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On ve-degrees and ev-degrees in graphs

Student: Jia-Hao Li Advisor: Chih-Wen Weng

Department of Applied Mathematics

National Yang Ming Chiao Tung University

abstract

Let G = (V, E) be a simple undirected graph with vertex set V and edge set
E. The ve-degree of a vertex u in G is the number of edges, denoted by deg,.(u),
that are incident with a neighbour of u. The ev-degree of an edge ¢ is the number
of vertices, denoted by deg.,(e), that are incident with an endpoint of e. We call
a graph k-regular (resp. k-ve-regular, k-ev-regular) if all of its vertices (edges)
have the same degree (resp. ve-degree, ev-degree) k. The thesis mainly discusses
the properties of ve-degrees and ev-degrees of graphs. We have the following results.

e Let 7. denote the number of triangles containing edge e. Assume that 7, =

¢ > 0 is a scalar for e € E(G), and t € N. Then G is t-ev-regular if and only

if t + cis even and G is t‘*‘{—regular.

o If G has diameter 2, with size m and without pentagon, then G is m-ve-regular.

o If G =(V,FE) is a strongly regular graph with parameters n, k, A\, i, then kA

is even and G is (2k — \)-ev-regular and (k? — £)-ve-regular.

o Let G be a triangle-free graph of order n without isolated vertices. If deg,,(e) <
| %] for every edge e € G, then the complement G of G is Hamiltonian.

e We list some unresolved problems as the direction for future research.

Keywords: vertex-edge degree, edge-vertex degree, ve-regular, ev-regular, regular graphs,

strongly regular graphs, Hamiltonian graphs
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1 Introduction

Let G = (V, E) be a simple graph with vertex set V' and edge set E. We are curious
about the number of edges incident with neighbours of a vertex. A vertex u ve-dominates
every edge that is incident with a neighbour of u. The ve-degree of a vertex u, denoted
by deg,.(u), is the number of edges that are ve-dominated by u in G. On the other hand,
an edge e = uw ev-dominates the neighbours of u and the neighbours of w. The ev-
degree of an edge e, denoted by deg,,(e), is the number of vertices ev-dominated by e
in G. Let k and m be positive integers. We call a graph k-regular (or regular for short)
if all of its vertices have the same degree k; calling a graph m-ve-regular (or ve-regular
for short) if all of its vertices share the same ve-degree m; and call a graph k-ev-regular
(or ev-regular for short) if all of its edges are with ev-degree k. In Figure 1, the graph
is both 8-ve-regular and 6-ev-regular. The label on a vertex is its ve-degree and the label

on an edge is its ev-degree.

Figure 1. An 8-ve-regular and 6-ev-regular

A graph is ve-irregular (resp. ev-irregular) if the ve-degrees (resp. ev-degrees) of

vertices (resp. edges) are all different. Recently, many people have studied ve-irregular
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graphs and ev-irregular graphs. In [2, 2017], Mustapha Chellali , Teresa W. Haynes ,
Stephen T. Hedetniemi ,Thomas M. Lewis provided many ve-irregular graphs, and then
proved that if G is a graph with girth at least 5, then G is not ve-irregular. They also
showed the nonexistent of a connected ev-irregular graph of order at least 3. In the paper
[1, 2019], Batmend Horoldagva, Kinkar Ch. Das, Tsend-Ayush Selenge discussed the
relationship between regular, ve-regular, and ev-regular. They further proved that there
exists a ve-irregular graphs of every order greater than 7; and there exists an ev-irregular
graph of every order greater than 5. They provided a special method to construct irregular
graphs.

This paper discusses the relationship between ve-regular, ev-regular and regular prop-
erties of graphs that extends the previous study. Moreover, we prove that strongly regular
graphs must be ve-regular and ev-regular.

In Section 3, we use the number of triangles containing a vertex (or an edge) to
calculate the values of ve-degree and ev-degree. Let G be a connected graph. Assume
that n. = ¢ > 0 is a scalar for e € E(G), and t € N. In Section 4, we prove that G is
t-ev-regular if and only if G is HTC—regular. In Section 5, we prove that if G has diameter
2, size m and without pentagon, then G is m-ve-regular. In Section 6, we prove that if G
is strongly regular, then G is ev-regular and ve-regular. In Section 7, we prove that if G is
an undirected triangle-free graph of order n without isolated vertices and deg,,(e) < | 5],

for every edge e € G, then the complement G of G is Hamiltonian. In Section 8, we list

some unresolved problems as the direction for future research.

