), N[v] and deg(v) may also
appear if the graph we discuss has no confusion.

A connected graph G with |V(G)| — 1 edges is a tree. A path of order n, denoted as
P,, is a graph whose vertices can be ordered such that two vertices are adjacent if and
only if they are consecutive in the ordering. A path vy, vy, ..., v, together with an edge
v,vy is called a cycle. A graph G is bipartite if V(G) is the union of two disjoint vertex

sets X and Y, called partite sets of G, such that the subgraphs of G induced by X and



Y contain no edges, respectively. The complete bipartite graph is a bipartite graph such
that two vertices are adjacent if they belong to different partite sets. Denote by K, ,,, the
complete bipartite graph of partition sizes n and m. In particular, K ,_; is called a star
of order n.

The join of graphs G and H, denoted as GV H, is the graph obtained from G and H
with vertex set V(G'V H) = V(G)UV(H), and edge set E(GV H) = E(G) U E(H) U
{uv : v € V(G),v € V(H)}. The Cartesian product graph G;0Gs of graphs G; and
Gy is a graph with vertex set V(G0Gs) = {v, | v € V(G1),u € V(G2)}, and edge set
E(G10G3) = {v,v, | v € V(Gy),uw € E(G2)} U{v,w, | u € V(Gs),vw € E(Gy)}.

The underlying graph of a mixed graph G is the undirected graph obtained from G by
removing the directions of arcs. The distance 0(a, b) for vertices a, b in G is their distance
in the underlying graph of G. The mized tree, mixed path, mized star are defined to be

the mixed graphs whose underlying graphs are tree, path, and star, respectively.

2.4 Hamiltonicity and toughness

A graph is Hamiltonian if it contains a spanning cycle, and is traceable if it contains
a spanning path.

For S C V(G), let G — S denote the subgraph of G induced on V(G) — S. To discuss
the Hamiltonicity of graphs, another measure of graphs is usually considered. A graph G
is t-tough if t is a rational number such that |S| > ¢ - ¢(G — S) for any cut set S of G,
i.e. S C V(G) such that G — S has ¢(G — S) components with ¢(G — S) > 2. If G is not
complete, the largest t makes G to be t-tough is called the toughness of GG, denoted by
7(G). For convenience, we set 7(K,) = oco.

Toughness is a non-decreasing (with respect to the number of edges) graph property.
Therefore, a Hamiltonian graph is 1-tough since it contains a spanning cycle which is

1-tough. However, not all 1-tough graphs are Hamiltonian. Figure 1 gives a 1-tough

10



Figure 1: A 1-tough non-Hamiltonian graph with 7 vertices.

non-Hamiltonian graph of order 7.

The idea of graph toughness was first introduced by V. Chvatal in his 1973’s seminal
paper [11]. He conjectured that there exists a real number ¢, such that all tg-tough
graphs are Hamiltonian. This conjecture is still open. From papers [21] and [3], there are
examples of non-Hamiltonian graphs with toughness greater than 1.25 and 2, respectively.
On the other hand, for specific graph classes, there may exist a toughness bound to
ensure the Hamiltonicity. For instance, [23] shows that every 10-tough chordal graphs are
Hamiltonian.

Chvatal’s Conjecture holds trivially for bipartite graphs by choosing ¢ty = 1 + ¢ for
any € > ( since a bipartite graph has toughness at most 1. Hence the Hamiltonicity of a
1-tough bipartite graph deserves a further study. Contents related to Hamiltonicity are

discussed in Chapter 6.

2.5 Partially ordered set

A partially ordered set (or called poset) (P,<p) is a set P with a relation <p on P

satisfying:
o Reflexivity : © <p x for all z € P.

e Antisymmetry : For all z,y € P, if x <p y and y <p = then x = y.

11



o Transitivity : For all x,y,z € P, if x <p y and y <p z then = <p z.

When we call (Q, <) a subposet of (P, <p), we mean that for z,y € QQ we have x <p y
in P if and only if z <g y in Q. A weak subposet (Q, <g) of the poset (P, <p) is a poset

such that ) C P and if x <g y then o <p y for z,y € Q.

12



3 Kelmans transformations on nonnegative matrix

The Kelmans transformation, or called “shift transformation”[4, 7] or “compression
operator”[24] is a transformation between undirected graphs, which is first defined by
A K. Kelmans [27]. In this chapter, we introduce a general version of the Kelmans trans-
formation which is not limited on adjacency matrices of undirected graphs. The main

theorem of the contents of this Chapter is Theorem 3.1.

3.1 Kelmans transformation of a nonnegative matrix

Use the notation [n] = {1,2,...,n}. Let C'= (¢;;) be a nonnegative square matrix of
order n such that cq, = ¢, for some a,b € [n]. For every i,j € [n] — {a, b}, choose t; and
s; such that max(0, ¢ — ¢iq) < t; < ¢ and max(0, ¢p; — ¢45) < 85 < ¢ and choose k such
that max(0, cpp — Caa) < k < cpp. We define a new matrix C¢ of order n from C' by shifting
the portion ¢; of ¢;; to ¢;q, the portion s; of ¢; to cq; and the portion k of ¢y, to ¢4 such
that in the new matrix Cy = (cj;) have ¢, > ¢}, and c; > c;, where i,j € [n] — {a,b}

and ¢, > ¢;,. The following is an illustration of C§:

J a b
_ 9 ¢
Cab = Cba,
% Cij Cia+f,' Cib—f,' Z,j € [n] —{a,b},
Cy = : : : max (0, cip — cio) <1 <, (1)
a | v Cqjt S vt Caat K Cab max(0, cp; — cq5) < 55 < cy,
b et Cpp — S5 e Cpa Cpp — k L maX(O, Cop — Caa) < k < Cob-

') is defined from C' = (¢;;) by setting

Formally, the matrix Cy = (cj;

13



Cijs if i,j € [n] —{a,b} or (1,5) € {(a,0), (b,a)};
Cia +t;, if j=aandi€ [n]—{a,b};
cp—t;, ifj=0bandi€ [n]—{a,b};
Cij =\ Caj + 84, fi=aandje[n]—{a,b};
cy; — Sj, ifi="band j € [n] —{a,b};

Coa + k, ifi=7=a;

[ — K, ifi=j=0b

In the above setting, if C' = (¢;;) is the adjacency matrix of an undirected graph G of
order n (i.e., C'is a symmetric binary matrix with zero diagonals), t; = max(0, ¢;, — ¢;q),
s; = max(0, ¢p;—¢q;) and k = 0 are uniquely determined, then the Kelmans transformation
C" of C from b to a, independent of ¢;, s; and k, is essentially the Kelmans transformation

of G defined by A.K. Kelmans [27]. The contents related to the Kelmans transformation

on undirected graphs will be further discussed in Chapter 4.4.

3.2 The largest real eigenvalue of a nonnegative matrix

It is well known that a nonnegative matrix has a real eigenvalue. P. Csikvari [13] proved
that the largest real eigenvalue will not be decreased after a Kelmans transformation of
an undirected graph. His method uses the Rayleigh quotient and can be directly extended
to any symmetric matrices. Here we give a generalization of this result to a nonnegative

matrix which is not necessary to be symmetric.

Theorem 3.1. Let C' = (¢;j) denote a nonnegative square matriz of order n such that
Cab = Cpa for some 1 < a,b < n. Choose k,t;,s; fori,j € [n] — {a,b} that satisfying (1).
Let C" = C{(ti; 555 k) be the Kelmans transformation from b to a with respect to (t;;s;; k).

Then the largest real eigenvalue of C' is no greater than the largest real eigenvalue of C'.

Before proving Theorem 3.1, we first observe that the symmetric condition for C' on

{a,b} in Theorem 3.1 is necessary by the following counterexample.
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Example 3.2. Consider the 4 x 4 matrices

001 1 0011
100 1 1010

C = , O =
1100 1100
1110 1110

The matrix C” is obtained from C' by applying Kelmans transformation from 4 to 3 with
respect to t; = 0, to = 1 and s; = s5 = 0, while the matrix C' is not symmetric on {3,4}.
By direct computing, the largest real eigenvalue of C' is closed to 2.234 which is strictly

greater than 2.148, the approximate of the largest real eigenvalue of C".

It is well-known that the largest real eigenvalue of a nonnegative matrix is associated
with a nonnegative eigenvector, called Perron vector. Moreover, if the matrix is irreducible
then its Perron vector is positive (e.g., [6, Theorem 2.2.1]). Our proof of Theorem 3.1
utilizes Perron vectors in a way inspired by [9].

Now we shall introduce a few basic properties of Kelmans transformation of nonneg-
ative matrices for later use. Recall that for a nonnegative square matrix M, p(M) is the
largest real eigenvalue of M.

