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圖 的 點 邊 度 和 邊 點 度

研究生: 李家豪 指導教授: 翁志文 教授

國立陽明交通大學

應用數學系

摘要

設 G 為簡單無向圖。一個點 u 的點邊度為 u 的所有鄰居所連出之邊的總數，
表示為 degve(u)。一個邊 e 的邊點度為 e 的兩頂點及其所連出之點的總數，表示
為 degev(e)。如果一個圖的所有點 (或邊) 都具有相同的度數 k(或點邊度 k、邊點
度 k)，我們稱它為 k-正則 (或 k-點邊正則、k-邊點正則)；如果一個圖的所有邊都
具有相同的邊點度數 k，我們稱它為 k-邊點正則。本論文主要討論點邊度與邊點度
在一些圖上所具有的性質。我們有以下的結果。

• 設 ηe 表示包含邊 e 的三角形個數。若圖 G 裡的邊 e 有 ηe 為一大於 0 的常
數 c，且 t 為某個自然數。則 G 是 t-邊點正則若且為若 t+ c 是偶數且 G 是
t+c
2 -正則。

• 若 G 是一個直徑為 2、邊數為 m 且沒有五邊形的圖，則 G 是 m-點邊正則。
• 若 G 是一個參數為 n, k, λ, µ 的強正則圖，則 kλ 是偶數且 G 是 (2k − λ)-邊
點正則和 (k2 − kλ

2 )-點邊正則。

• 設 G 是沒有三角形、無孤立點、且點數為 n 的圖。若對於 G 的每個邊 e 我
們有 degev(e) ≤ ⌊n2 ⌋，則 G 的補圖 G 是一個漢彌爾頓圖。

• 我們整理一些未解的問題做為未來研究的方向。

關鍵字: 點邊度, 邊點度, 點邊正則, 邊點正則, 正則圖, 強正則圖, 漢彌爾頓圖
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On ve-degrees and ev-degrees in graphs

Student: Jia-Hao Li Advisor: Chih-Wen Weng

Department of Applied Mathematics

National Yang Ming Chiao Tung University

abstract

Let G = (V,E) be a simple undirected graph with vertex set V and edge set
E. The ve-degree of a vertex u in G is the number of edges, denoted by degve(u),
that are incident with a neighbour of u. The ev-degree of an edge e is the number
of vertices, denoted by degev(e), that are incident with an endpoint of e. We call
a graph k-regular (resp. k-ve-regular, k-ev-regular) if all of its vertices (edges)
have the same degree (resp. ve-degree, ev-degree) k. The thesis mainly discusses
the properties of ve-degrees and ev-degrees of graphs. We have the following results.

• Let ηe denote the number of triangles containing edge e. Assume that ηe =
c > 0 is a scalar for e ∈ E(G), and t ∈ N. Then G is t-ev-regular if and only
if t+ c is even and G is t+c

2 -regular.
• If G has diameter 2, with size m and without pentagon, then G is m-ve-regular.
• If G = (V,E) is a strongly regular graph with parameters n, k, λ, µ, then kλ

is even and G is (2k − λ)-ev-regular and (k2 − kλ
2 )-ve-regular.

• Let G be a triangle-free graph of order n without isolated vertices. If degev(e) ≤
⌊n2 ⌋ for every edge e ∈ G, then the complement G of G is Hamiltonian.

• We list some unresolved problems as the direction for future research.

Keywords: vertex-edge degree, edge-vertex degree, ve-regular, ev-regular, regular graphs,

strongly regular graphs, Hamiltonian graphs
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1 Introduction

Let G = (V,E) be a simple graph with vertex set V and edge set E. We are curious

about the number of edges incident with neighbours of a vertex. A vertex u ve-dominates

every edge that is incident with a neighbour of u. The ve-degree of a vertex u, denoted

by degve(u), is the number of edges that are ve-dominated by u in G. On the other hand,

an edge e = uw ev-dominates the neighbours of u and the neighbours of w. The ev-

degree of an edge e, denoted by degev(e), is the number of vertices ev-dominated by e

in G. Let k and m be positive integers. We call a graph k-regular (or regular for short)

if all of its vertices have the same degree k; calling a graph m-ve-regular (or ve-regular

for short) if all of its vertices share the same ve-degree m; and call a graph k-ev-regular

(or ev-regular for short) if all of its edges are with ev-degree k. In Figure 1, the graph

is both 8-ve-regular and 6-ev-regular. The label on a vertex is its ve-degree and the label

on an edge is its ev-degree.