2 Notations

Our graph G = (V, E) is always simple and undirected without loops. Sometimes, we
will write V(G) and E(G) for V and E respectively to emphasize the underlying graph G.
The number |V(G)] is called the order of G and the number |E(G)| is called the size of



G. For an edge e = uv, the following terminologies are used interchangeably: the vertices
u and v are endpoints of the edge e; and u and v are adjacent; u is a neighbour of v; u
is incident with e; e is incident with u. The complement of a graph G is a graph G on
the same vertices such that two distinct vertices of G are adjacent if and only if they are
not adjacent in G. A walk is a sequence of edges such that two consecutive edges share an
endpoint. We call G a Hamiltonian graph if there exists a closed walk that visits every
vertex of the graph exactly once and the starting point is the same as the ending point.
The distance between two vertices u and v in a graph is the smallest number of edges
in a walk that v and v are the endpoints of the first edge and the last edge respectively.
We called a graph has diameter 2 if the maximum distance of two vertices in the graph
is equal to 2. For v € V(G) and i € N, let G;(v) denote the set of vertices at distance i
to v. Define N(v) = G1(v), the set of neighbours of v. The number |N(v)| is called the
degree of vertex v in GG, denoted by deg(v).

A cycle of size k in a graph is a walk with & edges in which the endpoints of edges
are all different except one in the first edge and in the last edge. Denote C} as a cycle
with size k. In the rest of this thesis, the cycle Cj is called a triangle. A subgraph of
G is a graph H whose vertex set and edge set satisfy V(H) C V(G) and E(H) C E(G).
We refer to as H in G if H is a subgraph of G. The girth of GG is the smallest size of a
cycle in G. For a graph G, let n(G) denote the number of triangles in G. For v € V(G)
and e € F(G), let n, (respectively 7.) denote the number of triangles containing vertex v
(respectively edge e).

We call a graph G strongly regular with parameters n, k, A\, u if G is k-regular of
order n and every two adjacent vertices have A common neighbours, and every two non-
adjacent vertices have ;1 common neighbours. For convenience, we usually denote strongly

regular graphs by srg(n, k, A, p1). Strongly regular graphs were introduced by [3, 1963].



3 Preliminary

We shall introduce some known results on ve-degree and ev-degree in this section. For

completeness, we also include the proofs.

Lemma 3.1. Let G = (V, E) be a simple graph and v € V(G). Then
degve(”) = Z deg(u) = -

Proof. By the definition of ve-degree, if all of neighbours of vertex v are not adjacent
to each other, then we have deg, (v) = >, ,cn(,)deg(u). However, an edge uw has
been counted twice in deg (v) as an incident edge of neighbours of v if and only if

vertices u, v, w will form a triangle. Since there are 7, such edges uw, we have degy(v) =

ZueN(v) deg(u) — no.

Lemma 3.2. Let G = (V, E) be a simple graph and e = wv € E(G). Then

degev(e) = deg(u) 4 deg(v) — e

Proof. Similar to the proof of Lemma 3.1, for an edge e = uwv, a vertex w has been
counted twice in deg,,(e) if and only if vertices u, v, w form a triangle. Hence dege,(e) =

deg(u) + deg(v) — 7. u

Lemma 3.3. Let G = (V, E) be a simple graph and v € V(G). Then
1
el Y
e=vu€E(Q)
Proof. For a vertex v € V(G), every triangle that contains v must have two edges adjacent

to v. Hence we have this Lemma. ]



The following result in [2, 2017] is the relation of the ve-degree, ev-degree and the sum

of squares of degree.