Let I, denote the identity matrix of order n and FE;; denote the binary matrix of
order n which has a unique 1 in the position ij. Note that (I, + Eij)_l = I, — E;; and

((Zn + Eyj) ™)' = ((In + Eiy)")

Lemma 3.3. Let C' = (¢;;) denote a nonnegative square matriz of order n such that C

is symmetric on {a,b} for some 1 < a,b < n. For every pair i,j € [n] — {a,b}, choose

!/

ti, 8% such that max(0,cip — cio) < t; < cip and max(0,cp; — cqj) < 8

s < ¢, and set

ti = Cia — cip + t; and 8§ = cq5 — cp; + 5. Choose k' such that max(0, cpp — Caa) < K < cpp

and set k" = cq,o — cp + K. Then the following (i)-(7ii) hold.
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(1) max(0, ciq — cip) < t] < ¢iq, max(0,cy; — ;) < s < cq5 and max (0, ¢ue — o) <

1! .
k" < Caa;

(ii) If C" (resp. C") is the Kelmans transformation from b to a (resp. from a to b) with

respect to t;,s% and k' (resp. with respect to t},s7 and k"), then p(C') = p(C");

i7°]
(iii) As the notation C" in (i), we have (I, + Epy)C (I, + Ep)t < (I + Epa)C' (1, + Epa )"
Proof. (i) Since t! = ¢;q — cip + t; and
max (0, ¢iq — i) = Cia — Cip + Max(0, ¢y — Cia) < Cia — Cip +t; < Cia,

we have max (0, cia — i) < t] < ¢jq. Similarly, we have max(0, c,; — ¢p;) < 87 < ¢5 and
maX(Oa Caa — Cbb) S K" S Caa-

(ii) From the definition of C" = (¢};) and C" = (c};), we know C"[b,a] = C'[a,b],
C"[[n] = {a,b}] = C"[[n] — {a,b}],

1" " /
Civr =Cib -+ ti = Cjp + Cia — Cip + ti = Ciy>

/"

/
Ciqg =Cia — (Cm —Cip + ti) = Cyp

and similarly ¢j; = c,;, ci; = ¢, for i,j € [n] — {a,b}. This shows that C" = P~'C'P,
where P =1 — E,, — Ep + Eu + Epe. Thus p(C") = p(C").
(iii) The Kelmans transformation from b to @ moves a nonnegative portion of row b

of C' to row a, but the multiplication of (I, + Ej,) from the left will add the whole row a

into the row b. Similarly for the column part. Hence (iii) follows. |

3.3 The proof of Theorem 3.1

Let C' and C’ be as described in the assumption of Theorem 3.1. Recall that C is

symmetric on {a, b}, which means
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To prove p(C) < p(C") we might assume min(s,u) > ¢, since if we know this and
min(s,u) < ¢ then applying the matrix C' + (¢t — min(s, u))1, as the role of C' and consid-
ering the corresponding Kelmans transformation C’ + (¢ — min(s, u))I,,, we still have
p(C) = p(C + (t — min(s,u))I,) — (t — min(s, u))
< p(C"+ (t — min(s,u))l,) — (t — min(s,u)) = p(C").
Let row vector w' = (w;) denote the left Perron vector for p(C') of C'. We first assume
We > wy. Set vP = w'Q ™!, where Q = I, + Ej,. Thus

v'QC = w'C = p(C)u' = p(C)'Q. (2)

Note that v is nonnegative since v; = w; > 0 for ¢ # a and v, = w, — w, > 0.
For ¢ > 0, let C"* = C' + ¢J,, where J, is the matrix of order n with entries all 1’s.
By Lemma 3.3(iii) and using QC'Q" < QC"Q", we have
QCQ" < QC*Q". (3)
From the constriction of C’* and the assumption min(s,u) > ¢ in the beginning, the
matrix (Q')~'C"*Q! is nonnegative. Let u° denote a right Perron vector for (Q')~'C*Q".
Since C’¢ and (Q")~'C"Q" are similar, we have p(C”®) = p((Q")~'C"Q") and
(QH)~1C"= Qe = p(C")uf, which implies
C/EQtus — p(ClE)QtuE. (4)
Because of the irreducibility of C’¢, Q'u® > 0.
Multiplying the nonnegative vector u° from the right to both terms of (3) and applying
(4),
QCQtus S chthus _ p(ClE)QQtUE- (5)
Multiplying the nonnegative row vector v* from the left to the first and last terms in (5)

and using (2), we have
p(CI'QQ' W = v'QCQ " < p(C* ' QQ". (6)
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As w' = v'Q nonnegative and Q'u positive, v'QQ'uc is positive. Deleting the positive
term v'QQ'S from both sides of (6), we have p(C) < p(C*) for any € > 0 and by

continuity

p(C) < lim p(C*) = p(C").

e—0t

Next assume wp > w,. Let C” denote the Kelmans transformation of C' from a to b
with respect to c;, —c;p+1t; and cq; — ¢y +5;. By the previous case, we have p(C') < p(C"),
and by Lemma 3.3(ii), p(C") = p(C"). Hence p(C) < p(C"). n
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4 Kelmans transformations on mixed graphs

In this chapter, the general Kelmans transformation is applied on mixed graphs. We
use the general Kelmans transformation to define poset structures on mixed graphs and

mixed trees.

4.1 Kelmans transformations on mixed graphs

As in the case of undirected graph, if C' in Theorem 3.1 is the adjacency matrix of a
mixed graph G and assume that C} is also an adjacency matrix of some mixed graph,
then t;,s; € {0,1} and k = 0 are uniquely determined from C. We use G{ to denote the
mixed graph whose adjacency matrix is Cy' and called G the Kelmans transformation of
mixed graph G from b to a. Notice that when the notation GG} appears, we always assume
that a,b € V(G) are distinct and have no arc, i.e. ab ¢ E(G) and ba ¢ E(G).

For a mixed graph G, let N§(u) := {v: b € E(G) or uv € E(G)} be the set of out-
neighbors of u, N5 (u) == {v: vl € E(G) or uv € E(G)} be the set of in-neighbors of u,
and Ng(u) := NZ (u) U Ng (u) be the set of neighbors of u. The number df(u) := [N (u)|
is called the out-degree of u in G, and the number dg(u) := |NZ (u)| + |Ng (u)] is called
the degree of v in G. The sequence d(G) := (dg(u))uev(q) in descending order is called
the degree sequence of G.

For the Kelmans transformation G§ of a mixed graph G,

NZy(a) = Ni(a)UNG(b), N

a
b

(a) = Ng (a) U N (b),

Nga(b) = {a} = Ng (a) " NG (b), N (b) — {a} = Ng(a) N Ng (b).

Figure 2 shows how the Kelmans transformation on mixed graphs works.
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Figure 2: Kelmans transformation on mixed graph G.

Lemma 4.1. Let G be a mized graph and distinct a,b € V(G) have no arc. Then the
following (i)—(ii) hold.

(i) The involution f : V(G$) — V(G®) defined by

a, if x="0;
f(x) =19 b, ifz=a;

x, otherwise
is a graph isomorphism from G¢ to GP.
(ii) In dictionary order, d(G¢) > d(G). Moreover, the following (a)-(c) are equivalent.
(a) d(Gy) = d(G);
(b) G is isomorphic to G§;
(¢c) N¢(a)—={b} € N (b)—{a} and Ng (a) —{b} € Ng (b)—{a}; or NG (b) —{a} <
N¢(a) = {a} and Ng (b) - {a} € Ng(a) — {b}.

Proof. Excluding the two vertices a, b which are either with an undirected edges or without
any directed arcs by the assumption, we have the following three observations of neighbor
sets from the definition of Kelmans transformation on G from b to a. (1) the set of out-
neighbors (resp. in-neighbors) of b in G§ is the union of the set of out-neighbors (resp.

in-neighbors) of a in G and the set of out-neighbors (resp. in-neighbors) of b in G; (2) the
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set of out-neighbors (resp. in-neighbors) of a in G is the intersection of set of the out-
neighbors (resp. in-neighbors) of a in G and the set of out-neighbors (resp. in-neighbors)
of b in G; (3) the set of out-neighbors (resp. in-neighbors) of x # a,b in G is the same
as that in G. From the above three observations, we find that vertices a,b, x in Gj play

the role of b, a, z respectively in G®. This proves (i).

(ii) In the proof of (i), we also have dg(z) = dge(z) for x € V(G) — {a, b} and in dictio-

nary order (dgg(a),dge(b)) > (max(dg(a),dg(b)), min(dg(a),dg(b))), together implying
(c

a(b
d(Gf) > d(G). Next we prove that (a), (b) and (c) are equivalent.
((b) = (a)) This is clear.

((a) = (c)) Suppose d(Gf) = d(G). From the proof of (ii) above, we know that
{dc(a),dc(b)} = {dgg(a),dg(b)}. 1f dg(a) = dgg(b) then dg(b) = dgg(a) = deg(b) =
de(a), which implies N (a) — {b} € N (b) — {a} and N5 (a) — {b} C N5(b) — {a}. Tf
da(a) = dgs(a) then dg(b) = dgs(b), which implies N&(b) — {a} € N(a) — {b} and
Ng (b) —{a} € Ng(a) — {b}.

((c) = (b)) If Ni(a) — {b} € NZ&(b) — {a} and Ng(a) — {b} € Ng(b) — {a} then
G = G% and the later is isomorphic to G§ by (i). If Ni(b) — {a} C Ni(a) — {b} and
N5 (8) — {a} € N5 (a) — {b} then G = G2 .

4.2 Poset of mixed graphs

For a mixed graph G of order n and size m, let [G] denote the set of mixed graphs

that are isomorphic to G. Let
G(n,m) :={[G] : G is a mixed graph of order n and size m}. (7)
We will define a reflexive and transitive relation < in G(n,m) as follows.

Definition 4.2. Let < be the relation in G(n,m) such that for all [G], [H] € G(n,m),
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|G] < [H] if and only if H is isomorphic to G, or H is isomorphic to a graph which is

obtained from G by a finite sequence of Kelmans transformations.
Proposition 4.3. (G(n,m), <) is a partially ordered set (poset).