Figure 1. An 8-ve-regular and 6-ev-regular

u u u u

u

u

8

8

8 8 8 8

6 6

6 6

6 6

6 6

A graph is ve-irregular (resp. ev-irregular) if the ve-degrees (resp. ev-degrees) of

vertices (resp. edges) are all different. Recently, many people have studied ve-irregular

1



graphs and ev-irregular graphs. In [2, 2017], Mustapha Chellali , Teresa W. Haynes ,

Stephen T. Hedetniemi ,Thomas M. Lewis provided many ve-irregular graphs, and then

proved that if G is a graph with girth at least 5, then G is not ve-irregular. They also

showed the nonexistent of a connected ev-irregular graph of order at least 3. In the paper

[1, 2019], Batmend Horoldagva, Kinkar Ch. Das, Tsend-Ayush Selenge discussed the

relationship between regular, ve-regular, and ev-regular. They further proved that there

exists a ve-irregular graphs of every order greater than 7; and there exists an ev-irregular

graph of every order greater than 5. They provided a special method to construct irregular

graphs.

This paper discusses the relationship between ve-regular, ev-regular and regular prop-

erties of graphs that extends the previous study. Moreover, we prove that strongly regular

graphs must be ve-regular and ev-regular.

In Section 3, we use the number of triangles containing a vertex (or an edge) to

calculate the values of ve-degree and ev-degree. Let G be a connected graph. Assume

that ηe = c > 0 is a scalar for e ∈ E(G), and t ∈ N. In Section 4, we prove that G is

t-ev-regular if and only if G is t+c
2

-regular. In Section 5, we prove that if G has diameter

2, size m and without pentagon, then G is m-ve-regular. In Section 6, we prove that if G

is strongly regular, then G is ev-regular and ve-regular. In Section 7, we prove that if G is

an undirected triangle-free graph of order n without isolated vertices and degev(e) ≤ ⌊n
2
⌋,

for every edge e ∈ G, then the complement G of G is Hamiltonian. In Section 8, we list

some unresolved problems as the direction for future research.

2 Notations

Our graph G = (V,E) is always simple and undirected without loops. Sometimes, we

will write V (G) and E(G) for V and E respectively to emphasize the underlying graph G.

The number |V (G)| is called the order of G and the number |E(G)| is called the size of
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G. For an edge e = uv, the following terminologies are used interchangeably: the vertices

u and v are endpoints of the edge e; and u and v are adjacent; u is a neighbour of v; u

is incident with e; e is incident with u. The complement of a graph G is a graph G on

the same vertices such that two distinct vertices of G are adjacent if and only if they are

not adjacent in G. A walk is a sequence of edges such that two consecutive edges share an

endpoint. We call G a Hamiltonian graph if there exists a closed walk that visits every

vertex of the graph exactly once and the starting point is the same as the ending point.

The distance between two vertices u and v in a graph is the smallest number of edges

in a walk that u and v are the endpoints of the first edge and the last edge respectively.

We called a graph has diameter 2 if the maximum distance of two vertices in the graph

is equal to 2. For v ∈ V (G) and i ∈ N, let Gi(v) denote the set of vertices at distance i

to v. Define N(v) = G1(v), the set of neighbours of v. The number |N(v)| is called the

degree of vertex v in G, denoted by deg(v).

A cycle of size k in a graph is a walk with k edges in which the endpoints of edges

are all different except one in the first edge and in the last edge. Denote Ck as a cycle

with size k. In the rest of this thesis, the cycle C3 is called a triangle. A subgraph of

G is a graph H whose vertex set and edge set satisfy V (H) ⊆ V (G) and E(H) ⊆ E(G).