Theorem 3.4. For any graph G = (V, E), we have

> degye(v) =Y dege(e) = (Y deg’(v)) — 3n(G).

veV eckE veV

Proof. A vertex v € V ve-dominates edge e if and only if e ev-dominates v, hence

Y vev deg . (v) = > cpdege(e). By Lemma 3.2, for an edge e = uv, we have

degev(e) = deg(u) 4 deg(v) — e

Therefore,

Zdegev(e): Z deg(u) + deg(v Zne

ecE e=uveFE eeE

Observe that ) ., 7. = 31(G), since a triangle contain 3 edges. On the other hand, each

vertex w € V will be counted deg(w) times in the sum ) _. deg(u) 4 deg(v), hence

Z deg(u) + deg(v Z deg®(v

Finally, we have

> degye(v) =Y dege(e) = () deg*(v)) — 3n(G).

veV eckE veV

The proof is completed. [

4 Ev-regular graphs

In this section, we are going to find some necessary conditions of ev-regular graphs.

The following Lemma is a simple result of using ev-regular condition to count ve-degree.

Lemma 4.1. If G is a t-ev-regular graph, then for every vertex v € V(G) we have

deg(v)t + 3 e (deg(u) — deg(v))
2

degye(v) =



Proof. Fix a vertex v € G. Then for any edge e = vu, we have n, = deg(v) + deg(u) — t.

By Lemma 3.3, we have

T = % Z Tle = deg( )(dgg Z deg

e=vu€E(G) uEN

By Lemma 3.1, we have

Corollary 4.2. If G is k-reqular graph and t-ev-reqular graph, then kt is even and G is

kt
5 -ve-reqular.

Proof. Fix a vertex v in G. By Lemma 3.3, we have

771):% Z e

e=vucE(Q)

By Lemma 3.2, we have 7, = deg(v) + deg(u) —t = 2k — t. Then

! Ck@2k-t) ., Kkt
771)_5 Z Ne = 9 —k_2

By Lemma 3.1, we have

deg, (v) = Y deg(u) —m, =k — (K — =) = =

u€eN (v)

The proof is completed.



A bipartite graph is called (¢, s)-semiregular if all of the degrees of the vertices on

one side are t; and all of the degrees of the vertices on other side are s.

The following result is proved by Batmend Horoldagva, Kinkar Ch. Das, Tsend-Ayush
Selenge [1, 2019].

Lemma 4.3. Let G be a connected triangle-free graph and k € N. Then G is t-ev-regular
if and only if

(i) t is even and G is -regular; or
(ii) G is bipartite and (i, j)-semiregular for some positive integers i, j satisfyingi+j = t.

Proof. (=) Fix an edge e = uwv € E(G). Since G is triangle-free t-ev-regular, we have
t = degey(e) = deg(u) + deg(v). Therefore the neighbours of vertex u must have the
same degree, t — deg(u). Moreover, every neighbour of v has degree deg(u). Since G is
connected, we have that the degree of every vertex of G is either deg(u) or ¢t — deg(u).
If G contains an odd cycle, it follows that deg(u) = t—deg(u). Then t is even and G
is %—regular. If G does not contain an odd cycle, then G is bipartite. Furthermore, the
vertices in one partite set have degree i := deg(u) and the other partite set have degree
j :=t — deg(u). Therefore G is (i, j)-semiregular bipartite satisfying i + j = t.

(<) Tt is easy to see that triangle-free t-regular graphs are 2t-ev-regular, and (i, j)-

semiregular bipartite graphs are (i + j)-ev-regular.

The following is our generalization of lemma 4.3.

Corollary 4.4. Let G be a connected graph. Assume that n. = ¢ > 0 is a scalar for every

e € E(G), and t € N. Then the following (i)-(it) are equivalent.

(i) G is t-ev-regular;



(i) t+ c is even and G is “5¢-regular.

Proof. ( (i) = (ii) ) Fix an edge e = uv € E(G). By Lemma 3.2, we have t = dege,(¢e) =
deg(u) + deg(v) — c. Since G is t-ev-regular and 7, = c is scalar, the neighbours of vertex
u must have the same degree, t + ¢ — deg(u). Moreover, every neighbour of v has degree
deg(u). Since G is has triangle, we have that deg(u) = t4 ¢ —deg(u). So G is H4-regular.

(i) = (i) ) If G is H-regular and 7, = ¢ > 0 is a scalar, then for any edge e, we

have dege,(€) = ¢ +2¢ — ¢ =t. So G is t-ev-regular. n

To generalize Corollary 4.4 further, it is natural to ask if there is an ev-regular graph

whose 7. is not a constant. The following example denies this question.

