國 立 交 通 大 學

應用數學系

碩 士 論 文

Simple digraph analogue of Brualdi－Hoffman－conjecture簡 單 有 向 圖 的布勞帝－賀 夫曼推測

研究生 ：温佳宜
指導教授 ：翁志文 教授
中 華民國一百零八年六月

Simple digraph analogue of Brualdi－Hoffman－conjecture簡單有向圖的布勞帝－賀夫曼推測

Student：Chia－Yi Wen
Advisor：Chih－Wen Weng
研究生：温佳宜 指導教授：翁志文教授

國 立 交 通 大 學應用數學系碩 士 論 文

A Thesis
Submitted to Department of Applied Mathematics
College of Science
National Chiao Tung University in Partial Fulfillment of Requirements
for the Degree of Master
in Applied Mathematics

> June 2019
> Hsinchu, Taiwan, Republic of China

簡單有向圖的布勞帝－賀夫曼推測

研究生：温佳宜

指導教授：翁志文 教授

國立交通大學
 應用數學系

摘要
在一有向圖中，若有向邊 $b a$ 不屬於此圖之邊集合，則我們稱有向邊 $a b$ 為單向。令 e 為一正整數，則存在唯一的正整數 s 及整數 t ，使得 $e=s(s-1)+t$ 且 $0 \leq t \leq 2 s-1$ 。本篇論文中，我們證明了當 e 滿足 $2 s-7 \leq t \leq 2 s-3$ 時且 t 不等於 0,1 ，在所有邊數為 e 的簡單有向圖中，擁有最大譜半徑的圖排除孤立點後即為 D 。此圖 D 是由 s 個點的有向完全圖加上一個新的頂點 x 和新的 t 條邊，使頂點 x 與此完全圖中的 $\left\lfloor\frac{t}{2}\right\rfloor$ 個頂點相連且至多一個邊為單向所形成。

關鍵字：譜半徑，鄰接矩陣

Simple digraph analogue of Brualdi-Hoffman-conjecture

Student: Chia-Yi Wen

Advisor: Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

An arc $a b$ is single-direction if $b a$ is not an arc in a digraph. Let e be a positive integer. Then there is a unique pair (s, t) of integers such that $e=s(s-1)+t$, where s is positive and $0 \leq t \leq 2 s-1$. For $2 s-7 \leq t \leq 2 s-3$ and $t \neq 0,1$, we prove that the maximum spectral radius of a simple digraph D with e arcs and without isolated vertices is when D is obtained from complete digraph $\overleftrightarrow{K_{s}}$ by adding a new vertex x and t arcs, connecting x and $\left\lfloor\frac{t}{2}\right\rfloor$ vertices in $\overleftrightarrow{K_{s}}$ with at most one arc being single-direction.

Keywords: spectral radius, adjacency matrix

誌 謝

碩班兩年的生活接近尾聲，首先感謝我的指導教授翁志文老師兩年來細心的栽培，除了學術上的指導，擔任老師的線性代數助教這一年也使我在教學及處事方面獲益良多，更要感謝老師在論文寫作方面給予我的提點與不厭其煩地反覆修改。謝謝老師一路來的栽培及支持。另外，我要感謝傅沍霖老師，陳秋媛老師，符麥克老師及林武雄老師的用心教學，從老師們身上不僅學到了許多組合數學方面的專業知識，也教會我一些待人處事的道理；也謝謝口試委員張耀祖教授與傅東山教授遠道而來，給予寶貴的建議以及指導。

再來感謝研究所期間認識的學長姐及同學們，感謝至艺學長，婉真，逸䒩，采霓，迺筑，俊彦等諸位研究所同學們，兩年來陪著我一起修課，為論文奋門，出遊，吃遍新竹的美食等等，在我遇到問題時也大方的給予我幫助，種種回憶都使我的碩班生活更加的豐富。

運動一直是我求學期間的另一個重心，雖然來到交大後較少機會可以打篮球，但很快的也融入了系女排這個家庭。謝謝維之學姊邀請我加入這個系隊，跟我們一起跑遍北中南比賽；謝謝惠中在我狀況不好的時候總是正向的鼓勵我；謝謝晴羽這兩年用心的带練球，也謝謝其他學妹們一直都很投入在這項運動中。兩年來我們打了大大小小的比賽，打了無數個第三局，一起在場上拚搏的過程都將成為最美好的回憶。