We refer to as H in G if H is a subgraph of G. The girth of G is the smallest size of a

cycle in G. For a graph G, let η(G) denote the number of triangles in G. For v ∈ V (G)

and e ∈ E(G), let ηv (respectively ηe) denote the number of triangles containing vertex v

(respectively edge e).

We call a graph G strongly regular with parameters n, k, λ, µ if G is k-regular of

order n and every two adjacent vertices have λ common neighbours, and every two non-

adjacent vertices have µ common neighbours. For convenience, we usually denote strongly

regular graphs by srg(n, k, λ, µ). Strongly regular graphs were introduced by [3, 1963].
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3 Preliminary

We shall introduce some known results on ve-degree and ev-degree in this section. For

completeness, we also include the proofs.

Lemma 3.1. Let G = (V,E) be a simple graph and v ∈ V (G). Then

degve(v) =
∑

u∈N(v)

deg(u)− ηv.

Proof. By the definition of ve-degree, if all of neighbours of vertex v are not adjacent

to each other, then we have degve(v) =
∑

u∈N(v) deg(u). However, an edge uw has

been counted twice in degve(v) as an incident edge of neighbours of v if and only if

vertices u, v, w will form a triangle. Since there are ηv such edges uw, we have degve(v) =∑
u∈N(v) deg(u)− ηv.

Lemma 3.2. Let G = (V,E) be a simple graph and e = uv ∈ E(G). Then

degev(e) = deg(u) + deg(v)− ηe.

Proof. Similar to the proof of Lemma 3.1, for an edge e = uv, a vertex w has been

counted twice in degev(e) if and only if vertices u, v, w form a triangle. Hence degev(e) =

deg(u) + deg(v)− ηe.

Lemma 3.3. Let G = (V,E) be a simple graph and v ∈ V (G). Then

ηv =
1

2

∑
e=vu∈E(G)

ηe.

Proof. For a vertex v ∈ V (G), every triangle that contains v must have two edges adjacent

to v. Hence we have this Lemma.

4



The following result in [2, 2017] is the relation of the ve-degree, ev-degree and the sum

of squares of degree.

Theorem 3.4. For any graph G = (V,E), we have∑
v∈V

degve(v) =
∑
e∈E

degev(e) =
(∑
v∈V

deg2(v)
)
− 3η(G).

Proof. A vertex v ∈ V ve-dominates edge e if and only if e ev-dominates v, hence∑
v∈V degve(v) =

∑
e∈E degev(e). By Lemma 3.2, for an edge e = uv, we have

degev(e) = deg(u) + deg(v)− ηe.

Therefore, ∑
e∈E

degev(e) =
∑

e=uv∈E

deg(u) + deg(v)−
∑
e∈E

ηe.

Observe that
∑

e∈E ηe = 3η(G), since a triangle contain 3 edges. On the other hand, each

vertex w ∈ V will be counted deg(w) times in the sum
∑

e∈E deg(u) + deg(v), hence∑
e∈E

deg(u) + deg(v) =
∑
v∈V

deg2(v).

Finally, we have ∑
v∈V

degve(v) =
∑
e∈E

degev(e) =
(∑
v∈V

deg2(v)
)
− 3η(G).

The proof is completed.

4 Ev-regular graphs

In this section, we are going to find some necessary conditions of ev-regular graphs.

The following Lemma is a simple result of using ev-regular condition to count ve-degree.

Lemma 4.1. If G is a t-ev-regular graph, then for every vertex v ∈ V (G) we have

degve(v) =
deg(v)t+

∑
u∈N(v)(deg(u)− deg(v))

2
.
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Proof. Fix a vertex v ∈ G. Then for any edge e = vu, we have ηe = deg(v) + deg(u)− t.

By Lemma 3.3, we have

ηv =
1

2

∑
e=vu∈E(G)

ηe =
deg(v)(deg(v)− t)

2
+

1

2

∑
u∈N(v)

deg(u).

By Lemma 3.1, we have

degve(v) = −ηv +
∑

u∈N(v)

deg(u)

=
deg(v)(t− deg(v))

2
+

1

2

∑
u∈N(v)

deg(u)

=
deg(v)t+

∑
u∈N(v)(deg(u)− deg(v))

2
.