Example 4.5. Let GG be the 6-ev-regular graph of order 6 illustrated in Figure 2. Observe

that the 7. of the middle edge e has 1, = 4, and all of the other edges €’ # e has 1. = 2.

N
L7\

Figure 2. This is 6-ev-regular graph with different 7.

5 Graphs with diameter 2

We shall study graphs G of diameter 2 in this section. Motivated by the definition of

strongly regular graphs, the following definition is given.

Definition 5.1. For two vertices u, v at distance k and 7,j € N, let pfj (u,v) denote the

number of vertices at distance i to u and at distance j to v. Define a;(u,v) := pi; (u,v).

8



Base on Definition 5.1, we obtain a formula for degy.(v) on graphs with diameter 2.

Lemma 5.2. If G has diameter 2 with m edges, then for vertex v € G, we have

vu)
Zd >

weG2(v) uEN (v

degye(v) =m —

Proof. Since G has diameter 2, the number of edges not counted in the definition of

degye(v) 18 3 cqmw) M We have the first equality. By Lemma 3.1, we have that

degve(v) = D¢ N(w) deg(u) — n,. Since every triangle containing v is counted twice in

ay(v,u), we have that n, = ZueN(v) a1(;”“). The proof is completed. ]

Similarly, we also obtain a formula for dege,(e).

Lemma 5.3. If G has diameter 2 of order n, then for each edge e = uv € E we have
degev(€) =1 — pay(u,v) = [N (u)| + N (v)] — as(u, v).

Proof. Fix an edge e = uv. Since G has diameter 2, pi,(u,v) is the number of vertices
not counted in the definition of deg.,(e). Hence dege,(e) = n — ply(u,v). By lemma 3.2,

we have degey(e) = deg(u) + deg(v) — 7. Since 1. = a;(u,v), we have

deg(u) + deg(v) = ne = [N (u)| +[N(v)| = a1 (u,v).

The proof is completed. [ ]

Finally, we have the following result.
Theorem 5.4. If G has diameter 2, size m and without pentagon, then G is m-ve-reqular.

Proof. By Lemma 5.2 we have that degy.(u) = m — ZveGQ(u) w Since G has no

pentagon, Zver(u) as(u,v) = 0. The proof is completed. [ ]



6 Strongly regular graphs

Among regular graphs, strongly regular graphs need stronger conditions and have
good properties. This leads to many properties being necessary conditions for strongly
regular, such as regular, ev-regular and ve-regular. The following is an example to help

us understand strongly regular graphs better.

Example 6.1. The following is the well known Petersen graph. We can check that
Petersen graph is 3-regular and any two adjacent vertices have no common neighbours; any

two non-adjacent vertices have 1 common neighbour. So Petersen graph is srg(10, 3,0, 1).

Figure 3. Petersen graph is srg(10, 3,0, 1).

The following is a known result regarding the parameters of strongly regular graph.

Lemma 6.2. The four parameters in an srg(n, k, \, i) have the following relation:

mn—k—1pu=kk—-X—-1).

Proof. If p = 0, then G is a disjoint union of complete graph. Moreover, each complete
graph has order k£ + 1. Hence k£ = A + 1, so the left and right sides of the equation are 0.
The formula naturally holds.

If 4 # 0, then G is a connected graph with diameter 2. Choosing a vertex w € G
arbitrarily, we can divide the vertices except w into two sets: G1(w) and Ga(w). We will
prove this formula by counting the number of edges which are incident with G (w) and

Go(w) in two different methods.

10



(i) For each vertex in Gy(w), they have p common neightbors with w, and these neightbors
must in G1(w). Hence, for each vertex in Go(w), the number of edges which are incident
with Go(w) and Gy(w) is p. Since G is k-regular, |G (w)| = k and |Ga(w)| =n — k — 1.

Hence the number of edges which are incident with Ga(w) and G (w) is (n — k — 1)p.

(ii) The degree of each vertex in Gy (w) is k. Since these vertices and w are adjacent, they
must have A other neighbours in common with w. (These common neighbours must be
in G (w), too.) Hence, for each vertex in G (w), there are (kK — X\ — 1) edges are incident
with vertices in Go(w). Therefore there are k(k — A — 1) edges are incident with G;(w)
and Gy(w).