Proof. The relation < is reflexive and transitive from its definition, so we only need to
prove the anti-symmetric property. Suppose [G] < [H| and [H] < [G], where [G], [H] €
G(n,m). Then d(G) < d(H) < d(G) by Lemma 4.1(ii). Hence d(G) = d(H). By
Lemma 4.1(ii)(a)=(b), we have [G] = [H]. u

4.3 Poset of mixed trees
Let n,m e Nwithn —1<m <2n— 2,
T(n,m):={[T] € G(n,m): T is a mixed tree}.

The set T (n,m) is not closed under Kelmans transformations. We need the following

lemma.

Lemma 4.4. Let [T] € T(n,m) with distinct a,b € V(T) having no arc. Then [T¢] €
T (n,m) if and only if ab € E(T) or d(a,b) = 2 and the unique vertex x € V(T) with
d(a,x) = 0(z,b) = 1 satisfying one of the conditions : (i) ax € E(T) is an undirected edge,
(ii) xb € E(T) is an undirected edge, (iii) at, ba € E(T) are arcs or (iv) ﬁ,% € E(T)

are arcs.

Proof. The assumption implies d(a,b) > 1 and if d(a,b) = 1 then ab € E(T) is an
undirected edge. If d(a,b) = 2 and the necessary condition about z fails, then a, b belong
to different components of the underlying graph of 7}, so T} is not a mixed tree. If
J(a,b) > 3 then the underlying graph of T} contains a cycle of order d(a,b), so T} is not
a mixed tree.

On the other hand, it is straightforward to observe that [T{] € T (n,m) when a,b

satisfy the conditions. ]
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We use the notation a—b, a—x—b, a—x — b, a—x <+ b, a < x—b,a — xr—b,a — x + b
and a <— r — b to denote the eight situations in the necessary condition of Lemma 4.4.
We give T (n,m) a poset structure by extending [T'] < [T¢] for any [T] € T (n,m) and any

a,b € V(T) that satisfy one of the eight situations.

Proposition 4.5. Let [T] € T(n,m). Then [T] is a mazimal element in T (n,m) if and
only if T is a mized star or T' is a mized tree without undirected edges (i.e. m =n —1)

and whenever the subgraph a — x <= b or a <— x — b appears in T, one of a and b is a

leaf.

Proof. (<) If T is a mixed star, and one of a — b, a — 2 — b, a —x < b, a + x — b,
a—x—b, a— x <+ band a < x — b appearing in T, then one of a or b is a leaf,
so Lemma 4.1(ii,c) with G = T holds, which implies that 7} is isomorphic to 7. If T is
a mixed tree without undirected edges, then we only need to consider a — = < b and
a <+ x — bin T. By the assumption a or b is a leaf and by the same reason as above, T}

is isomorphic to 7. Hence in both cases, [T] is a maximal element in 7 (n,m).

(=) Let [T] be a maximal element in T (n, m) such that 7" is not a mixed star, so 7" has di-
ameter at least 3. Keeping in mind that the maximality of [T'] implies that Lemma 4.1(ii,c)
with G = T holds for a,b € V(T) satisfying the necessary conditions a — b, a — z — b,
a—x <4+ b a<xr—b,a—>xr—b a—>x<+ bora<+ xr— bof Lemma 4.4, thus at least
one of a or b is a leaf. To exclude the situations a — b, a —x —b,a—x + b, a+ x —b
and a — x — b, on the contrary, suppose that 7' contains an undirected edge uv with
leaf u. Since the diameter of T is at least 3, we have another two vertices y,z € V(7))
such that d(v,y) = d(y, 2) = 1 and 9(u, z) = 3. Since v,y are not leaves in 7', they have
an arc, say v — y (similar for v < y) in E(T). Hence T,) € T(n,m) is well-defined,

€ (Nf(v) — {y}) — (Nr(y) — {u}), and 2z € Nr(y) — Nr(u), a contradiction to the

maximality of [T']. Thus 7" has no undirected edges. n
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G Gy

Figure 3: Kelmans transformation on an undirected graph G.

4.4 Kelmans transformations on undirected graphs

Recall that the Kelmans transformation on undirected graphs, defined by A.K. Kel-
mans [27], is a special case of our definition. In this chapter, we give some combinatorial
results about the Kelmans transformation on undirected graphs.

Let G be an undirected graph, then the Kelmans transformation Gi is an undirected
graph with vertex set V(G) and edge set E(G) U {av : v € Ng(b)\Ng(a)}\{bv : v €
Ng(b)\Ng(a)}. Equivalently, Nge(b) = Ng(b) N Ngla], Neg(a) = Ne(b) U Ne(a)\{a}
and Nga(v)\{a,b} = Ng(v)\{a,b} for all v # a,b. Figure 3 shows how the Kelmans
transformation works.

It has been proved in [13] that the spectral radius of a graph is non-decreasing after any
Kelmans transformation. In [24], the affects of Kelmans transformations on parameters
of graphs, including vertex connectivity, edge connectivity, toughness, edge toughness,
scattering number and binding number have been studied.

As shown in Figure 4, the Kelmans transformation G} of a connected graph G is not
necessary connected. In graph theory, the properties of a disconnected graph is usually
combined by the properties from each of its components. Hence we focus on connected
graphs in the discussions of graphs. To keep the graph connected, we need the following

lemma :
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a

Figure 4: An example that G is not connected where G is connected.

Lemma 4.6. If G is connected and 0z (b,a) < 2, then Gf is connected.

Proof. Observe that the degree of each vertex is non-decreasing from G to G} except
b. Let G be connected. Since degga(b) = [Ng(b) N Ng(a)| = 1 for Og(b,a) = 2 and

a € Nga(b) for dg(b,a) = 1, G} is connected. |

For an undirected graph G of order n with m edges, let [G] denote the set of undirected

graphs that are isomorphic to G. Let
UG(n,m) :={[G] : G is an undirected graph of order n with m edges}.
Define a reflexive and transitive relation < in UG (n, m) as follows.

Definition 4.7. Let < be the relation in UG (n, m) such that for all [G], [H] € UG(n, m),
|G] < [H] if and only if H is isomorphic to G, or H is isomorphic to a graph which is

obtained from G by a finite sequence of Kelmans transformations.

Since undirected graphs are also mixed graphs, from Proposition 4.3 we know that

(UG(n,m), <) forms a subposet of (G(n,2m), <).
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Let

UT (n) :={[T] : T is an undirected tree of order n}.

Then UT (n) = T (n,2n — 2) and the following lemma is a straightforward consequence of

Lemma 4.4.

Lemma 4.8. Let [T] € UT(n). Then [T¢] € UT (n) if and only if ab € E(T) or
Jd(a,b) = 2. u

We then give UT (n) a poset structure by extending [T'] < [T¢] for any [T] € UT (n)
and any a,b € V(T) with ab € E(T) or d(a,b) = 2. In particular, Proposition 4.5 shows
that the maximal element of UT (n) is the star K ,_1.

The following proposition gives the minimal elements of UT (n).

Proposition 4.9. Let [T] € UT (n). Then [T] is minimal in UT (n) if and only if the
subgraph of T induced by {v : Or(v,€) < 3} is a path for each leaf ¢ in T.

Proof. (=) If the subgraph of T" induced by {v : Or(v,f) < 3} is not a path for a leaf
¢ € V(T), there are two cases for the unique neighbor u of ¢ : (i) deg,(u) > 3, (ii)
Nr(u) = {¢,v} for some v € V(T) and degy(v) > 3. In case (i), choose v € Np(u)\{¢}
and let 7" be a tree with V(T") = V(T') and E(T") = E(T)U{vl}\{vu}. Then [(T")}] = [T]
and [T"] # [T] by Lemma 4.1(ii). In case (ii), choose w € Np(v)\{u} and let T” be a tree
with V(T") = V(T') and E(T") = E(T) U{wl}\{wv}. Then [(T")}] = [T] where [T"] # [T
by Lemma 4.1(ii). Hence [T is not minimal in UT (n).

(<) If [T] is not minimal in U7 (n), then there exists another tree 7" € UT (n) such
that [T"] # [T] = [(T")¥] for some u,w € V(T"). By Lemma 4.8, 07 (u, w) € {1,2}.

If wis a leaf in 7", then Ny (u)\{w} C Ny (v) and hence [T] = [(T")¥] = [T'] by
Lemma 4.1(ii), a contradiction. Since [(T")¥] = [(1”)¢] by Lemma 4.1(i), w is not a leaf

in 7" either. Therefore, there exist a € Ny (u) and b € Np/(w) such that O (a,w) =
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Or/(b,u) = Op(u,w) + 1. Let ¢ = w if Op/(u,w) = 1 and ¢ be the unique vertex in
Nrp/(u) N Ny (w) if Ops(u, w) = 2. Then a, b, ¢ are distinct vertices in Nipnyw (w).
Notice that w is a leaf in (7”): and the subgraph of (") induced by {v : Orryw (v, u) <

3} is not a path since it contains the vertex v of degree at least 3. We get the proof.

From the view of Lemma 4.6, we consider a restricted version of Kelmans transforma-
tion, called distance-2 Kelmans transformation, which is a Kelmans transformation G7
of G with dg(b,a) = 2. Let (UG(n,m),<,) denote the weak subposet of (UG(n,m), <)
restricting to the distance-2 Kelmans transformation.

We first recall a known result that characterizes the maximal graphs of UG(n,m).

Proposition 4.10 ([12]). The element [G] is mazimal in (UG(n,m), <) if and only if G
is {2Ks, Py, Cy}-free.

Let H; be a graph with vertex set V(H;) = {v1, v, v3,v4,v5} and edge set E(H;) =
{109, Vov3, V304, V45, V305 }. The following proposition is a characterization of maximal

graphs of the distance-2 Kelmans transformation.