最後，感謝父母的付出及栽培，感謝哥哥及弟弟的陪伴，生活中有時候或許有一些想法上的差異，但你們總是會包容我，相信我，到最後慢慢放手讓我去做想做的事。這二十多年來總是不斷的鼓勵我，支持著我，成為我最堅強的後盾，讓我能夠無後顧之憂完成碩士學位，謝謝你們！在此，與所有人共享這份成果以及榮耀。

Contents

Abstract (in Chinese) i
Abstract (in English) ii
Contents iv
1 Introduction 1
2 Notation and Preliminaries 2
2.1 The set $\mathscr{D}^{* *}(e)$ 3
3 The upper bound $\phi\left(k, \ell, e_{1}, e_{2}\right)$ 3
4 A partition of $\mathscr{D}^{* *}(e)$ 6
5 The shape of $\phi\left(k, \ell, e_{1}, e_{2}\right)$ 8
$6 \rho(D)$ for $2 s-7 \leq t \leq 2 s-3, t \neq 0,1$ 14
7 A lower bound of the spectral radius of the digraph in $\mathscr{D}^{* *}(e)$ 21
8 Conclusion 24

1 Introduction

The digraphs in this thesis are simple without loops and without isolated vertices. Given a digraph D, the spectral radius of D is the spectral radius of its adjacency matrix, denoted by $\rho(D)$. Let e be a positive integer and let $\mathscr{D}(e)$ be the set of all simple digraphs with e arcs. The function $\rho(e)$ is defined to be the largest spectral radius of a digraph in $\mathscr{D}(e)$, that is

$$
\begin{equation*}
\rho(e)=\max \{\rho(D) \mid D \in \mathscr{D}(e)\} . \tag{1}
\end{equation*}
$$

It is immediate from the above definitions that $\rho(0)=0, \rho(1)=0, \rho(2)=1$ and $\rho(3)=1$. Moreover, there are three non-isomorphic diagraphs with 3 arcs and spectral radius 1: (1) Adding a new vertex to a clique of order 2 and a single-direction arc from a vertex in the clique to the new vertex; (2) Adding a new vertex to a clique of order 2 and a single-direction arc from the new vertex to a vertex in the clique; (3) A directed cycle of order 3. Indeed their adjacency matrices (after suitable reordering of the vertices) are

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

Brualdi-Hoffman conjectured that the maximum spectral radius of a simple undirected graph with e edges is attained by adding a new vertex if necessary which is adjacent to the corresponding number of vertices of a complete graph and possibly adding some isolated vertices [2]. This conjecture was proved by Rowlinson in [6]. The following is the simple digraphs analogue of Brualdi-Hoffman-conjecture.

Conjecture 1.1. For integer $e \neq 3$, the maximum spectral radius of a simple digraph D with e arcs is when D is obtained from a clique by adding a new vertex if necessary and the corresponding number of arcs between the new vertex and some vertices in the clique with at most one arc being single-direction.

For a positive integer e, there is a unique pair (s, t) such that $e=s(s-1)+t$, where s is positive and $0 \leq t \leq 2 s-1$. In 2015, Jin and Zhang [5] proved Conjecture 1.1 for the cases $t=0,1,2 s-2,2 s-1$ and $s>4 t^{4}+4$. In this paper, we prove Conjecture 1.1 for $2 s-7 \leq t \leq 2 s-3$ and $t \neq 0,1$. Hence Conjecture 1.1 is solved for $e \leq 21$ and remains open for $\sqrt[4]{\frac{s-4}{4}} \leq t \leq 2 s-8$.

This thesis is organized as follows. In Section 2, we introduce notations used in this thesis and recall some basic concepts. In Section 3, we give a theorem that will be used in following sections. Section 4 gives some upper bounds of the spectral radius of the digraphs which we are concerned and we investigate properties of these bounds in Section 5. Section 6 talks about how we find $\rho(e)$ and characterize the extremal digraphs. To complementize, we also give a lower bound of the spectral radius of a digraph in Section 7.