Combining (i) and (ii), the proof is completed. |

The following is a known result.

Lemma 6.3. If G is srg(n, k, \, p) satisfying 1 <k < n — 1, then the complement G is
stg(ny,n—k —1,n—2—2k+ pu,n—2k+ \).

Proof. Assume G is stg(n’, k', X', ). In G, we have n’ = n and k' = n — k — 1 obviously.
We consider A" and p/'.

If 4 = 0, then G is a disjoint union of complete graph. Moreover, each complete
graph has order k + 1, hence A\ = k — 1. G consists of several parts of order k + 1. In G,
any two vertices in same part are not adjacent; and any two vertices in different part are
adjacent. For any two adjacent vertices, the number of vertices that are not adjacent to
both vertices is 2(k+1). Hence N =n—2(k+1)=n—2-2k+0=n—2—2k+ p. For
any two non-adjacent vertices, the number of common neighbours of these two vertices is
n—(k+1). Hence ff =n—k—1=n—-2k+(k—1)=n—2k+

If u # 0, then G is a connected graph with diameter 2. Choosing a vertex w € G

arbitrarily, we can divide the vertices except w into two sets: G(w) and Gy(w). In G, w

11



and vertices in Go(w) are adjacent; w and vertices in G (w) are not adjacent. For a vertex
v € Ga(w), the number of common neighbours of w and v in G equals to the number
of vertices that are not adjacent to w and v in GG. In G, vertices that are not adjacent
to w and v must be in Go(w), where |Go(w)| = n — k — 1. Since deg(v) = k and v is
adjacent to u vertices in G1(w), the number of vertices in Gy(w) that are not adjacent to
visn—k—1—(k—p—1)=n—2-2k+ p. So we have N =n —2 — 2k + p.

By similar method, for a vertex v € G1(w), the number of common neighbours of w
and v in G equals to the number of vertices that are not adjacent to w and v in G. In G,
vertices that are not adjacent to w and v must be in Gy(w), where |Go(w)| =n —k — 1.
Since deg(v) = k and v is adjacent to w and A vertices in G (w), the number of neighbours
of v in Gy(w) is k — XA — 1. Hence the number of vertices in Gy(w) that are not adjacent

tovisn—k—1—(k—X—1)=n—2k+ \. So we have p/ =n — 2k + \.

The following is an example of verifying Lemma 6.3.

Example 6.4. Let G be the 3-regular graph of order 6 illustrated in Figure 4. Observe
that any two adjacent vertices have no common neighbourin in G; any two non-adjacent
vertices have 3 common neighbours in G. Hence G is srg(6, 3,0, 3). And any two adjacent
vertices have 1 common neighbour in G; any two non-adjacent vertices have no common
neighbour in G. Hence G is srg(6,2,1,0). So this is an example that the complement of

a strongly regular graph is also a strongly regular graph.

12



Figure 4. G is srg(6,3,0, 3), 6-ev-regular and 9-ve-regular; G is srg(6,2, 1,0),

3-ev-regular and 3-ve-regular.

Now we are ready to show strongly regular graphs are ve-regular and ev-regular. The

following are some results we obtain.

Proposition 6.5. If G = (V, E) is srg(n, k, A\, p), then kX is even and G is (2k — \)-ev-

_ kX

regular and (k* — %

)-ve-reqular.

Proof. For any edge e = uwv € E(G), by Lemma 3.2, we have
degey(e) = deg(u) + deg(v) — ne = 2k — A

For any vertex v € V(G), by Lemma 3.1, we have

kA
degve(v) = Z deg(“) — T = k> — T = kK — )

2
u€N (v)
since 1, = %Ze:vueE(G) Ne. [ ]
Using Lemma 6.3, we have the following result.

Proposition 6.6. If G is srg(n, k, A\, p) satisfying 1 <k <n—1, then (n—k—1)(n— p)

is even and the complement G is (n — p)-ev-regular and ((n —k —1)(n — p)/2)-ve-regqular.