Proposition 4.11. The element [G] is mazimal in (UG(n,m),<s) if and only if G is

{P57 057 Kl \ 2K27 Kl \ P47F57 Hl}‘f7'€€.

Proof. If G contains any of Ps,Cs, K1 V 2K,, K1 V P;, P; and H; as an induced sub-
graph, then there exist four vertices a,b,u,v € V(G) with dg(a,b) = 2 such that
v € Ng(b)\Ng(a) and u € Ng(a)\Ng(b). Then [G§] # [G] by Lemma 4.1(ii), so [G]
is not maximal in (UG(n, m), <s).

If [G] is not maximal in (UG (n, m), <s), then there exist a,b € V(G) with dg(b,a) = 2
such that [G¢] # [G]. By Lemma 4.1(ii), Ng(b)\Ng(a) # 0 and Ng(a)\Ng(b) # 0. Let
r € Ng(b) N Ng(a), v € Ng(b)\Ng(a) and u € Ng(a)\Ng(b). Let H be the subgraph
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of G induced on vertices {u,v,x,a,b}, then H contains edges ax,bz,au,bv and doesn’t
contain edges ab, bu, av. Furthermore, there are eight possible cases for H between three
vertices {z,u,v} :

i) All of zu, xv and wv are not edges of H.
i) zu € E(H),zv ¢ E(H),uv ¢ E(H).

iii) xzv € E(H),zu ¢ E(H),uv ¢ E(H).

(
(
(
(iv)uv € E(H),zu ¢ E(H),zv & E(H).
(v) zue E(H),zv e E(H),uv ¢ E(H).
(vi) zu € E(H),zv ¢ E(H),uv € E(H).
(vii) 2u ¢ E(H),2v € E(H),w € E(H).
(viii) All of zu, xv and uwv belongs to E(H).
In case (i), H = P;. In case (ii), H = C;. In case (iii),(iv), H = H;. In case (v),
H =~ K,V 2K,. In case (vi),(vii), H = P5. In case (viii), H & K, V P;. Therefore, G is

not {P5,C’5,K1V2K2,K1\/P4,F5,H1}—free. |
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: : <),
Figure 5: Forbidden subgraphs of the maximal graphs in (UG(n, m), <s)
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5 A,-spectral radius

In this chapter, we will introduce the “A,-matrix” and “A,-spectral radius”, which
were first introduced by Nikiforov [33] in 2017. The main results of this chapter is The-
orem 5.6 and Theorem 5.8 that characterize the mixed trees with maximum/minimum
Ag-spectral radius, respectively.

Recall that the adjacency matrix A = (a;;) of a mixed graph G is defined by a;; =1
if and only if ij € E(G) or E) € E(G). Define the out-degree matriz D = (df;) of G
to be a diagonal matrix of order |V(G)| such that d; = df(i). The signless Laplacian
matriz of a mixed graph is defined to be the sum of its adjacency matrix and its out-
degree matrix. For real number o € [0, 1], the matrix A,(G) of a mixed graph G is
defined to be aD* 4 (1 — a)A. The concepts of A,-matrix of graphs were first introduced
by Nikiforov [33] in 2017 and then liu et al. [31] start to consider the A,-matrix for
mixed graphs. Notice that when a = 0, the A,-matrix of a mixed graph is its adjacency
matrix; when a = 1/2, the A,-matrix is half the signless Laplacian matrix. Therefore, the
researches on A, matrices are generalizations of the researches on adjacency matrices and
signless Laplacian matrices. Since A, matrices are nonnegative and it is well known that
a nonnegative matrix has a real eigenvalue, let p,(G) denote the largest real eigenvalue
p(AL(Q)) of the A, matrix A,(G) of G, and refer p,(G) to as the A,-spectral radius, or
a-index of G. For the previous studies on A,-spectral radii of graphs and mixed graphs,

see [19, 20, 30, 35, 38, 40].
5.1 The A,-matrix of a mixed graph

The following lemma tells that the Kelmans transformation of the A,-matrix of a
mixed graph is equal to the A,-matrix of the corresponding Kelmans transformation

mixed graph.
Lemma 5.1. Let o € [0,1], [G] € G(n,m) with distinct vertices a,b € V(G) having no
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arc, adjacency matriv A = (c;j) and Ay-matriz A,(G) of G. Set k := a|NZ (b) — NZ(a)],
ti = (1 — ) max(0, c;p — i) and s; = (1 —a) max(0, ¢p; — ¢4;) fori € V(G)—{a,b}. Then
the Kelmans transformation matriz A.(G)§ of Aa(G) from b to a with respect to (t;; s;; k)

is the Aq-matriz A, (Gg) of Gy, i.e.,
Aa(G)y = Aa(GY).

Proof. We only need to check that the ij entries in matrices A,(G)§ and A, (GY) are equal
for one of 4, j in {a, b}. Indeed they are equal from the setting listed in the order aa, bb,

ta, ib, aj and bj below:
adb(a) + k :ad+g(a),
adb(b) — k —adi, (b)
(1 —a)cia +t; =(1 — a)(¢iq + max(0, cip — ¢ia)),
(1 —a)ep —t; =(1 — a)(cip — max(0, cip — ¢ia)),
(1 —a)ciq + 55 =(1 — a)(cq; + max(0, cp; — Cqj),

(1—a)eip —s; =(1 — a)(cp; — max(0, cp; — cqj),
where i, j € V(G) — {a, b}. u

Proposition 5.2. Ifa € [0,1], and [G], [H] € G(n,m) such that [G] < [H], then po(G) <

pa(H).

Proof. We might assume H = G} by Lemma 4.3. Applying Theorem 3.1 and Lemma 5.1,

we have
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5.2 The upper bound of A,-spectral radius

If an arc in a mixed tree T is deleted, then we have two mixed trees. Thus if the arcs
in a mixed tree T of order n and size m are all removed, then the remaining is a graph

without cycles with 2n — m — 1 components.

Lemma 5.3. If « € [0,1], [T] € T(n,m) and Cy, Cy, ..., Cop_pq are the components

of the graph obtained from T by removing the arcs, then

where A (T)[C;] is the principal submatriz of A, (T) restricted to C;.

Proof. It ﬁ € E(T) is deleted to obtain two mixed trees with vertex sets V and W,
then besides 5} there is no arc or edge between a vertex in V' and a vertex in W. With
M = A.(T), My = M[V], My = M[W], we find that M satisfies the assumption of
Lemma 2.1. Hence char(M) = char(M;) x char(M;). We have the lemma by using
this process on M; and M,, and repeating again until each matrix is corresponding to a

component of 7. n

Note that A, (7)[C;] in Lemma 5.3 is not the A,-matrix of the component C; of T

Corollary 5.4. If a € [0,1] and [T] € T(n,n — 1), then
char(A,(T)) = [ (A — adf").
1€[n]
Proof. For [T] € T(n,n — 1), the graph obtained from T by removing the arcs is a K.
Then A, (T)[{i}] is a 1 x 1 matrix with entries ad;” and the result is straightforward from

Lemma 5.3. []
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Figure 6: The partition II of the vertices of a mixed star.

Proposition 5.5. Let S be mixed star of order n, size m and mazimum out-degree
m—n+k+1 for some0<k<2n—m—2. Then for a € [0,1], the A,-spectral radius

pa(S) of S is the mazximal root of the following quadratic polynomial in \:
A—a)A—am—n+k+1))—(1—a)*(m—n+1). (8)

Proof. Note that there are m —n + 1 edges in S. For convenience, assume that V' (S) =
[n], the vertex 1 has the maximum degree n — 1, NJ(1) = [m —n + k + 2] — {1} and
Ne(l)=(m-n+2|-{1Hh)u{m—-—n+k+3m—-—n+k+4,...,n}

Set my = {1}, 1 =42,3,...,m—n+2}, 713 ={m—n+3,m—n+4,... m—n+k+2},
and m4y = [n] — m — my — 73 as illustrated in Figure 6. With respect to the partition
II = {m, m, w3, M4} of [m], the adjacency matrix A and the diagonal out-degree matrix

D™ of T have equitable quotient matrices

0 m—n+1 %k O m-n+k+1 0 0 0

1 0 0 0 0 1 00
II(A) = and II(D") = ,

0 0 0 0 0 000

1 0 0 0 0 0 01




respectively, which implies that the A,-matrix of T" has equitable quotient

am—n+k+1) 1—-a)(m-n+1) (1—a)k 0

-« o) 0 0

i) = 0 0 0 0
l -« 0 0 !

The characteristic polynomial of II(A4,) is
M=) (A=) A —alm—n+k+1))—(1—a)* (m—n+1)),

and the zero in (8) is at least . By Lemma 2.2, we complete the proof. [

The following theorem is the main result of this section.

Theorem 5.6. If a € [0,1] and [T] € T (n,m), then

pa(T) < % <an /a2 —4a2(n — 1) +4(1 —a)2(m—n+ 1)) .

Moreover, the mixed star of order n and size m with maximum out-degree n — 1 attains

the upper bound.

Proof. By Proposition 5.2, it suffices to show that for each maximal element [T'] € T (n, m)
characterized in Proposition 4.5, p,(T) is at most the upper bound appearing in Theo-
rem 5.6. Suppose T' is a mixed star with maximal out-degree m — n + k + 1. Since the
largest root of the quadratic polynomial in (8) increases as lone as k increases, we might

assume k = 2n —m — 2, and find (8) becomes
M —and+a*(n—1)—(1—a)?*(m—-n+1),

which has largest root as the upper bound appearing in Theorem 5.6. For the remaining
elements [T'] € T(n,n — 1), from Corollary 5.4 we know that the A,-matrix of 7" has

characteristic polynomial [, (A — ad;’), so pa(T) = o+ (max;ep) df) < a(n — 1), where

€[n]
the equality holds when T is the mixed star with n — 1 leaves being out-neighbor of a

vertex. Moreover, a(n — 1) is equal to the upper bound when m =n — 1. [
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5.3 The lower bound of A, -spectral radius

The mixed tree with smallest A,-spectral radius is more complicated to characterize.
We first state the result on trees.