Corollary 4.2. If G is k-regular graph and t-ev-regular graph, then kt is even and G is
kt
2

-ve-regular.

Proof. Fix a vertex v in G. By Lemma 3.3, we have

ηv =
1

2

∑
e=vu∈E(G)

ηe

By Lemma 3.2, we have ηe = deg(v) + deg(u)− t = 2k − t. Then

ηv =
1

2

∑
e=vu∈E(G)

ηe =
k(2k − t)

2
= k2 − kt

2
.

By Lemma 3.1, we have

degve(v) =
∑

u∈N(v)

deg(u)− ηv = k2 − (k2 − kt

2
) =

kt

2
.

The proof is completed.
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A bipartite graph is called (t, s)-semiregular if all of the degrees of the vertices on

one side are t; and all of the degrees of the vertices on other side are s.

The following result is proved by Batmend Horoldagva, Kinkar Ch. Das, Tsend-Ayush

Selenge [1, 2019].

Lemma 4.3. Let G be a connected triangle-free graph and k ∈ N. Then G is t-ev-regular

if and only if

(i) t is even and G is t
2
-regular; or

(ii) G is bipartite and (i, j)-semiregular for some positive integers i, j satisfying i+j = t.

Proof. (⇒) Fix an edge e = uv ∈ E(G). Since G is triangle-free t-ev-regular, we have

t = degev(e) = deg(u) + deg(v). Therefore the neighbours of vertex u must have the

same degree, t − deg(u). Moreover, every neighbour of v has degree deg(u). Since G is

connected, we have that the degree of every vertex of G is either deg(u) or t − deg(u).

If G contains an odd cycle, it follows that deg(u) = t−deg(u). Then t is even and G

is t
2
-regular. If G does not contain an odd cycle, then G is bipartite. Furthermore, the

vertices in one partite set have degree i := deg(u) and the other partite set have degree

j := t− deg(u). Therefore G is (i, j)-semiregular bipartite satisfying i+ j = t.

(⇐) It is easy to see that triangle-free t-regular graphs are 2t-ev-regular, and (i, j)-

semiregular bipartite graphs are (i+ j)-ev-regular.

The following is our generalization of lemma 4.3.

Corollary 4.4. Let G be a connected graph. Assume that ηe = c > 0 is a scalar for every

e ∈ E(G), and t ∈ N. Then the following (i)-(ii) are equivalent.

(i) G is t-ev-regular;
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(ii) t+ c is even and G is t+c
2

-regular.

Proof. ( (i) ⇒ (ii) ) Fix an edge e = uv ∈ E(G). By Lemma 3.2, we have t = degev(e) =

deg(u) + deg(v)− c. Since G is t-ev-regular and ηe = c is scalar, the neighbours of vertex

u must have the same degree, t+ c− deg(u). Moreover, every neighbour of v has degree

deg(u). Since G is has triangle, we have that deg(u) = t+ c−deg(u). So G is t+c
2

-regular.

( (ii) ⇒ (i) ) If G is t+c
2

-regular and ηe = c > 0 is a scalar, then for any edge e, we

have degev(e) =
t+c
2

+ t+c
2

− c = t. So G is t-ev-regular.

To generalize Corollary 4.4 further, it is natural to ask if there is an ev-regular graph

whose ηe is not a constant. The following example denies this question.

Example 4.5. Let G be the 6-ev-regular graph of order 6 illustrated in Figure 2. Observe

that the ηe of the middle edge e has ηe = 4, and all of the other edges e′ ̸= e has ηe′ = 2.

Figure 2. This is 6-ev-regular graph with different ηe.

t

t t

s
t t

e

5 Graphs with diameter 2

We shall study graphs G of diameter 2 in this section. Motivated by the definition of

strongly regular graphs, the following definition is given.

Definition 5.1. For two vertices u, v at distance k and i, j ∈ N, let pkij(u, v) denote the

number of vertices at distance i to u and at distance j to v. Define ai(u, v) := pii1(u, v).

8



Base on Definition 5.1, we obtain a formula for degve(v) on graphs with diameter 2.