2 Notation and Preliminaries

Let $[n]=\{1,2, \ldots, n\}$. Let D be a digraph with the vertex set $V(D)=[n]$ and the arc set $E(D)=\{i j \mid i \neq j$ and $i, j \in V(D)\}$. The dual graph D^{t} of D is the digraph with the vertex set $V(D)$ and arc set $E\left(D^{t}\right)=\{j i \mid i j \in E(D)\}$. The adjacency matrix $A(D)=\left(a_{i j}\right)$ of D is defined by

$$
a_{i j}= \begin{cases}1, & \text { if } i j \in E(D) \\ 0, & \text { otherwise }\end{cases}
$$

The spectral radius of a square matrix A is defined by

$$
\rho(A)=\max \{|\lambda| \mid \lambda \text { is an eigenvalue of } A\} .
$$

Recall that the spectral radius of a digraph D is the spectral radius of its adjacency matrix $A(D)$, denoted by $\rho(D)$. Note that the spectral radius $\rho(D)$ is independent of the ordering of the vertex set of D, and $\rho\left(D^{t}\right)=\rho(D)$. For a vertex $i \in V(D)$, the out-degree
d_{i} of i is defined to be the size of the set $\{j \mid i j \in E(D)\}$. A clique of order k in D is a subgraph that contains $k(k-1)$ arcs.

2.1 The set $\mathscr{D}^{* *}(e)$

Let $\mathscr{D}^{* *}(e)$ denote the set of all simple strongly connected digraphs with e arcs whose vertex set $[n]$ can be arranged such that
(i) If $i j \in E(D)$ then $i \ell \in E(D)$ for $\ell \leq j$ and $\ell \neq i$; and
(ii) $N^{+}(i) \backslash\{j\} \supseteq N^{+}(j) \backslash\{i\}$ for $1 \leq i<j \leq n$, where $N^{+}(i)=\{k \mid i k \in E(D)\}$.

As before let $e=s(s-1)+t$ and $0 \leq t \leq 2 s-1$. Jin and Zhang [5, Proposition 2.5] showed that if $t \neq 1$ and $\rho(D)=\rho(e)$, then $D \in \mathscr{D}^{* *}(e)$. Let $D \in \mathscr{D}^{* *}(e)$ and the vertex set $V(D)=[n]$ be arranged to satisfy (i)-(ii) above. Since D is strongly connected, the out-degrees of 1 and n satisfy $d_{1}=n-1$ and $d_{n} \geq 1$. Let k be the maximum integer such that the subgraph of D induced on $[k]$ is a clique. Then $d_{i} \geq k-1$ for $i \leq k$. Moreover, either $k=n$ or at least one of D and D^{t} whose vertex $k+1$ has out-degree $d_{k+1} \leq k-1$. The spectral radius $\rho(D)$ of the diagraph D satisfying $d_{i} \geq k-1$ for $i \leq k$ and

$$
\begin{equation*}
E(D) \cap([n]-[k]) \times([n]-[\ell])=\emptyset, \tag{2}
\end{equation*}
$$

where $\ell \leq k$ will be studied in Theorem 3.4.

3 The upper bound $\phi\left(k, \ell, e_{1}, e_{2}\right)$

For integers $1 \leq \ell \leq k<n$ and nonnegative integers d_{i}^{\prime} with $i \in[k]$, the spectral radius of the following $n \times n$ matrix $C=\left(C_{i j}\right)_{n \times n}$

$$
C_{i j}= \begin{cases}0, & \text { if } i=j \text { or }(i, j) \in([n]-[k]) \times([n]-[\ell]) ; \tag{3}\\ d_{i}^{\prime}-(n-1-k), & \text { if } 1 \leq i \leq k, j=n ; \\ 1, & \text { otherwise }\end{cases}
$$

will serve as an upper bound of spectral radius in the main theorem of this section.

Remark 3.1. If $\ell<k$ then the matrix C in (3) has eigenvalue -1 with multiplicity $k-2$, eigenvalue 0 with multiplicity $n-k-1$ and the remaining three eigenvalues are the eigenvalues of the following matrix

$$
\left(\begin{array}{ccc}
\ell-1 & k-\ell & 1 \tag{4}\\
\ell & k-\ell-1 & 0 \\
\sum_{i=1}^{\ell} d_{i}^{\prime} & \sum_{i=\ell+1}^{k} d_{i}^{\prime} & 0
\end{array}\right)
$$

whose characteristic polynomial is

$$
\begin{equation*}
f(\lambda)=\lambda^{3}-(k-2) \lambda^{2}-\left(e_{1}+k-1\right) \lambda-\ell e_{2}+e_{1}(k-\ell-1), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{1}=\sum_{i=1}^{\ell} d_{i}^{\prime}, \quad e_{2}=\sum_{i=\ell+1}^{k} d_{i}^{\prime} . \tag{6}
\end{equation*}
$$