The following theorem was proved in [35].

Theorem 5.7. ([35]) If T is a tree of order n and o € [0, 1], then

pa(T) = pa(Py).

The equality holds if and only if G = P,. |

The following theorem gives a lower bound of the A,-spectral radius of mixed tree of

order n and size m.

Theorem 5.8. Let [T] € T(n,m), and set k = [5—"—1], then

2n—m—1
pa(T) Z pa(Pk)'

Proof. Let T be a mixed tree of order n and size m. Then the graph obtained from

T by removing the arcs has 2n — m — 1 components, and there exists a component of

n
2n—m—1 1"

order at least k = | Let C) be a component with maximum size t. Then

t>k>2and A,(T)[C1] > As(Cy). Hence by Lemma 2.3, Lemma 5.3 and Theorem 5.7,

pa(T> Z p(Aa(T)[CID Z p(Aa(Cl)) = pa(Pt) Z pa(Pk‘)' n

Here we construct a mixed tree to tell that the bound given in Theorem 5.8 may
not be reached for some cases. After removing the arcs from a mixed tree of order n
and size m, the resulting graph contains 2n — m — 1 components. Let the components
be paths with almost equal sizes. That is, the components are all isomorphic to paths

Pr_n__jor P__»__ . Let the paths be ordered one-by-one in descending order with an

2n—m—1 2n—m—1

arc between each pair of consecutive paths from the last vertex of one path to the first
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Figure 7: The mixed tree P ).

vertex of another path. Denote the above mixed tree by P, ). An example of P, )
where n = 8, m = 12 is given in Figure 7.
Let k = [5—-—]. By Lemma 5.3, we deduce that for all m < 2n —2, the A,-spectral

radius po(Pm,m) is equal to pq (M), where My, is the following k x k matrix :

Since [Pym)] € T (n,m), we know that

i o(T) < po (M.
[T]err;l(g,m)p( ) < pa(My)

Together with Theorem 5.8, we have

o(Pr) < min (1) < po(My).
Pa(Pr) meﬂmm)p() Pa(My)

However, we found that for some o € (0,1), both of p,(Py) and p,(M}) are not the
answer of minrjer(n,m) Pa(T). For example, if &« = 0.9, n =8, m = 12, then k = [%1 = 3.
In this case, po(Pr) ~ 1.8217 but this bound cannot be reached by any mixed tree of order
8 and size 12. Meanwhile, p, (M) ~ 1.9051. However, the mixed tree of order 8 and size
12 with smallest A,-spectral radius is actually with A,-spectral radius 1.9, which is given

in Figure 8.
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Figure 8: The mixed graph of order 8, size 12 and Ay g-spectral radius 1.9.

J1L

Figure 9: These mixed trees share the same A,-spectral radius

Notice that the mixed trees with minimum A,-spectral radius is difficult and in some
sense meaningless to characterize since the choice of the out-vertex of each arc doesn’t
change the A,-spectral radius. Figure 9 gives 3 mixed trees that share a same A,-spectral

radius.
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6 New sufficient conditions of Hamiltonicity

There are many earlier results giving sufficient conditions of Hamiltonicity, like Dirac’s
theorem [17], Ore theorem [36] and Chvatal’s theorem [10]. However, the requirements
of above theorems are too strong to reach, so people want to find new approaches for the
sufficient conditions of Hamiltonicity. In this chapter, three different approaches are used
to find new sufficient conditions of Hamiltonicity. The main results of this chapter are

given in Proposition 6.9, Theorem 6.11 and Corollary 6.34.

6.1 Spectral conditions

In 2010, Fiedler and Nikiforov gave the following result.

Theorem 6.1 ([18]). If G is a graph on n > 3 vertices and with spectral radius p(G) >

n — 2, then G is Hamiltonian unless G = K1 V (K1 U K, _»).

Later in 2013, Yu and Fan gave a similar result which uses signless Laplacian spectral

radius. Let ¢(G) be the spectral radius of the signless Laplacian matrix of G.

Theorem 6.2 ([42]). If G is a graph on n > 3 vertices and with signless Laplacian
spectral radius q(G) > 2(n — 2), then G is Hamiltonian unless G = K, V (K U K,,_5) or

We are going to generalize these results into the versions of A,-spectral radius.
6.1.1 Conditions using A,-spectral radius

There are several bounds of the A,-spectral radius p,(G), and here we give a corrected

version of an incorrect bound which is given in [28].

Lemma 6.3. Let n,m,d,A denote the number of vertices, the number of edges, the

minimum degree and the mazimum degree of a graph G, respectively. Then the A,-spectral
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radius po(G) of G is at most

§—1+a(A=5+1)++/(0—1+a(A—=5+1))2+ (4—4a)2m — (n — 1)6)
5 ;

for each 0 < a <1. n

Since 6 > 0 and A < n — 1, we have a simpler bound as follow.

Corollary 6.4.

—14+an++/(-14an)?+8m(l — a)

Pa(G) < 5 )

The above bounds are connections between the A,-spectral radius and the number
of edges in graphs. Here we introduce a classic result given by Ore [36] and Bondy [5],

independently.
Lemma 6.5. Let G be a graph on n > 3 vertices and m edges. If
> (") 4
m
- 2 7
then G is Hamiltonian unless G = K, V (K, U K,_3) or G = K, V K. [ ]
The following proposition is a generalization of Theorem 6.1.
Proposition 6.6. If G is a graph on n > 3 vertices and there exists 0 < o < 1 such that
Pa(G) >n—2+ a,
then G is Hamiltonian unless G = K, V (K, U K,_») or G = K, V K.

Proof. Let n > 3 and p,(G) > n — 2+ a. By Corollary 6.4, we have

—1 -1 24+ 8m(1 —
n—2+a < pa(G) < TV ronfrimlza)

Hence

(4 — 4a)n® + (=12 + 16a — 4a*)n + (8 — 120 + 40?) < (8 — 8a)m,
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so the number of edges in G satisfies

m>%(n2+(—3+a)n+(2—o¢))2%(n2—3n+2): (ngl)

By Lemma 6.5, G is Hamiltonian unless G = K, V (K; U K,,_3) or G = K, V K. [

To give a general version of Theorem 6.2, we first need to generalize a lemma which is
applied in the original proof of Theorem 6.2. Here we write down the proof given in [15]

for later use.

Lemma 6.7 ([15]). Let G be a graph of order n with m edges. Then
2m
max{di +m; v € V(G)} S —1 +n— 2,
n _—
where d; is the degree of v; and m; is the average degree of the neighbors of v;.

Proof. Let v; = argmax{d;, + m; : v; € V(G)}. Let T be the sum of the degrees of the
neighbors of v;, then

T
max{d; + m; :v; € V(G)} =d;j +m; =d; + "
J

Furthermore,

2m=d; + T+ (n —d; — 1)p;
where p; is the average degree of the vertices not adjacent to v;. Hence the inequality we
are going to prove is

n—1

T
dj+— < +n—2,
d;

which is equivalent to

T
(n—d; —1) (n—2+pj——) > 0.
d;

If d; = n— 1, then the equality holds. If not, then d; < n —2 and there are two cases: (i)

0 < p; <1 (ii) p; > 1. For (i), there exists an isolated vertex, which leads to =~ < n — 2
J
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and d; < n — 2, the inequality holds. For (ii), since = < n—1 and d; < n —2. The
J

inequality holds, too. [

The following generalization of Lemma 6.7 has been partially proved in [22], and our

version is applicable for all 0 < a < 1.

Lemma 6.8. Let G be a graph of order n with m edges. Then

pa(G) < 22a+n(l—a)—1, ifac|0,1/2),
palG) < Z2(1—a)+na—1, ifac1/21]
Proof. Let d; be the degree of vertex v; and m; be the average degree of the neighbors of
v;. Since the spectral radius of a symmetric matrix is no greater than its largest row sum,

we have p,(G) < max{ad; + (1 — a)m;}. Let v; = argmax{ad; + (1 —a)m; : v; € V(G)}.

Let T' be the sum of the degrees of the neighbor of v;. For 0 < a < %, by Lemma 6.7,

ad; + (1 — a)m; = a(d; + m;) + (1 — 2a)m;

VAN

2
oz( m1+n—2)+(1—2a)m]~

IN

a(%—i—n—Q)%—(l—Qa)(n—l)

For % < a <1, by Lemma 6.7,

ad; + (1 — a)ym; = (1 — a)(dj + m;) + 2ad,

<-a)

2m

n_l—l—n—Z)—l—Qadj

2

<(1-a) (—m1+n—2)+2a(n—1)
2

:nTl(l—a)—l—na—l.

The following proposition generalizes Theorem 6.2.
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Proposition 6.9. If G is a graph onn > 3 vertices, G # K,V (KUK, _5), G # K,V K3,

and there ezists 0 < a < 1 such that the A,-spectral radius po(G) satisfies

pa(G) >n—1—2a, ifael01/2),
pa(G) >n—3+4+2c, ifac[l/2,1],

then G is Hamiltonian.

