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有向圖譜半徑之簡易比較方法

研究生：陳科翰 指導教授：翁志文 教授

國立交通大學

應用數學系

摘 要

矩陣的譜半徑為其特徵值絕對值的最大值，而一有向圖的譜半徑則定義為其鄰接矩
陣之譜半徑。本論文給出一個比較方陣譜半徑的方法，將此方法應用於有向圖的鄰接
矩陣，我們可以簡易比較有向圖的譜半徑。

關鍵詞：譜半徑、鄰接矩陣
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A simple method on comparison between spectral
radii of two directed graphs

Student: Ko-Han Chen Advisor: Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

The spectral radius of a square matrix is the largest magnitude of its eigenvalues. And
the spectral radius of a directed graph is defined as the spectral radius of the corresponding
adjacency matrix. In this paper, we give an approach to compare the spectral radii of two
nonnegative matrices. By applying this method on the adjacency matrix of a directed
graph, we can compare the spectral radii of two directed graphs simply.

Keywords: spectral radius, adjacency matrix
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1 Introduction

Let R and C denote the field of real numbers and complex numbers, respec-
tively. Let C be an n× n real square matrix. If there is a nonzero column
vector u ∈ Cn such that Cu = λu for some scalar λ ∈ C, then the scalar
λ is called the eigenvalue of C with corresponding eigenvector u. And the
spectral radius of a matrix C is the largest magnitude (or complex modu-
lus) of its eigenvalues, denoted by ρ(C). We are interested in the spectral
radius of the following matrix associated with a simple directed graph.

Definition 1.1. Given a directed graph G, the adjacency matrix of G is

the square matrix A = (aij) indexed by vertices of G, and

aij =


1, if ji is an arc in G,

0, otherwise.

Given a directed graph G, the spectral radius of G is the spectral radius
of the adjacency matrix of G, denoted by ρ(G). Note that the spectral
radius ρ(G) is independent of the ordering of the vertex set of G.

Conversely, we can also define a directed graph G from a given nonneg-
ative n × n matrix C = (cij) by setting the vertex set {1, 2, . . . , n} and
edge set {ij : cij > 0}. The matrix C is irreducible if the defined graph
G from C is strongly connected.

The spectral radius is an important indicator to specify the relation of
connected vertices in a graph, so it is meaningful to find a simple method to
estimate the spectral radius. A simple and excellent executable method to
estimate the spectral radius has some features. First, the bios is minimized,
and second, there must be a way to prove it sensible. Enumerate these
factors and prove it correctly would make this method reliable.

In [1], Cheng and Weng give many bounds of the spectral radius of

1



a nonnegative square matrix. And based on their theory and Perron-
Frobenius theorem, we give another approach to obtain an upper bound
of the spectral radius and apply it on the adjacency matrix of a directed
graph. All theorems come from continuous discussions between C.W. Weng
and K.H. Chen. These were all documented[5].

2 Preliminaries

The following is Perron–Frobenius theorem, which provides a feature of
nonnegative eigenvectors to nonnegative matrices.

Theorem 2.1. [3] If C is a nonnegative square matrix, then the spectral

radius ρ(C) is an eigenvalue of C with a corresponding nonnegative right

eigenvector and a corresponding nonnegative left eigenvector. Moreover if

C is irreducible the above eigenvectors can be chosen to be positive.

A well-known application of Theorem 2.1 show that if matrix C ′ majors
C (in notation C ≤ C ′), i.e. cij ≤ c′ij for all i, j, then ρ(C) ≤ ρ(C ′). Our
main result shows that the assumption C ≤ C ′ can be a little loosen. Our
theory is based on the following theorem, which is from [1].

Theorem 2.2. Let C = (cij), C ′ = (c′ij) be n × n real matrices with real

eigenvalues λ, λ′ respectively such that there exist n×n matrices P and Q

satisfying the following (i)-(iv).