For the case $\ell=k$, the matrix C in (3) has eigenvalue -1 with multiplicity $k-1$, eigenvalue 0 with multiplicity $n-k-1 z p$ and the remaining two eigenvalues are the eigenvalues of the following matrix

$$
\left(\begin{array}{cc}
k-1 & 1 \tag{7}\\
\sum_{i=1}^{k} d_{i}^{\prime} & 0
\end{array}\right)
$$

whose characteristic polynomial is

$$
\begin{equation*}
f(\lambda)=\lambda^{2}-(k-1) \lambda-e_{1} . \tag{8}
\end{equation*}
$$

Since the matrices in (4) and (7) are nonnegative with an eigenvalue at least $k-1, \rho(C)$ is still the largest real eigenvalue of C and $\rho(C)=\rho(C+I)-1$, despite that C is not necessarily nonnegative in general, where I is the $n \times n$ identity matrix.

Definition 3.2. Let $\phi\left(k, \ell, e_{1}, e_{2}\right)$ denote the spectral radius of the matrix C in (3), where $1 \leq \ell \leq k$ and $e_{1}, e_{2} \geq 0$ are defined in (6).

Hence $\phi\left(k, \ell, e_{1}, e_{2}\right)$ is the maximum real root of the cubic polynomial in (5) if $\ell<k$, and $\phi\left(k, k, e_{1}, 0\right)$ is the maximum real root of the quadratic polynomial in (8).

Definition 3.3. For real matrices $M=\left(M_{i j}\right)$ and $M^{\prime}=\left(M_{i j}^{\prime}\right)$, we write $M \leq M^{\prime}$ if $M_{i j} \leq M_{i j}^{\prime}$ for all i, j.

Theorem 3.4. Let D be a strongly connected digraph of order n such that there exists $1 \leq \ell \leq k<n$ with $E(D) \cap([n]-[k]) \times([n]-[\ell])=\emptyset$. Let $A=A(D)$ and $C=\left(C_{i j}\right)$ be as in (3) with

$$
d_{i}^{\prime}:=|\{j \in[n]-[k] \mid i j \in E(D)\}| \quad(i \in[k])
$$

Then $\rho(A) \leq \rho(C)=\phi\left(k, \ell, e_{1}, e_{2}\right)$. Moreover, $\rho(A)=\rho(C)$ if and only if $A_{t s}=C_{t s}$ for $1 \leq t \leq n$ and $1 \leq s \leq k$.

Proof. Let $Q=\left(Q_{i j}\right)$ be the $n \times n$ matrix with

$$
Q_{i j}= \begin{cases}1, & \text { if } i=j \in[n] \text { or }(i, j) \in([n-1]-[k]) \times\{n\} \\ 0, & \text { otherwise }\end{cases}
$$

Then the inverse of Q has entries

$$
Q_{i j}^{-1}=\left\{\begin{aligned}
1, & \text { if } i=j \in[n] \\
-1, & \text { if }(i, j) \in([n-1]-[k]) \times\{n\} \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Note that $A Q$ (resp. $C Q$) has the same columns as A (resp. C) except that the last column of $A Q$ (resp. $C Q$) is $\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{k}^{\prime}, 0, \ldots, 0\right)^{T}$, which is the sum of the last $n-k$ columns of A (resp. C). Hence

$$
\begin{equation*}
A Q \leq C Q \tag{9}
\end{equation*}
$$

Note that $Q^{-1}(C+I) Q$ has the same first k rows and the same last row as $(C+I) Q$ has. The remaining $n-1-k$ rows of $Q^{-1}(C+I) Q$ are obtained by subtracting the last row from the corresponding row of $(C+I) Q$. Hence $Q^{-1}(C+I) Q$ is nonnegative. Then there exists a nonnegative and nonzero column vector $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T}$ such that $Q^{-1}(C+I) Q u=\rho(C+I) u$, which implies $C Q u=(\rho(C+I)-1) Q u=\rho(C) u$. By (9) and since u is nonnegative,

$$
\begin{equation*}
A Q u \leq C Q u=\rho(C) Q u \tag{10}
\end{equation*}
$$

Since A is irreducible, there exists a positive row vector $v^{T} \neq 0$ such that $v^{T} A=\rho(A) v^{T}$. Multiplying v^{T} to the left of all terms in (10), we have

$$
\begin{equation*}
\rho(A) v^{T} Q u=v^{T} A Q u \leq v^{T} C Q u=\rho(C) v^{T} Q u \tag{11}
\end{equation*}
$$