Proof. 1f po(G) > n — 1 — 2« for some « € [0,1/2), by Lemma 6.8 we have

n—1-2a<p,(G) <

m1a+n(1—a)—1,

which implies m > (”;1) and by Lemma 6.5, GG is Hamiltonian unless G = K1 V(K UK, )
or G = K2 V 73

Similarly, if po(G) > n — 3 4 2« for some « € [1/2, 1], by Lemma 6.8 we have

m (1—-a)+na—1,

—3+2a < pu(G) <
n= 3420 < pa(C) €

which also implies m > (";1) and by Lemma 6.5, G is Hamiltonian unless G = K; V

(K1UKn_2) OI‘G:KQ\/E. |

6.2 Graph structure conditions

In this section, we focus on the Cartesian product graphs. Recall that the definition

of Cartesian product is as follows.

Definition 6.10. The Cartesian product graph G10G, of graphs GG; and G5 is a graph
with vertex set

V(G10G2) = {v, | v € V(Gy),u € V(Ga)},

and edge set

E(G10Gs) = {v,v, | v € V(Gy),uw € E(Gy)} U{v,w, | u e V(Gy),vw € E(Gy)}.
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Parts of the results are also in the Master thesis [34] of the author. The tools we use
here are different from [34] and are more applicable.

Recall that the maximum degree of graph G is denoted as A(G). A path factor of
a graph is a spanning subgraph of the graph such that each component of the spanning
subgraph is isomorphic to a path with order at least two. If each component in a path
factor is isomorphic to P, the path factor is called a perfect matching. The following

theorem is the main result of this section.

Theorem 6.11. Let Gy be a traceable graph and Go a connected graph. Statements (a)

and (b) are given as following :

(a) Gy has a perfect matching and |V (G1)| > A(Gs).

(b) Gy has a path factor and |V (G1)| is an even integer with |V (G1)| > 4A(G2) — 2.
If one of (a),(b) holds, then G10Gy has a Hamiltonian cycle.

Theorem 6.11 (a) and (b) will be proved in Theorem 6.21 and Theorem 6.24, respec-
tively.
6.2.1 Path factor of a bipartite graph

To introduce properties of a graph with a path factor, we need more notations. First,
we say a graph to have a {P,, P3}-factor if it has a spanning subgraph such that each
component is isomorphic to P, or P3. Next, we use i(G) to denote the number of isolated
vertices of G.

A {P,, Py}-factor is a path factor, and a path with order at least 2 has a {P», P3}-

factor. Therefore, the following lemma follows.

Lemma 6.12. A graph G has a path factor if and only if G has a { Py, Ps}-factor. [ ]

The proposition below is from [1].
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Proposition 6.13 ([1]). A graph G has a path factor if and only if i(G — S) < 2|S| for
all S CV(G). u

Lemma 6.14. Let G be a graph. If §(G) > |V(G)|/3, then G has a path factor.

Proof. Suppose G has no path factor. Choose S C V(G) with |I| = (G — S) > 2|S| by
Proposition 6.13, where [ is the set of isolated vertices in G — S. As each vertex in I has
degree at most |S| in G, we have |S| < (|S|+ |1])/3 < |V(G)|/3, a contradiction to the
assumption that 6(G) > |V (G)|/3. |

Restricted to bipartite graphs, the following proposition is a supplementary of Propo-

sition 6.13.

Proposition 6.15. If H is a bipartite graph that does not contain a path factor, then

there exists a vertex subset S that belongs to a single partite set of H with i(H —S) > 2|5)|.

Proof. By Proposition 6.13 there exists S" C V(H) such that i(H — S") > 2|5'|. Let H
have partite sets A, B and Sy := S’ N A,Sp := 5" N B. Note that an isolated vertex
in H — S’ is either an isolated vertex in H — S4 or an isolated vertex in H — Sg. So
i(H—Sy)+i(H—Sp) =i(H—-S") > 2|S"| = 2|S4|+2|Sp| which implies i(H —S4) > 2|S4|
or i(H — Sg) > 2|Sg]. |

For convenience, assume

V(P) ={1,2,....n}, B(P) = {ili+1):i=1,2,...,n— 1}

in the rest part of this section.

Theorem 6.16. If H be a bipartite graph without path factors, then the Cartesian product
P,LJH is not 1-tough.
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Proof. By Proposition 6.15, there exists a vertex subset S in a single partite set of H
such that i(H — S) > 2|S|. Let I denote the set of isolated vertices in H — S and
Jjs ={js | s € S}, jr={juluecl}forl <j<n LetV(P,OH)=XUY bea
bipartition of P,00H with |X| < |Y|. For the case | X| = |Y|, let Y be the partite set
which contains 1g. Note that 1;,2¢ C X, 2; C Y, and 2|1¢| = 2|S| <i(H — S) = [1,]. If
| X| < |Y], then ¢(P,0H — X) = |Y| > |X|, implying that P,[JH is not 1-tough. Suppose
| X|=1Y]. Set X'=(XUlg)—1yand Y = (Y U1;)— 1s. Now 1;,2; C Y’. Since 1,2,
is the only possible edge in Y’ for each u € I, we have ¢(P,0H — X') > |Y'| — |1 =
Y] —|1g] > |X]| + |1s| — |17] = |X'|. Thus P,0H is not 1-tough. n

Considering the special case n = 1 in Theorem 6.16, we have the following corollary,

which is of independent interest.
Corollary 6.17. A 1-tough bipartite graph has a path factor.
6.2.2 Trees with perfect matchings

Results about the Hamiltonicity of Cartesian product graphs have been proved in
several papers. For instance, the papers [14],[16] and [39] have mentioned the following

result.

Theorem 6.18 ([39]). Let T be a tree. If n > A(T), then C,OT is Hamiltonian. n

Motivated by Theorem 6.18, we will prove the Hamiltonicity of P,[JT. Before doing
this we comment by the following lemma to show that the assumption n > A(T) in

Theorem 6.18 is necessary.

Lemma 6.19. Let Gy be a connected graph and T be a tree. If A(T) > |V(G1)|, then the

Cartesian product G1OT is not 1-tough.
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Proof. Find v € V(T) with deg(v) = A(T), choose S = {u, : v € V(G1)} and note that
|S| = |[V(G1)|. Now ¢(G,OT — S) = A(T) > |V(G1)| = |S|, which means that G107 is

not 1-tough. ]

Let G be a graph with path factor F. Let Gr be the graph with vertex set F' and
two components ¢q,co € F' are adjacent if there exist vertices u € ¢1,v € ¢y such that
wv € E(G). In particular, if T is a tree with path factor F' then Tr is a tree, deleting
a leaf ¢ in Tr yields a subtree of T, and T" — ¢ is a subtree of T. Hence we have the

following lemma.

Lemma 6.20. For a tree T with a {Py, Ps}-factor F, there exists a component ¢ of F
such that T — ¢ is a tree with a { Py, Ps}-factor F — {c}. u

For v € V(T) let B, :=={i,(i+ 1), | 1 <i <n} C E(P,OT). Now for T = P, and
V(T) = {u, w}, the set {1,1,}UB,UB,U{n,n,} of edges in P07 forms a Hamiltonian
cycle, and call it the standard Hamiltonian cycle for P,[JP;. To avoid confusions, the
degree of vertex v in G will be denoted by deg,(v). To prove Theorem 6.11(a), it is
sufficient to find a Hamiltonian cycle of P,[07 where n = |V(G;)| and T is a spanning
tree of G5 that contains perfect matching F' of G5. Note that n > A(Gy) > A(T). For

the convenience of proof, we state a stronger version as follows.

Theorem 6.21. Let T be a tree with a perfect matching. If n > A(T), then there exists
a Hamiltonian cycle of P,OT which contains exactly n — degy(v) of the edges from the

set B, for any vertex v € V(T). In particular, Theorem 6.11 (a) is proved.

Proof. Apply induction on the number of vertices of T'. For T' = P,, the standard Hamil-
tonian cycle for P,[0P; satisfies the requirement since |B,| = n — 1 = n — deg,(v) for

v e V(P).
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For a tree T" with a perfect matching F. By Lemma 6.20, there exists a component
(an edge) ¢ in F such that 7' — ¢ is a tree with a perfect matching. Let u; € ¢ and
us € V(T — ¢) such that u; and uy are adjacent. Let H' be the standard Hamiltonian
cycles of P,ec. Since the subtree 77 = T'—c of T has a perfect matching, |V (1) < |[V(T)|
and n > A(T) > A(T"), by the induction hypothesis, there is a Hamiltonian cycle H” of
P,OT" which contains exactly n—deg; (v) edges from the set B, for any vertex v € V(T").
Since n — degg (uz) = n — (degp(uz) — 1) > n — A(T) +1 > 1, there exists a j such that

Jup (7 + 1), € H”. Now

H=HUH"U{Jujus, G+ Dus(G+ Dus} = {00 (G + Dugs Jus(J + Ly }

is a Hamiltonian cycle of P,LJT'.

To check that H satisfies the edge requirement, we only need to check those vertices
in T" whose incident edges have been changed in the induction step, which are vertices u;
and wuy. For uy, all the n — 1 edges of B, are in the cycle H'. We delete one of them, so
there are n — 2 = n — degy(uy) edges from B, in H. For ug, there are n — degy (uz) =
n— (degp(uz) —1) edges from B,, in the cycle H” by the induction hypothesis. We delete
one of them, so there are n — (degy(uz) — 1) — 1 = n — degy(uz) edges from B,, in H.