(i) PCQ ≤ PC ′Q;

(ii) an eigenvector Qu of C ′ associated with eigenvalue λ′ exists for some

nonnegative column vector u = (u1, u2, . . . , un)
T .
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(iii) a left eigenvector vTP of C ′ associated with eigenvalue λ exists for

some nonnegative row vector vT = (v1, v2, . . . , vn); and

(iv) vTPQu > 0.

Then λ ≤ λ′. Moreover, λ = λ′ if and only if

(PC ′Q)ij = (PCQ)ij for 1 ≤ i, j ≤ n with vi ̸= 0 and uj ̸= 0. (1)

Proof. Multiplying the nonnegative vector u in assumption (i)

to the right of both terms of (i),

PCQu ≤ PC ′Qu = λ′PQu, (2)

where the above equality follows by Qu being eigenvector of C ′ for λ′.

Multiplying the nonnegative vector vT of C in assumption (iii) to the left

of all terms in (2), we have

λvTPQu = vTPCQu ≤ vTPC ′Qu = λ′vTPQu, (3)

where the above first equality follows by vTP being left eigenvector of C

for λ. Now delete the positive term vTPQu by assumption (iv) to obtain

λ ≤ λ′ and finish the proof of the first part. Assume that λ = λ′, so the

inequality in (3) is an equality. Especially (PCQu)i = (PC ′Qu)i for any i

with vi ̸= 0. Hence, (PCQ)ij = (PC ′Q)ij for any i with vi ̸= 0 and any j

with uj ̸= 0. Conversely, (1) implies

λvTPCQu = vTPCQu =
∑
i,j

vi(PCQ)ijuj

=
∑
i,j

vi(PC ′Q)ijuj = vTPC ′Qu = λ′vTPC ′Qu,

so λ = λ′ by (3).
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3 Our Method

We will apply Theorem 2.2 by using two particular square matrices P and
Q to obtain our main result. We use [n − 1] as notation of the set of
integers from 1 to n− 1, which is {1, 2, · · · , n− 1}. Throughout this thesis
we fix k ∈ [n− 1]. Let Ekn denote the n×n binary matrix with a unique 1

appearing in the position k, n of Ekn. Now we apply the previous Theorem
2.2 with P = I and

Q = I + Ekn =



1 0

1
. . .

1 1
. . .

1 0

0 0 1


, (4)

so the matrix PC ′Q in assumption (i) of Theorem 2.2 is

PC ′Q =


c′11 c′12 · · · c′1k + c′1n

c′21 c′22 · · · c′2k + c′2n
... ... . . . ...
c′n1 c′n2 · · · c′nk + c′nn

 , (5)

where c′ij denotes the (i, j)-entry of C ′.

Definition 3.1. A column vector v′ = (v′1, v
′
2, . . . , v

′
n)

T is called k-rooted if

v′j ≥ 0 for 1 ≤ j ≤ n and v′k ≥ v′n.

The following Lemma is immediate from the above definition.

Lemma 3.2. If u = (u1, u2, . . . , un)
T , then

(i) Qu is k-rooted if and only if u is nonnegative;
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(ii) uk > 0 if and only if (Qu)k > (Qu)n.

Proof. (i), (ii) follow immediately from the definition of k-rooted and Qu =

(u1, . . . , uk−1, uk + un, uk+1, . . . , un)
T .

Below is our first result, in which the first condition implies the first n−1

columns of C ′ major the same columns of C, and the sum of k-th and n-th
columns of C ′ also majors that of C. The second and the third condition
suggest that C and C ′ have nonnegative k-rooted eigenvectors. And the
forth condition is simpler but with the same meaning in Theorem 2.2.

We need a notation of submatrix, which is taken from some columns
and some rows of a matrix.

Definition 3.3. For a matrix C = (cij) and subsets α, β of row indices and

column indices of C, respectively, we use C[α|β] to denote the submatrix

of C with size |α|× |β| that has entries cij for i ∈ α and j ∈ β. We use the

notation C[i|j] for short of C[[i]|[j]].