Since $Q u$ is nonnegative and v^{T} is positive, the term $v^{T} Q u$ is a positive. Delete $v^{T} Q u$ in both sides of (11) to obtain $\rho(A) \leq \rho(C)$ and finish the proof of the first part.

Suppose $\rho(A)=\rho(C)$. Then $v^{T} A Q u=v^{T} C Q u$ in (11). Since v^{T} is positive, $A Q u=$ $C Q u$. Solving u from $Q^{-1}(C+I) Q u=\rho(C+I) u$, we find $u_{i}=0$ for $i \in[n-1]-[k]$ directly and $u_{j}>0$ for $j \in[k] \cup\{n\}$ since $d_{1}^{\prime}>0$. Hence $A_{t s}=(A Q)_{t s}=(C Q)_{t s}=C_{t s}$ for $(t, s) \in[n] \times[k]$.

Conversely, if $A_{t s}=C_{t s}$ for for $(t, s) \in[n] \times[k]$, then $A Q u=C Q u$, and inequality in (11) is equality, which implies $\rho(A)=\rho(C)$ as in the first part.

4 A partition of $\mathscr{D}^{* *}(e)$

Let $e=s(s-1)+t$ and $0 \leq t \leq 2 s-1$. We want to determine $\rho(e)$. By Jin and Zhang's result [5], for the case $t \neq 1$, it suffices to consider the digraphs in the set $\mathscr{D}^{* *}(e)$. For $D \in \mathscr{D}^{* *}(e)$, let $k=k(D)$ denote the largest integer c such that the subgraph of D induced on $[c]$ is a clique. Recall that $d_{i}=d_{i}(D)$ is the out-degree of node i in D. Note that $k=k(D)=k\left(D^{t}\right)$, and either $d_{k+1} \leq d_{k}$ or $d_{k+1}=d_{k}+1=k$ from the definition of k. Let $d_{i}^{t}:=d_{i}\left(D^{t}\right)$, and we will use the notation

$$
e_{r}=\sum_{i=k+1}^{n} d_{i}^{t} \text { and } e_{d}=\sum_{i=k+1}^{n} d_{i},
$$

where n is the number of vertices of D. We assume $t \neq 0,1$ and partition $\mathscr{D}^{* *}(e)$ into six families:

$$
\begin{aligned}
& \mathscr{D}_{1}=\left\{D \in \mathscr{D}^{* *}(e) \mid d_{k+1} \leq d_{k} \leq k-1, e_{r}<k-1 \text { and } e_{d}<k-1\right\} ; \\
& \mathscr{D}_{2}=\left\{D \in \mathscr{D}^{* *}(e) \mid d_{k+1} \leq d_{k} \leq k-1, \text { and } e_{r} \geq k-1 \text { or } e_{d} \geq k-1\right\} ; \\
& \mathscr{D}_{3}=\left\{D \in \mathscr{D}^{* *}(e) \mid d_{k+1}=d_{k}+1=k, \text { and } e_{d} \leq e_{r}\right\} ; \\
& \mathscr{D}_{4}=\left\{D \in \mathscr{D}^{* *}(e) \mid d_{k+1}=d_{k}+1=k, \text { and } e_{d}>e_{r}\right\} ; \\
& \mathscr{D}_{5}=\left\{D \in \mathscr{D}^{* *}(e) \mid d_{k+1}^{t}=d_{k}^{t}+1=k, \text { and } e_{r} \leq e_{d}\right\} ; \\
& \mathscr{D}_{6}=\left\{D \in \mathscr{D}^{* *}(e) \mid d_{k+1}^{t}=d_{k}^{t}+1=k, \text { and } e_{r}>e_{d}\right\} .
\end{aligned}
$$