Lemma 5.2. If G has diameter 2 with m edges, then for vertex v ∈ G, we have

degve(v) = m−
∑

w∈G2(v)

a2(v, w)

2
=

∑
u∈N(v)

deg(u)− a1(v, u)

2
.

Proof. Since G has diameter 2, the number of edges not counted in the definition of

degve(v) is
∑

w∈G2(v)
a2(v,w)

2
. We have the first equality. By Lemma 3.1, we have that

degve(v) =
∑

u∈N(v) deg(u) − ηv. Since every triangle containing v is counted twice in

a1(v, u), we have that ηv =
∑

u∈N(v)
a1(v,u)

2
. The proof is completed.

Similarly, we also obtain a formula for degev(e).

Lemma 5.3. If G has diameter 2 of order n, then for each edge e = uv ∈ E we have

degev(e) = n− p122(u, v) = |N(u)|+ |N(v)| − a1(u, v).

Proof. Fix an edge e = uv. Since G has diameter 2, p122(u, v) is the number of vertices

not counted in the definition of degev(e). Hence degev(e) = n− p122(u, v). By lemma 3.2,

we have degev(e) = deg(u) + deg(v)− ηe. Since ηe = a1(u, v), we have

deg(u) + deg(v)− ηe = |N(u)|+ |N(v)| − a1(u, v).

The proof is completed.

Finally, we have the following result.

Theorem 5.4. If G has diameter 2, size m and without pentagon, then G is m-ve-regular.

Proof. By Lemma 5.2 we have that degve(u) = m −
∑

v∈G2(u)
a2(u,v)

2
. Since G has no

pentagon,
∑

v∈G2(u)
a2(u, v) = 0. The proof is completed.
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6 Strongly regular graphs

Among regular graphs, strongly regular graphs need stronger conditions and have

good properties. This leads to many properties being necessary conditions for strongly

regular, such as regular, ev-regular and ve-regular. The following is an example to help

us understand strongly regular graphs better.

Example 6.1. The following is the well known Petersen graph. We can check that

Petersen graph is 3-regular and any two adjacent vertices have no common neighbours; any

two non-adjacent vertices have 1 common neighbour. So Petersen graph is srg(10, 3, 0, 1).

Figure 3. Petersen graph is srg(10, 3, 0, 1).

The following is a known result regarding the parameters of strongly regular graph.

Lemma 6.2. The four parameters in an srg(n, k, λ, µ) have the following relation:

(n− k − 1)µ = k(k − λ− 1).

Proof. If µ = 0, then G is a disjoint union of complete graph. Moreover, each complete

graph has order k + 1. Hence k = λ+ 1, so the left and right sides of the equation are 0.

The formula naturally holds.

If µ ̸= 0, then G is a connected graph with diameter 2. Choosing a vertex w ∈ G

arbitrarily, we can divide the vertices except w into two sets: G1(w) and G2(w). We will

prove this formula by counting the number of edges which are incident with G1(w) and

G2(w) in two different methods.
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(i) For each vertex in G2(w), they have µ common neightbors with w, and these neightbors

must in G1(w). Hence, for each vertex in G2(w), the number of edges which are incident

with G2(w) and G1(w) is µ. Since G is k-regular, |G1(w)| = k and |G2(w)| = n− k − 1.

Hence the number of edges which are incident with G2(w) and G1(w) is (n− k − 1)µ.

(ii) The degree of each vertex in G1(w) is k. Since these vertices and w are adjacent, they

must have λ other neighbours in common with w. (These common neighbours must be

in G1(w), too.) Hence, for each vertex in G1(w), there are (k − λ− 1) edges are incident

with vertices in G2(w). Therefore there are k(k − λ − 1) edges are incident with G1(w)

and G2(w).

Combining (i) and (ii), the proof is completed.

The following is a known result.

Lemma 6.3. If G is srg(n, k, λ, µ) satisfying 1 ≤ k < n− 1, then the complement G is

srg(n, n− k − 1, n− 2− 2k + µ, n− 2k + λ).

Proof. Assume G is srg(n′, k′, λ′, µ′). In G, we have n′ = n and k′ = n− k − 1 obviously.