Proof. Assume the complement G of G is srg(n/, k', N, i'). By Lemma 6.3, G is srg(n,n —

k—1,n—2—2k+pu,n—2k+X\). Applying Proposition 6.5 with the following computations

2" =N =2n—k—-1)—(n—2—-2k +p)
— 2%k —2-n4242% —p

=n—
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KN
= -

le

(n—k:—l)2—%(n—k—l)(n—?—?k—ku)

=(n-k-1" L,

the complement G of G is (n — u)-ev-regular and ((n —k — 1)(n — p)/2)-ve-regular. m

In the following example, we show that G is regular graph and ev-regular can not

imply the complement graph G of G is ev-regular.

Example 6.7. Let G be the 2-regular and 4-ev-regular graph illustrated in Figure 5.
Observe that the complement G of G is 3-regular, and the 7, of the three vertical edges

e in G has 1. = 0. But the other edges ¢’ has 7o = 1, so G is not ev-regular.

Figure 5. G is 2-regular and 4-ev-regular and 4-ve-regular; G is 3-regular and

8-ve-regular, but G is not ev-regular.

Now we remove some conditions of strongly regular graphs, and see whether graphs
under these remaining conditions could still imply strongly regular graph. The following

are three examples which are not strongly regular.

Example 6.8. Let G be the 4-ev-regular graph of order 4 illustrated in Figure 6. The
complement G of G has only one edge, so G is 2-ev-regular. Observe that both G and G
are not regular graph. So there exist graphs G and G that both are ev-regular but both

graphs are not strongly regular.

14



Figure 6. G is 4-ev-regular, and G is 2-ev-regular.

Example 6.9. Figure 5 gives an example that G is 4-ve-regular and G is 8-ve-regular.
Since G is not ev-regular, G is not strongly regular. So there exist graphs G and G that

are ve-regular, but both graphs are not strongly regular.

Example 6.10. Figure 7 gives a graph which is 3-regular, 6-ev-regular, 9-ve-regular and
has diameter 2. Observe that the distance between a and b is 2, and so is a and ¢, but
p?(a,b) = 2; p3,(a,c) = 1. Hence G is not a strongly regular graph. So there exists a
graph GG which is regular, ev-regular and ve-regular with diameter 2, but G is not strongly

regular.

C
Figure 7.

7 Hamitonian graphs

In this section, we will discuss the application of ev-degree and ve-degree on the

Hamiltonian graphs. First we introduce an old result about Hamiltonian property. The

15



following is Dirac’s Theorem [4, 1952].

Theorem 7.1. Let G be an undirected simple graph of ordern > 3. If deg(u)+deg(v) > n

for any two vertices u,v € V(G), then G is Hamiltonian.

Since we can increase the degrees of vertices of a graph to a Hamiltonian graph, we
thought of increasing the ev-degree of a graph G to obtain that a Hamiltonian graph.

The following result is obtained by using Theorem 7.1.

Proposition 7.2. Let G be a regular graph of order n. If dege,(e) = n for somee € E(G),

then G is Hamiltonian.
Proof. Let G be k-regular. Choosing an edge e = uv with dege,(e) = n, we have
n = degey(€) = deg(u) + deg(v) — . = 2k — 1,
implying k > 5. By Theorem 7.1, G is Hamiltonian. [
Remark 7.3. The complete bipartite graph K;; of order n is (i + j)-ev-regular (n-

ev-regular), and K;; is regular (respectively Hamiltonian) only if ¢ = j. Hence the

Hamiltonicity of a general graph is not related to its minimum ev-degree.

Since a graph G of order n with deg.,(e) = n for all edge e may not be Hamiltonian,

we turn to consider the complement of the graph.

Theorem 7.4. Let G be a triangle-free graph of order n without isolated vertices. If

degev(e) < | 5] for every edge e € G, then G is Hamiltonian.

Proof. For any vertex u € V(G), there is an edge e = uwv € E(G). Then
[g] > dege,(e) = deg(u) + deg(v).

Since deg(v) > 1, we have[ 2] — 1 > deg(u). Hence n > 4, and for the same vertex @ € G,

we have

deg(7) = n —deg(u) —1 2 n— | 5] >

|3
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By Theorem 7.1, G is Hamiltonian. ]

Now we conjecture if the Hamiltonian property is related to the ve-degree of the graph.