Theorem 3.4. Let C = (cij), C ′ = (c′ij) be n × n real matrices with real

eigenvalues λ and λ′ respectively. Assume that

(i) C[n|n− 1] ≤ C ′[n|n− 1] and cik + cin ≤ c′ik + c′in for all 1 ≤ i ≤ n;

(ii) there exists a k-rooted eigenvector vector v′ = (v′1, v
′
2, . . . , v

′
n)

T of C ′

for λ′;

(iii) there exists a nonnegative eigenvector vector vT = (v1, v2, . . . , vn) of

C for λ;

(iv) vTv′ > 0.
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Then λ ≤ λ′. Moreover, λ = λ′ if and only if

(a) cik + cin = c′ik + c′in for 1 ≤ i ≤ n with vi > 0 and v′n > 0;

(b) c′ij = cij for 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1, j ̸= k with vi ̸= 0 and

v′j > 0;

(c) c′ik = cik for 1 ≤ i ≤ n with vi > 0 and v′k > v′n

Proof. The proof is based on Theorem 2.2 with P = I and Q = I + Ekn

in (4). The assumption (i) PCQ ≤ PC ′Q of Theorem 2.2 holds by the

condition (i) of this theorem. Let u = Q−1v′. Then u is nonnegative

and C ′Qu = λ′Qu by the condition (ii) and (i) in Lemma 3.2. Hence the

assumption (ii) of Theorem 2.2 holds. The assumptions (iii) and (iv) of

Theorem 2.2 clearly hold by conditions (iii), (iv) of this theorem since P =

I and v′ = Qu. Hence λ ≤ λ′ by the necessary condition of Theorem 2.2.

Moreover, λ = λ′ if and only if (1) holds, and this is equivalent to conditions

(a), (b), and (c) of this theorem.

We are interested in the matrices C ′ that have k-rooted eigenvectors.
Motivated by the condition (i) of Theorem 2.3, we provide the following
two definitions. The first is the definition of (k, n)-sum.

Definition 3.5. For an n × n matrix C ′ = (c′ij), the (k, n)-sum vector of

C ′ is the vector obtained from the sum of the k-th and n-th columns of C ′.

Note that the last column of C ′Q is the (k, n)-sum vector of C ′. Below
is the definition of k-rooted matrix.
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Definition 3.6. A matrix C ′ = (c′ij) is called k-rooted if for each i ̸= k, n

the i-th column of C ′ is k-rooted and the (k, n)-sum vector of C ′ is k-rooted.

We need a simple lemma for later use.

Lemma 3.7. Q−1 = I − Ekn.

Proof. Since

Q(I − Ekn) = (I + Ekn)(I − Ekn) = I − Ekn + Ekn − EknEkn = I,

we have Q−1 = I − Ekn.

The matrix Q−1 is explicitly written as

Q−1 = I − Ekn =



1 0

1
. . .

1 −1
. . .

1 0

0 0 1


,

and if C ′ = (c′ij) then Q−1C ′Q has the form

c′11 c′12 · · · c′1 n−1 c′1k + c′1n
... ... ... ... ...

c′(k−1)1 c′(k−1)2 · · · c′(k−1)(n−1) c′(k−1)k + c′(k−1)n

c′k1 − c′n1 c′k2 − c′n2 · · · c′k(n−1) − c′n(k−1) c′kk + c′kn − c′nk − x′nn

c′(k+1)1 c′(k+1)2 · · · c′(k+1)(n−1) c′(k+1)k + c′(k+1)n... ... . . . ... ...
c′n1 c′n2 · · · c′n(n−1) c′nk + c′nn


. (6)

The following lemma shows that a k-rooted matrix has a k-rooted eigen-
vector.

7



Lemma 3.8. Let C ′ = (c′ij) be an n × n nonnegative matrix. Then the

following (i)-(ii) hold.

(i) C ′ is a k-rooted matrix if and only if Q−1(C ′ + dI)Q is nonnegative

for some d ≥ 0, where I is the n× n identity matrix.