This completes the proof. [ ]

The paper [14] has proved that G;0G; is Hamiltonian when G is traceable with
|[V(G1)| an even integer no less than A(G5) — 1 and G2 contains an even 2-factor (i.e.
a spanning subgraph consisting of even cycles). Since an even 2-factor must contain a
1-factor, so Theorem 6.11(a) is a stronger result apart from the case |V(G;)| = A(G2) — 1.

The following corollary concludes this section.

Corollary 6.22. Let T be a tree with a perfect matching and n be a positive integer. The

following three statements are equivalent:
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010,

¢ 10,

Figure 10: Standard Hamiltonian cycle for Pyol1P;
(1) P,0OT is Hamiltonian.
(2) P,OT is 1-tough.
(3) n>A(T).

Proof. (1) = (2) is clear. (2) = (3) is from Lemma 6.19. (3) = (1) is from Theorem 6.21.

6.2.3 Graphs with path factors

Here we construct a Hamiltonian cycle of P,JG where G is connected with a path
factor and n is an even integer with n > 4A(G) — 2. By Lemma 6.12, G has a { P, Ps}-
factor F'. Let T be the spanning subtree of G that contains F. It suffices to find a
Hamiltonian cycle in P,UT'.

For v € V(T), let L, = {i,(: + 1), | i = 0,1,3 (mod 4)},C, = {i,(i + 1), | i =
0,2 (mod 4)}, R, = {i,(i +1), | ¢ =1,2,3 (mod 4)} denote three special subsets of the
edge set B, described in the last section. For G = P with V(G) = {u,v,w} and E(G) =
{uv,vw}, the set {1,1,} U{n,n,, nyn, UL, UC,URy, U{iyi, : i = 2,3 (mod 4)} U{iyiy :
i =0,1 (mod 4)} of edges forms a Hamiltonian cycle, and call it the standard Hamiltonian

cycle for P,[dP;. See Figure 10 for the standard Hamiltonian cycle for Pjo[1P5.
By direct computation we have the following lemma.
Lemma 6.23. For even integer n, |L, N R,| > |R, N C,| > |L, N C,| = [24].
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We define the type of a vertex v in T as follows. v has type B (resp. C) if v is in an
edge in F' (resp. if v is the middle vertex in a path of length 3 in F’). For the two endpoints
of a path of length 3 in F', we arbitrarily assign one endpoint of type L and the other of
type R. Let dx = 1if X € {B,L, R} and 6x = 2 if X = C. Note that 6x = deg_.(v) for

c € Fand v € ¢ of type X. The following is a stronger version of Theorem 6.11(b).

Theorem 6.24. Let T' be a connected graph with a { Py, Ps}-factor F' and n be an even
integer. If n > 4A(T) — 2, then P,OT contains a Hamiltonian cycle H such that for
any vertex v € V(T') of type X € {B,L,C, R}, we have HN B, C X, and |H N B,| =
| X,| — degp(v) + dx. In particular, Theorem 6.11(b) holds.

Proof. We prove by induction on the number of vertices of T. For T' = P5, any vertex v
of P, has type B and the standard Hamiltonian cycle H; of P,00P, satisfies |H, N B,| =
n —1=|B,| —degp,(v) + 1 for vertex v € P,. For T' = P, a vertex v of P; has type
X € {L,C, R} and the standard Hamiltonian cycle Hy of P,0P; satisfy |Hs N B,| =
X, = |X,| — degp (v) + bx.

Now assume |V (7T")| > 4. By Lemma 6.20, there exists a component ¢ of I such that
T — cis a tree with the path factor F' — {c}. Let u; € ¢ and uy € V(T — ¢) such that u;
and u, are adjacent. Assume u; has type X and wus has type Y. Let H' be the standard
Hamiltonian cycle of P,[dc and P,dT — ¢ contains a Hamiltonian cycle H” that satisfies
H"N By, CY,, and |Hy N By,| = |Ya,| — (degp(uz) — 1) + dy by induction hypothesis.
Referring to Lemma 6.23, we have |Ho N By, N X, | > |V, N Xy, | — (degp(uz) — 1) 4+ dy >
(274 — degp(uz) +2 > (%1 —degy(uz) +2 > 1. Pick jy, (j + 1)u, € H2 N By, N Xy,
and then j,, (j + 1), € Xy, € H'.

Now

H =H'UH"U{juJuss (5 + Vs (G + Do} = {Gur (G 4 D Jua (5 + Do }
is a Hamiltonian cycle of P,JT.
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To check H satisfies the edge requirements, we only need to check for v € {uy,us}.
This follows from |H N X,,| = |H' N X, | — 1 = |X,,| —1=|X,,| — degr(u1) + éx and
|[HNY,,|=|H"NY,,|—1=|Y,|— (degp(uz) — 1)+ dy — 1 =|Y,,| — degp(us) +dy. m

Similar to Corollary 6.22, another set of equivalent conditions on Hamiltonicity of
Cartesian product graphs is given as follows.

Corollary 6.25. Let H be a connected bipartite graph, n be an even integer and n >

AA(H) — 2. The following three statements are equivalent :
(1) P,OH is Hamiltonian.
(2) P,OH is 1-tough.
(8) H has a path factor.

Proof. (1) = (2) is clear. (2) = (3) is from Theorem 6.16. (3) = (1) is from Theo-

rem 6.24. []

To show that the assumption n > 4A(H) — 2 in Corollary 6.25 can not be replaced
by n > A(H), we provide a 1-tough non-Hamiltonian graph P,[J7 such that T is a tree
with a path factor and n = A(T') + 1.

Let T} be a tree with vertex set V(T1) = {1,2,3,4,5,6,7,8} and edge set E(T}) =
{12,23, 34,45, 26, 37,48}.

Proposition 6.26. The graph G = P,0JT7 is 1-tough but not Hamiltonian.

Proof. 1f G is Hamiltonian, the edges incident to degree two vertices of G must contained

in each Hamiltonian cycle. Therefore the edges
L1y, Iolg, 1317, 1415, 1alg, 142y, 1525, 1626, 1727, 1525,

3141, 3545, 3646, 3747, 334s, 4142, 4ode, 4347, 4445, 444
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(thick black edges in Figure 11(a)) are chosen. Since each of the vertices 1o, 14, 45 and 44
is already incident to two chosen edges, the four edges 1513, 1314, 4243, 4344 (dotted edges
in Figure 11(b)) can not be chosen. Furthermore, this tells that the edges 1523, 3343 need
to be chosen as shown in Figure 11(b). At this time, at least one of 2523, 2324 can not be
chosen to complete the Hamiltonian cycle. Without loss of generality, says the edge 2525
(dashed edges in Figure 11(b)) has not been chosen. Now each of two internal disjoint
paths from 25 to 23 in the Hamiltonian cycle contains the edge 3233, a contradiction.
Hence G is not Hamiltonian.

Next we show that G is 1-tough. As G depicted in Figure 11(c), there exists a cycle C
of order 30 in G such that V(G — C) = {35,45} and 3545 is an edge of G that is incident
to 3 vertices 25, 34,44 of C'. For a vertex set S, there are 3 cases for G — S to discuss :
The set SN {35,45} is non-empty; The set SN {35,45} is empty and {25,34,44} C S; The
set SN {35,45} is empty and {25,34,44} Z S.

If the set S N {35,45} is non-empty, then c({35,45} — (SN {35,45})) < |SN{35,45}].
On the other hand, ¢(SNC) < |C — (SN C)| since C is 1-tough. Because G — S C
(C—(SNC))U({35,45} — SN {35,45}), we conclude that ¢(G — S) < ¢(C — (SNC)) +
c({35,45} — (SN {35,45})) < |SNC|+[SN{35,45}| = |S] for all S such that SN {35,45}
is non-empty.

If the set S N {35,45} is empty and {25,34,44} C S, then the subgraph induced by
{35,45} is a component of G — S. As depicted in Figure 11(d), the subgraph G; of G
induced by V(G) — {35,45, 25, 34,44} contains a spanning tree such that all vertices has
degree at most 2 except an only one degree 3 vertex. This implies ¢(G; — S") < [S'] + 2
for 8" =S — {2;,34,44}. Therefore, ¢(G —85) =c(Gy —95')+1 < |5 +3 =S| for all §
such that the subgraph induced by {3s5,45} is a component of G — S.

If the set S N {35,45} is empty and {25,34,44} € S, then S C C and the edge 3545 is

adjacent to some vertices of C'— S. Therefore, ¢(G — S) < ¢(C — 5) for all such S. Since
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o 2 s
(a) Edges with degree 2 endpoints. (b) Edges which need to be chosen.

‘?7—5 g ~o
T T, T
A= Nl

(c) A cycle C and the edge 3545. (d) Graph G and its spanning tree.

Figure 11: The graph P,[J7T} and its subgraphs.

the cycle C'is 1-tough, ¢(C' — S) < |S|. Hence ¢(G — S) < ¢(C — 5) < |S|.
In conclusion, ¢(G — S) < |S| for all S C V(G) which means G is 1-tough.

6.2.4 More results on the Hamiltonicity of Cartesian product graphs

The well-known Petersen’s matching theorem [37] states that a connected 3-regular
graph with no cut-edges has a perfect matching, so together with Theorem 6.11(a) we

obtain the following corollary.
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Corollary 6.27. Let G be a traceable graph of order at least 3. If Gy is a connected

3-reqular graph with no cut-edge, then G1LG5 has a Hamiltonian cycle. [ ]

We use Theorem 6.11(b) to obtain the following two Dirac-type results [17].

Corollary 6.28. Let Gy be a connected graph with 26(Gs) > A(G2) and Gy be a traceable

graph of even order. If |V(G1)| > 4A(G3) — 2, then G10Gs has a Hamiltonian cycle.