The adjacency matrix of $D \in \mathscr{D}_{i}$ for $i \in[6]$ will be:

$$
A(D)=\left(\begin{array}{cccc|cccc}
0 & 1 & \cdots & 1 & & & & \\
1 & 0 & & 1 & & & & \\
\vdots & & \ddots & \vdots & & & \\
1 & 1 & \cdots & 0 & & & & \\
\hline & & & & 0 & 0 & \cdots & 0 \\
& & & & 0 & 0 & \cdots & 0 \\
& A_{21} & & \vdots & \ddots & \vdots \\
& & & & 0 & 0 & \cdots & 0
\end{array}\right),
$$

where there are e_{r} and e_{d} 1's in A_{12} and A_{21}, respectively.
Note that the condition $d_{k+1} \leq d_{k} \leq k-1$ is equivalent to $a_{k, k+1}=a_{k+1, k}=0$, where $a_{p, q}$ is the entry of the adjacency matrix of D. Hence for $i \in[2], D \in \mathscr{D}_{i}$ implies $D^{t} \in \mathscr{D}_{i}$. The condition $d_{k+1}=d_{k}+1=k$ and $e_{d} \leq e_{r}$ (resp. $e_{d}>e_{r}$) is equivalent to $d_{k+1}^{t}=d_{k}^{t}+1=k$ and $e_{r} \leq e_{d}$ (resp. $e_{r}>e_{d}$). Hence for $i \in\{3,4\}, D \in \mathscr{D}_{i}$ if and only if $D^{t} \in \mathscr{D}_{i+2}$. For each family \mathscr{D}_{i} and $D \in \mathscr{D}_{i}$, we apply Theorem 3.4 to get a suitable matrix C (in (3)) with $\rho(D) \leq \rho(C)$.

Lemma 4.1. (i) Assume $D \in \mathscr{D}_{1}$. Then $k=s$. Moreover, if $V(D)=[s+1]$, then
$\rho(D)=\phi\left(s, \ell, e_{1}, 0\right)$, where

$$
\ell=\max \left(e_{d}, e_{r}\right), \quad e_{1}=\min \left(e_{d}, e_{r}\right) .
$$

(ii) Assume $D \in \mathscr{D}_{2}$. Then $\rho(D) \leq \phi\left(k, k-1, e_{1}, 0\right)$, where

$$
e_{1}=\min \left(e_{d}, e_{r}\right)
$$

Moreover, if $d_{j}=k-1$ and $e_{1}=e_{r}\left(\right.$ or $d_{j}^{t}=k-1$ and $\left.e_{1}=e_{d}\right)$ for any $j \in[n]-[k]$, then $\rho(D)=\phi\left(k, k-1, e_{1}, 0\right)$.
(iii) Assume $D \in \mathscr{D}_{3}$ (resp. $D \in \mathscr{D}_{5}$). Then $\rho(D) \leq \phi\left(k, k-1, e_{1}, e_{2}\right)$, where

$$
e_{2}=d_{k}^{t}-k+1, e_{1}=-e_{2}+e_{d} \quad\left(\text { resp. } e_{2}=d_{k}-k+1, e_{1}=-e_{2}+e_{r}\right)
$$

(iv) Assume $D \in \mathscr{D}_{4}$ (resp. $D \in \mathscr{D}_{6}$). Then $\rho(D) \leq \phi\left(k, k, e_{1}, 0\right)$, where

$$
e_{1}=e_{r} \quad\left(\text { resp. } e_{1}=e_{d}\right) .
$$

Moreover, if $d_{j}=k$ and $e_{1}=e_{r}$ (or $d_{j}^{t}=k$ and $e_{1}=e_{d}$) for any $j \in[n]-[k]$, then $\rho(D)=\phi\left(k, k, e_{1}, 0\right)$.

Proof. We will use the property $\rho(D)=\rho\left(D^{t}\right)$ and apply Theorem 3.4 to the diagram D if $e_{r} \leq e_{d}$, and to the diagraph D^{t} otherwise. We define the matrix C in (3) by setting $k=k(D)=k\left(D^{t}\right)$ and ℓ in case (i) as claimed, $\ell=k-1$ in cases (ii)-(iii), and $\ell=k$ in case (iv). The last parameter d_{i}^{\prime} is either $d_{i}-k+1$ or $d_{i}^{t}-k+1$ according to which D or D^{t} is applied. The lemma follows from Theorem 3.4 by the above setting.