We consider λ′ and µ′.

If µ = 0, then G is a disjoint union of complete graph. Moreover, each complete

graph has order k + 1, hence λ = k − 1. G consists of several parts of order k + 1. In G,

any two vertices in same part are not adjacent; and any two vertices in different part are

adjacent. For any two adjacent vertices, the number of vertices that are not adjacent to

both vertices is 2(k+1). Hence λ′ = n− 2(k+1) = n− 2− 2k+0 = n− 2− 2k+ µ. For

any two non-adjacent vertices, the number of common neighbours of these two vertices is

n− (k + 1). Hence µ′ = n− k − 1 = n− 2k + (k − 1) = n− 2k + λ.

If µ ̸= 0, then G is a connected graph with diameter 2. Choosing a vertex w ∈ G

arbitrarily, we can divide the vertices except w into two sets: G1(w) and G2(w). In G, w
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and vertices in G2(w) are adjacent; w and vertices in G1(w) are not adjacent. For a vertex

v ∈ G2(w), the number of common neighbours of w and v in G equals to the number

of vertices that are not adjacent to w and v in G. In G, vertices that are not adjacent

to w and v must be in G2(w), where |G2(w)| = n − k − 1. Since deg(v) = k and v is

adjacent to µ vertices in G1(w), the number of vertices in G2(w) that are not adjacent to

v is n− k − 1− (k − µ− 1) = n− 2− 2k + µ. So we have λ′ = n− 2− 2k + µ.

By similar method, for a vertex v ∈ G1(w), the number of common neighbours of w

and v in G equals to the number of vertices that are not adjacent to w and v in G. In G,

vertices that are not adjacent to w and v must be in G2(w), where |G2(w)| = n− k − 1.

Since deg(v) = k and v is adjacent to w and λ vertices in G1(w), the number of neighbours

of v in G2(w) is k − λ− 1. Hence the number of vertices in G2(w) that are not adjacent

to v is n− k − 1− (k − λ− 1) = n− 2k + λ. So we have µ′ = n− 2k + λ.

The following is an example of verifying Lemma 6.3.

Example 6.4. Let G be the 3-regular graph of order 6 illustrated in Figure 4. Observe

that any two adjacent vertices have no common neighbourin in G; any two non-adjacent

vertices have 3 common neighbours in G. Hence G is srg(6, 3, 0, 3). And any two adjacent

vertices have 1 common neighbour in G; any two non-adjacent vertices have no common

neighbour in G. Hence G is srg(6, 2, 1, 0). So this is an example that the complement of

a strongly regular graph is also a strongly regular graph.

G : G :
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Figure 4. G is srg(6, 3, 0, 3), 6-ev-regular and 9-ve-regular; G is srg(6, 2, 1, 0),

3-ev-regular and 3-ve-regular.

Now we are ready to show strongly regular graphs are ve-regular and ev-regular. The

following are some results we obtain.

Proposition 6.5. If G = (V,E) is srg(n, k, λ, µ), then kλ is even and G is (2k − λ)-ev-

regular and (k2 − kλ
2
)-ve-regular.

Proof. For any edge e = uv ∈ E(G), by Lemma 3.2, we have

degev(e) = deg(u) + deg(v)− ηe = 2k − λ.

For any vertex v ∈ V (G), by Lemma 3.1, we have

degve(v) =
∑

u∈N(v)

deg(u)− ηv = k2 − ηv = k2 − kλ

2
,

since ηv =
1
2

∑
e=vu∈E(G) ηe.

Using Lemma 6.3, we have the following result.

Proposition 6.6. If G is srg(n, k, λ, µ) satisfying 1 ≤ k < n− 1, then (n− k− 1)(n−µ)

is even and the complement G is (n−µ)-ev-regular and ((n− k− 1)(n−µ)/2)-ve-regular.