(ii) If C ′ is k-rooted then there exists a k-rooted eigenvector v′ of C ′ for

ρ(C ′).

Proof. (i) The matrix Q−1C ′Q has ij entry

(Q−1C ′Q)ij =



c′ij, if i ̸= k and j ̸= n;

c′kj − c′nj, if i = k and j ̸= n;

c′ik + c′in, if i ̸= k and j = n;

c′kk + c′kn − c′nk − c′nn, if i = k and j = n,

as shown in (6). Hence Q−1(C ′ + dI)Q is nonnegative if and only if

C ′ is k-rooted by the definition of nonnegative matrix and k-rooted

matrix.

(ii) Suppose C ′ is k-rooted. Choose d ≥ 0 such that Q−1(C ′ + dI)Q is

nonnegative. Let u be a nonnegative eigenvector of Q−1(C ′ + dI)Q =

Q−1C ′Q+I for ρ(C ′+dI) = ρ(C ′)+d. Note that Q−1C ′Qu = ρ(C ′)u,

and Qu is k-rooted by Lemma 3.2. Hence v′ = Qu is what we want.

Note that Theorem 3.4 depends on eigenvectors. The following is an
eigenvector-free Theorem.
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Theorem 3.9. Let C be an n×n nonnegative irreducible matrix and C ′ be

an n× n k-rooted matrix such that C ′Q majors CQ. Then ρ(C) ≤ ρ(C ′).

Proof. Referring to (5), the assumption (i) in Theorem 3.4 holds. By

Lemma 3.8 (ii), there exists a k-rooted eigenvector v′ of C ′ for ρ(C ′). Since

C is irreducible and nonnegative, there exists a positive eigenvector vT

of C for ρ(C). Thus vTv′ > 0. Hence Theorem 3.4 (i)-(iv) hold. Hence

ρ(C) ≤ ρ(C ′) by Theorem 3.4.

Example 3.10. Let G be the digraph depicted below.

1

2

34

The following 4× 4 matrix is the adjacency matrix of G.

A =


0 0 1 1

1 0 0 1

1 1 0 1

1 1 1 0

 .
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We choose another matrix

A′ =


0 0 1 1

1 0 1 0

1 1 0 1

1 1 1 0

 ,

which is the adjacency matrix of G′ depicted below.

1

2

34

Note that both G and G′ have the same number of edges, neither A ma-

jors A′ nor A′ majors A. Our main result still can do comparison between

ρ(A) and ρ(A′). We first observe that A is irreducible and A′ is k-rooted

for k = 3. Moreover A′Q =


0 0 1 2

1 0 1 1

1 1 0 1

1 1 1 1

 ≥


0 0 1 2

1 0 0 1

1 1 0 1

1 1 1 1

 = AQ. Hence

ρ(A) ≤ ρ(A′) by Theorem 3.9 with C = A and C ′ = A′. Both of the
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values of ρ(C) and ρ(C ′) are close to 2.511547 by calculating on computer

[4, sage].

To finish the thesis, we provide an example to show that the ‘k-rooted’
assumption of C ′ is necessary in Theorem 3.9.

Example 3.11. Consider the following two 4× 4 matrices

C =


0 0 1 1

1 0 0 1

1 1 0 0

1 1 1 0

 , C ′ =


0 0 1 1

1 0 1 0

1 1 0 0

1 1 1 0

 .

With n = 4 and k = 3, we have

CQ =


0 0 1 2

1 0 0 1

1 1 0 0

1 1 1 1

 ≤


0 0 1 2

1 0 1 1

1 1 0 0

1 1 1 1

 = C ′Q.

Using computer, [4, sage]

ρ(C) ≈ 2.234 ̸≤ 2.148 ≈ ρ(C ′).

This is because C ′ is not k-rooted as c′33 + c′34 = 0 ̸≥ 1 = c′43 + c′44.

All theorems come from continuous discussions between C.W. Weng and

K.H. Chen. These were all documented [5].
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