Proof. Let S be a vertex subset of V(G3). Now the number of edges between S and the
set of isolated vertices of Gy — S is at least i(Gy — S)d(G2) and is at most |S|A(Gs). Since
20(Gy) > A(G3), we have i(Go — S) < 2|5] for all S C V(Gs). By Proposition 6.13, G

has a path factor and by Theorem 6.11(b) we complete the proof. ]

Corollary 6.29. Let Gy be a connected graph with 6(G2) > |V(G2)|/3 and Gy be a
traceable graph of even order. If |V(G1)| > 4A(Go) — 2, then G10OG has a Hamiltonian

cycle.

Proof. This is immediate by applying Lemma 6.14 to Theorem 6.11(b). ]

6.3 Conditions using Kelmans transformation

In this section, we focus on the Hamiltonicity of maximal graphs in 4G (n, m) and the
Hamiltonicity of the Cartesian product graph of a path and a Kelmans transformation

graph. The main results are Proposition 6.30 and Corollary 6.34.
6.3.1 Hamiltonicity of Kelmans transformation graphs

In the Kelmans transformation G, the vertex a dominates the vertex b, which means
(Nee(D)\{a}) € (Ngg(a)\{b}). From this property, it is easy to deduce that after reorder-

ing the matrix, the adjacency matrix of a maximal element in UG(n,m) is stepwise, i.e.
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aij+1) = 0 if a;; = 0 for i # j. For example, the star K, is maximal in YG(n + 1,n) by

Proposition 4.5. After reordering the vertices, the adjacency matrix of K, is written as:

o1 1 --- 1
10 0 -+ 0

0 0

10 -+ 0 0

Stepwise matrices also help us to characterize Hamiltonian maximal graphs. Recall
that M, is the n-by-n binary matrix with M, (i,7) = 1 if and only if i # j,i + j < n + 2.

For example,

01 1111
1011111

101111
1101110

110110
Mg = , Mc;=11 110100

111000
1111000

111000
1110000

110000
1100000

We have the following result.

Proposition 6.30. Let [G] be a mazimal element in UG(n, m) with a stepwise adjacency

matrix A. Then G is Hamiltonian if and only if A > M,,.

Proof. Let G,, be the graph with adjacency matrix M,. When n is even, GG, contains
a Hamiltonian cycle 1,n,2,n —1,3,n —2,...,%5,5 + 1,1. When n is odd, G,, contains
a Hamiltonian cycle 1,n,2,n —1,3,n —2,..., =L 4 1, "TH7 1. f A > M,, then G, is a
subgraph of G. Since G, is Hamiltonian, the graph G is also Hamiltonian.

If A# M,, then there exist ig > jo such that iy + jo < n+2and A(i,j) = 0 for all 4, j

with ¢ > ig and j > jo. This tells that neighbor of 7 is a subset of {1,2,...,jo—1}. Taking
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vertices {1,2,...,jo—1} off from G, each of the vertices {ig, i9+1, ..., n} becomes isolated.
The graph G—{1,2,...,jo—1} contains at least |{ig,i0+1,...,n}|+1 components, which

are isolated vertices 79,79 + 1,...,n and a component contains vertex jj. Since
{1,2,...,j0 — 1}| = jo— 1 and |{ig,i0+ 1,...,n}| =n—io+ 1,

the toughness 7(G) of G satisfies

T(G)< ‘{1,2,,]0—1}| < jo—l <]0—1

. . — < L.
T o(G={L,2,...,0—1}) T n—ig+2 " o

Since G is not 1-tough, G is not Hamiltonian.

The following proposition tells that the “non-Hamiltonian” property is preserved by

a Kelmans transformation.

Proposition 6.31. If G contains two vertices a,b which are in a k-cycle C' of Gi then
a and b are in a k-cycle C" of G. In particular, if G is non-Hamiltonian then G§ is

non-Hamiltonian.

Proof. Let u,v € Ng(a) be distinct. If u,v € Ng(a), then choose ¢’ = C and the
proof is finished. Suppose u ¢ Ng(a) and v € Ng(a). By the definition of Kelmans
transformation, we have u # b, u € Ng(b), and u & N¢(b). We give C' a direction from
a to u and back to a. Let © € N¢(b) be the vertex before b in this direction. Note that
r € Ng(a). Let C be the cycle in G starting from a, following z, along the reversed
direction of C' to u, then to b, and following the direction of C' back to a. Then C’ is a k-
cycle of G which contains b and a. The case u € Ng(a) and v € Ng(a) is similar. Suppose
for the last case u € Ng(a) and v € Ng(a). The above argument shows that u,v € Ng(b)
and for the vertices x,y € N¢(b) along the direction of C, we have x,y € Ng(a). Let C’

be the cycle in G starting from a, following =, along the reversed direction of C' to u, then
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to b, following v, along the reversed direction of C' to y and then back to a. Then C’ is a

k-cycle of G which contains b and a. [ ]

By Proposition 6.31, the Hamiltonicity of (G10G2)f is related to the Hamiltonicity
of G10G,. However, (G100G3)¢ is not a Cartesian product graph in general. It is more
interesting to consider graphs like G1J(Gy)¢. Contents about G10(G2)¢ will be discussed

in Section 6.3.2.
6.3.2 Cartesian product of a path with a Kelmans transformation graph

We have used the perfect matchings and path factors of a graph to construct Hamilto-
nian cycles in Theorem 6.11. The following two lemmas consider the existence of perfect

matchings and path factors of Kelmans transformation graphs.

Lemma 6.32. If G has no perfect matching, then G§ has no perfect matching for any
distinct a,b € V(G).

Proof. Let M be a perfect matching of G. If ab € M, then the edges of M are all belong
to E(G). Hence M is also a perfect matching of G.

If ab ¢ M and bx,ay € M. Then bz,ax € E(G) by the definition of the Kelmans
transformation. If ay € E(G), then M is a perfect matching of G. If ay ¢ E(G), then
by € M by the definition of the Kelmans transformation, so M\{bz,ay} U {by,az} is a

perfect matching of G. |

Lemma 6.33. If G has no path factor, then G has no path factor for any distinct
a,b e V(G).

Proof. Let M be a path factor of Gf. If M is a subgraph of G, then there is noth-
ing to prove. If not, then there exists x € Ny(a)\Ng(a). The definition of Kelmans

transformation implies that © € Ng(b). Let
M'= M U{bx : x € Ny(b)\Ng(b)}\{az : © € Ny(a)\Ng(a)}.
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Then deg),(b) = degy,(b) + [Nas(a)\Ne(a)|, degyr(a) = degy (a) — [Nar(a)\Ng(a)| and
deg,, (w) = deg,,(w) for all w # a,b.

Note that Ny (b) C Ng(a). If deg,, (b) > 2, then pick deg,,, (b)—2 vertices y € Ny (b),
delete edges by from M’ and add edges ay to obtain a spanning subgraph M” of G with
each vertex of degree 1 or 2. If each component of M” is a path, then M” is a path factor
of G. If M" contain cycles, delete an arbitrary edge from each of the cycles, we get a path

factor. ]

Corollary 6.34. Let H be a connected bipartite graph. Let n be an even integer and
n > 4A(H) — 2. If there exist a,b € V(H) such that P,OH is Hamiltonian, then P,00H

is Hamiltonian.

Proof. If there exist a,b € V(H) such that P,0H} is Hamiltonian, then by Corollary 6.25,
H}' has a path factor. By Lemma 6.33, H contains a path factor. Therefore, P,[0H is

Hamiltonian by Corollary 6.25. ]
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7 Concluding remarks

In this dissertation, we generalize the concept of Kelmans transformation to nonneg-
ative matrices. With minor constraints, we show that the largest real eigenvalue of a
nonnegative matrix will not decrease after a Kelmans transformation.

The general version of the Kelmans transformation is applicable on matrices related
to mixed graphs. We extend the relation G < G¢ into a partial order on the set G(n,m)
of the isomorphism classes of mixed graphs of order n and size m; then characterize the
maximal /minimal elements in some of the subposets and weak subposets of (G(n, m), <).

We also apply the general version of the Kelmans transformation on the researches
of the spectral theory of A,-matrices, which combines the spectral theories of adjacency
matrix and signless Laplacian matrix. For an application, we show that for o € [0, 1] and

a mixed tree T of order n and size m, the A,-spectral radius p,(T") satisfies

pa(T) < % <om +va2n? —4a2(n —1) +4(1 — a)2(m —n + 1)) :

The methods we introduce is also applicable on other mixed graphs. To find the extremal
values of the A,-spectral radius of mixed graphs is a direction of future works.

We also give new sufficient conditions of the Hamiltonicity of graphs. We prove that
except some specific graphs, if the A,-spectral radius of a graph is large enough, then the
graph is Hamiltonian. However, the bounds we give in Proposition 6.6 and Proposition 6.9
are still improvable. For example, the following proposition gives a sufficient condition of

Hamiltonicity using the minimum degree and the spectral radius of a graph.

Proposition 7.1 ([32]). Let k > 2, n > k3+k+4, and let G be a graph of order n, with
minimum degree §(G) > k. If

then G is Hamiltonian unless G = Ky V (Kp_j_1 UKy) or G = K V (Kp_or U Ky,).
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Here we provide a problem to conclude this dissertation.

Problem 7.2. Does there exist a bound f(6(G), ) such that a graph G of order n with
p(G) 2 n—f(6(G), @)

is Hamiltonian unless G belongs to some certain graph classes?
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