Proof. Assume the complement G of G is srg(n′, k′, λ′, µ′). By Lemma 6.3, G is srg(n, n−

k−1, n−2−2k+µ, n−2k+λ). Applying Proposition 6.5 with the following computations

2k′ − λ′ = 2(n− k − 1)− (n− 2− 2k + µ)

= 2n− 2k − 2− n+ 2 + 2k − µ

= n− µ;
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k′2 − k′λ′

2
= (n− k − 1)2 − 1

2
(n− k − 1)(n− 2− 2k + µ)

= (n− k − 1)
n− µ

2
,

the complement G of G is (n− µ)-ev-regular and ((n− k− 1)(n− µ)/2)-ve-regular.

In the following example, we show that G is regular graph and ev-regular can not

imply the complement graph G of G is ev-regular.

Example 6.7. Let G be the 2-regular and 4-ev-regular graph illustrated in Figure 5.

Observe that the complement G of G is 3-regular, and the ηe of the three vertical edges

e in G has ηe = 0. But the other edges e′ has ηe′ = 1, so G is not ev-regular.

G : G :

Figure 5. G is 2-regular and 4-ev-regular and 4-ve-regular; G is 3-regular and

8-ve-regular, but G is not ev-regular.

Now we remove some conditions of strongly regular graphs, and see whether graphs

under these remaining conditions could still imply strongly regular graph. The following

are three examples which are not strongly regular.

Example 6.8. Let G be the 4-ev-regular graph of order 4 illustrated in Figure 6. The

complement G of G has only one edge, so G is 2-ev-regular. Observe that both G and G

are not regular graph. So there exist graphs G and G that both are ev-regular but both

graphs are not strongly regular.
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Figure 6. G is 4-ev-regular, and G is 2-ev-regular.
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Example 6.9. Figure 5 gives an example that G is 4-ve-regular and G is 8-ve-regular.

Since G is not ev-regular, G is not strongly regular. So there exist graphs G and G that

are ve-regular, but both graphs are not strongly regular.

Example 6.10. Figure 7 gives a graph which is 3-regular, 6-ev-regular, 9-ve-regular and

has diameter 2. Observe that the distance between a and b is 2, and so is a and c, but

p211(a, b) = 2; p211(a, c) = 1. Hence G is not a strongly regular graph. So there exists a

graph G which is regular, ev-regular and ve-regular with diameter 2, but G is not strongly

regular.

t

t t

t

t t
t t

a
b

c
Figure 7.

7 Hamitonian graphs

In this section, we will discuss the application of ev-degree and ve-degree on the

Hamiltonian graphs. First we introduce an old result about Hamiltonian property. The
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following is Dirac’s Theorem [4, 1952].

Theorem 7.1. Let G be an undirected simple graph of order n ≥ 3. If deg(u)+deg(v) ≥ n

for any two vertices u, v ∈ V (G), then G is Hamiltonian.

Since we can increase the degrees of vertices of a graph to a Hamiltonian graph, we

thought of increasing the ev-degree of a graph G to obtain that a Hamiltonian graph.

The following result is obtained by using Theorem 7.1.

Proposition 7.2. Let G be a regular graph of order n. If degev(e) = n for some e ∈ E(G),

then G is Hamiltonian.

Proof. Let G be k-regular. Choosing an edge e = uv with degev(e) = n, we have

n = degev(e) = deg(u) + deg(v)− ηe = 2k − ηe,

implying k ≥ n
2
. By Theorem 7.1, G is Hamiltonian.

Remark 7.3. The complete bipartite graph Ki,j of order n is (i + j)-ev-regular (n-

ev-regular), and Ki,j is regular (respectively Hamiltonian) only if i = j. Hence the

Hamiltonicity of a general graph is not related to its minimum ev-degree.

Since a graph G of order n with degev(e) = n for all edge e may not be Hamiltonian,

we turn to consider the complement of the graph.

Theorem 7.4. Let G be a triangle-free graph of order n without isolated vertices. If

degev(e) ≤ ⌊n
2
⌋ for every edge e ∈ G, then G is Hamiltonian.

Proof. For any vertex u ∈ V (G), there is an edge e = uv ∈ E(G). Then

⌊n
2
⌋ ≥ degev(e) = deg(u) + deg(v).