The following Proposition is a simple result based on bipartite property.

Proposition 7.5. If G is bipartite graph with order n, and there is an vertex v satisfying
degve(v) > [2]?, then n is even and G is Hamiltonian, moreover G is complete bipartite

graph.

Proof. We assume that G has ¢ vertices in part A and j vertices in part B. Note that
i+ 7 = n is the order of G, and the maximum ve-degree of G is ij. Since ij > (%12 only
if i = j = 5, we have that every vertex is adjacent to all of vertices in the other part. So

G is complete bipartite graph with order (3, %). |

The following example shows the bipartite assumption in Proposition 7.5 is necessary.

Example 7.6. Figure 8 gives a graph G which is 9-ve-regular of order 6. Observe that
9> [212 = 9. Let u and v be the vertices whose degree is 5 in GG. Observe that upper
middle vertex and lower middle vertex have degree 2. If there exist Hamiltonian cycle in
(G, the adjacent edges of these two vertices must be included. But the four edges form a

Cy, hence GG is not Hamiltonian.

Figure 8. (G is a non-Hamiltonian 9-ve-regular graph of order 6.
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. . .. . 2
Moreover, we find a non-Hamiltonian graph whose minimum ve-degree is 3% — 5+

ool

Example 7.7. Let G be obtained from a complete bipartite graph of bi-order (i,7 + 1)
by adding (1) edges in the part of order ¢. Then G is a non-Hamiltonian (i(i + 1) + (}))-
ve-regular graph, where

ii+1)+ () = (Bn_lé(n_l):%—g+

By Example 7.7, we know that even if the minimum ve-degree of a graph G is % —
5+ %, it can not imply G is Hamiltonian. Now we try to find the lower bound of ve-degree
of a graph such that this graph satisfies Hamiltonian property. So there is the following

conjecture.
Conjecture 7.8. If degy.(v) > % -5 +% for every vertex v € G, then G is Hamiltonian.

We have not found an example to deny this conjecture.

8 Open problems

In this section, we list some unresolved problems, which can be used as the direction

of future research.
Problem 8.1. If G is regular and ve-regular, is G ve-regular?

We guess the answer to this problem is wrong, but we have not found a counterexam-

ple. Maybe in the future we can try to prove the positive direction.

Problem 8.2. Find the lower bound of ve-degree of a graph such that this graph satisfies

Hamiltonian property.

Given an graph G of order n, we know that the maximum ve-degree number of G is

(;) In this condition, G is a complete graph and must be Hamiltonian obviously ( if

n >3 ). If Conjecture 7.8 holds then the range of z is as follows :

3n?

n? n o,
: )

n+1< <
—_ — x - — - =
2 8 -8 2 2
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Problem 8.3. If both graphs G and G are regular, ev-regular and ve-regular with diam-

eter 2, is G strongly regular?

In Example 6.8 and Example 6.9, we know that a graph G that satisfies that G and G
are ev-regular and ve-regular may not be strongly regular. So we guess at what strength-
ening conditions can make the hypothesis true. But we have not found counterexamples

in our research. So we have not yet determined the answer to this problem.

Problem 8.4. Does the condition exist such that the graph satisfies the condition, reg-

ular, ve-regular, ev-regular and diameter 2 can be strongly regular?

We know that a strongly regular graph must satisfy the above conditions if it is
connected. In Figure 7, we have a graph satisfying regular, ve-regular, ev-regular and

diameter 2, but it is not strongly regular.

References

[1] Batmend Horoldagva, Kinkar Ch. Das, Tsend-Ayush Selenge, On ve-degree and ev-

degree of graphs, Discrete Optimization., 31 (2019) 1-7.

[2] Mustapha Chellali , Teresa W. Haynes , Stephen T. Hedetniemi ,Thomas M. Lewis,

On ve-degrees and ev-degrees in graphs, Discrete Mathematics., 340 (2017) 31-38.

[3] R. C. Bose, Strongly regular graphs, partial geometries, and partially balanced de-
signs, Pacific J. Math., 13(1963), 389-419.

[4] Dirac G.A., Some theorems on abstract graphs, Proc. Lond. Math. Soc., 2(1952),

69-81.

19