5 The shape of $\phi\left(k, \ell, e_{1}, e_{2}\right)$

Let $e=s(s-1)+t$ be a positive integer, where $0 \leq t \leq 2 s-1$ and $s \geq 1$. We want to determine the maximum value of $\phi\left(k, \ell, e_{1}, e_{2}\right)$ subject to $k(k-1)+\ell+e_{1}+e_{2} \leq e$ and $e_{1}+e_{2} \leq\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor$. Hopefully this value is $\rho(e)$ and is when $k=s, e_{2}=0$ and $e_{1}+\ell=t$. In this section we will investigate some properties of ϕ for each \mathscr{D}_{i}, where $i \in[6]$.

Lemma 5.1. Assume $t \geq s-1$. Then

$$
\max \left\{\phi\left(k, k-1, e_{1}, 0\right) \mid k \in[s], 0 \leq e_{1} \leq\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor\right\}=\phi\left(s, s-1,\left\lfloor\frac{t}{2}\right\rfloor, 0\right)
$$

Proof. From Definition 3.2, $\phi\left(k, k-1, e_{1}, 0\right)$ is the maximum root of the function $f(\lambda)=$ $\lambda^{3}-(k-2) \lambda^{2}-\left(e_{1}+k-1\right) \lambda$, which appears in (5) with $\ell=k-1$ and $e_{2}=0$. By the assumption, $e_{1} \leq\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor$, and with equality and when $k=s$, we have $e_{1}=\left\lfloor\frac{t}{2}\right\rfloor$. Hence,

$$
\begin{aligned}
\phi\left(k, k-1, e_{1}, 0\right) & =\frac{(k-2)+\sqrt{(k-2)^{2}+4\left(e_{1}+k-1\right)}}{2} \\
& =\frac{(k-2)+\sqrt{k^{2}+4 e_{1}}}{2} \\
& \leq \frac{(k-2)+\sqrt{k^{2}+4\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor}}{2} \\
& \leq \frac{(s-2)+\sqrt{s^{2}+4\left\lfloor\frac{t}{2}\right\rfloor}}{2} \\
& =\phi\left(s, s-1,\left\lfloor\frac{t}{2}\right\rfloor, 0\right)
\end{aligned}
$$

where the second inequality follows from the increasing of its previous term as a function of k when $k \leq 1+\sqrt{e+\frac{1}{2}}$ and $k=s$ is in this range.

Lemma 5.2. Suppose $k \leq s-1 \leq t, e_{1}+e_{2} \leq \frac{e-k(k-1)}{2}$ and $e_{2} \geq 1$. Then

$$
\phi\left(k, k-1, e_{1}, e_{2}\right)<\phi\left(k, k-1,\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor, 0\right)
$$

Moreover,

$$
\max \left\{\phi\left(k, k-1, e_{1}, e_{2}\right)\right\}<\phi\left(s, s-1,\left\lfloor\frac{t}{2}\right\rfloor, 0\right) .
$$

Proof. Let

$$
\begin{aligned}
& f(\lambda):=\lambda^{3}-(k-2) \lambda^{2}-\left(\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor+k-1\right) \lambda \\
& g(\lambda):=\lambda^{3}-(k-2) \lambda^{2}-\left(e_{1}+k-1\right) \lambda-(k-1) e_{2}
\end{aligned}
$$

where

$$
k \geq 1, e_{1}+e_{2}=\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor \text { and } e_{2} \geq 1
$$

Consider the following function

$$
f(\lambda)-g(\lambda)=\left(e_{1}-\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor\right) \lambda+(k-1) e_{2}=e_{2}(k-1-\lambda),
$$

which has a root $\alpha:=k-1$. And $f(\lambda)$ has the maximum real root:

$$
\begin{aligned}
\beta & :=\frac{(k-2)+\sqrt{(k-2)^{2}+4\left(\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor+k-1\right)}}{2} \\
& =\frac{(k-2)+\sqrt{k^{2}+4\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor}}{2} \\
& >\frac{(k-2)+k}{2}=k-1=\alpha,
\end{aligned}
$$