Since deg(v) ≥ 1, we have⌊n
2
⌋− 1 ≥ deg(u). Hence n ≥ 4, and for the same vertex u ∈ G,

we have

deg(u) = n− deg(u)− 1 ≥ n− ⌊n
2
⌋ ≥ n

2
.
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By Theorem 7.1, G is Hamiltonian.

Now we conjecture if the Hamiltonian property is related to the ve-degree of the graph.

The following Proposition is a simple result based on bipartite property.

Proposition 7.5. If G is bipartite graph with order n, and there is an vertex v satisfying

degve(v) ≥ ⌈n
2
⌉2, then n is even and G is Hamiltonian, moreover G is complete bipartite

graph.

Proof. We assume that G has i vertices in part A and j vertices in part B. Note that

i+ j = n is the order of G, and the maximum ve-degree of G is ij. Since ij ≥ ⌈ i+j
2
⌉2 only

if i = j = n
2
, we have that every vertex is adjacent to all of vertices in the other part. So

G is complete bipartite graph with order (n
2
, n
2
).

The following example shows the bipartite assumption in Proposition 7.5 is necessary.

Example 7.6. Figure 8 gives a graph G which is 9-ve-regular of order 6. Observe that

9 ≥ ⌈6
2
⌉2 = 9. Let u and v be the vertices whose degree is 5 in G. Observe that upper

middle vertex and lower middle vertex have degree 2. If there exist Hamiltonian cycle in

G, the adjacent edges of these two vertices must be included. But the four edges form a

C4, hence G is not Hamiltonian.

G :

Figure 8. G is a non-Hamiltonian 9-ve-regular graph of order 6.
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Moreover, we find a non-Hamiltonian graph whose minimum ve-degree is 3n2

8
− n

2
+ 1

8
.

Example 7.7. Let G be obtained from a complete bipartite graph of bi-order (i, i + 1)

by adding
(
i
2

)
edges in the part of order i. Then G is a non-Hamiltonian (i(i+ 1) +

(
i
2

)
)-

ve-regular graph, where

i(i+ 1) +
(
i
2

)
=

(3n− 1)(n− 1)

8
=

3n2

8
− n

2
+

1

8
≈ 3n2

8
.

By Example 7.7, we know that even if the minimum ve-degree of a graph G is 3n2

8
−

n
2
+ 1

8
, it can not imply G is Hamiltonian. Now we try to find the lower bound of ve-degree

of a graph such that this graph satisfies Hamiltonian property. So there is the following

conjecture.

Conjecture 7.8. If degve(v) >
3n2

8
− n

2
+ 1

8
for every vertex v ∈ G, then G is Hamiltonian.

We have not found an example to deny this conjecture.

8 Open problems

In this section, we list some unresolved problems, which can be used as the direction

of future research.

Problem 8.1. If G is regular and ve-regular, is G ve-regular?

We guess the answer to this problem is wrong, but we have not found a counterexam-

ple. Maybe in the future we can try to prove the positive direction.

Problem 8.2. Find the lower bound of ve-degree of a graph such that this graph satisfies

Hamiltonian property.

Given an graph G of order n, we know that the maximum ve-degree number of G is(
n
2

)
. In this condition, G is a complete graph and must be Hamiltonian obviously ( if

n ≥ 3 ). If Conjecture 7.8 holds then the range of x is as follows :

3n2

8
− n

2
+

1

8
< x ≤ 4n2

8
− n

2
=

(
n
2

)
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Problem 8.3. If both graphs G and G are regular, ev-regular and ve-regular with diam-

eter 2, is G strongly regular?

In Example 6.8 and Example 6.9, we know that a graph G that satisfies that G and G

are ev-regular and ve-regular may not be strongly regular. So we guess at what strength-

ening conditions can make the hypothesis true. But we have not found counterexamples

in our research. So we have not yet determined the answer to this problem.

Problem 8.4. Does the condition exist such that the graph satisfies the condition, reg-

ular, ve-regular, ev-regular and diameter 2 can be strongly regular?

We know that a strongly regular graph must satisfy the above conditions if it is

connected. In Figure 7, we have a graph satisfying regular, ve-regular, ev-regular and

diameter 2, but it is not strongly regular.
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