so $-g(\beta)=f(\beta)-g(\beta)<0$ and $g(\beta)>0$.
Since $f(\lambda)-g(\lambda)$ is linear and $g(\beta)>0$, the maximum real root of $f(\lambda)$ is larger than $g(\lambda)$. On the other hand, the maximum real root of a cubic equation is increasing when the linear term and the constant term decrease, so $\phi\left(k, k-1, e_{1}, e_{2}\right)$ for $e_{1}+e_{2} \leq \frac{e-k(k-1)}{2}$ and $e_{2} \geq 1$ has the maximum when $e_{1}+e_{2}=\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor$. Recall that $\phi\left(k, k-1, e_{1}, e_{2}\right)$ for $e_{1}+e_{2}=\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor$ is the maximum real root of $g(\lambda)=0$, and $\phi\left(k, k-1,\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor, 0\right)$ is the maximum real root of $f(\lambda)=0$, we complete the proof of the first part. The second part immediately follows from the result of first part and Lemma 5.1

Lemma 5.3. Suppose $t \geq s$. Then

$$
\max \left\{\phi\left(k, k, e_{1}, 0\right) \mid k \in[s], 0 \leq e_{1} \leq\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor\right\}=\phi\left(s, s,\left\lfloor\frac{t}{2}\right\rfloor, 0\right) .
$$

Proof. From Definition 3.2, $\phi\left(k, k, e_{1}, 0\right)$ is the maximum real root of the function $f(\lambda)=$ $\lambda^{2}-(k-1) \lambda-e_{1}$, which appears in (8). By the assumption, $e_{1} \leq\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor$, and with
equality and when $k=s-1$, we have $e_{1}=\left\lfloor\frac{t+2 s-2}{2}\right\rfloor$. Hence

$$
\begin{aligned}
\phi\left(k, k, e_{1}, 0\right) & =\frac{(k-1)+\sqrt{(k-1)^{2}+4 e_{1}}}{2} \\
& \leq \frac{(k-1)+\sqrt{(k-1)^{2}+4\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor}}{2} \\
& \leq \frac{(s-2)+\sqrt{(s-2)^{2}+4\left\lfloor\frac{e-(s-1)(s-2)}{2}\right\rfloor}}{2} \\
& =\frac{(s-2)+\sqrt{(s-2)^{2}+4\left\lfloor\frac{t+2 s-2}{2}\right\rfloor}}{2} \\
& =\phi\left(s-1, s-1,\left\lfloor\frac{t+2 s-2}{2}\right\rfloor, 0\right)
\end{aligned}
$$

where the second inequality follows from the increasing of its previous term as a function of k when $k \leq \sqrt{e+\frac{1}{2}}$ and $k=s-1$ is in this range.

On the other hand, for $k=s-1$ and $k=s$, define

$$
\begin{aligned}
& \alpha:=\phi\left(s-1, s-1,\left\lfloor\frac{t+2 s-2}{2}\right\rfloor, 0\right)=\frac{(s-2)+\sqrt{(s-2)^{2}+4\left\lfloor\frac{t+2 s-2}{2}\right\rfloor}}{2} ; \\
& \beta:=\phi\left(s, s,\left\lfloor\frac{t}{2}\right\rfloor, 0\right)=\frac{(s-1)+\sqrt{(s-1)^{2}+4\left\lfloor\frac{t}{2}\right\rfloor}}{2} .
\end{aligned}
$$

Since

$$
2(\beta-\alpha)(\beta+\alpha-s+2)=\sqrt{(s-1)^{2}+4\left\lfloor\frac{t}{2}\right\rfloor}-s+1>0
$$

and

$$
\beta+\alpha=\frac{(s-1)+\sqrt{(s-1)^{2}+4\left\lfloor\frac{t}{2}\right\rfloor}}{2}+\frac{(s-2)+\sqrt{s^{2}+4\left\lfloor\frac{t}{2}\right\rfloor}}{2}>s-2
$$

so $\beta>\alpha$ and hence $\phi\left(k, k, e_{1}, 0\right)$ reaches the maximum when $k=s$ and $e_{1}=\left\lfloor\frac{t}{2}\right\rfloor$
Lemma 5.4. We have

$$
\max \left\{\phi\left(s, \ell, e_{1}, 0\right) \mid 1 \leq e_{1} \leq \ell \leq s, \ell+e_{1}=t\right\}=\phi\left(s,\left\lceil\frac{t}{2}\right\rceil,\left\lfloor\frac{t}{2}\right\rfloor, 0\right) .
$$

Proof. For $\ell \leq s-1$, recall that $\phi\left(s, \ell, e_{1}, 0\right)$ is the maximum real root of the following function

$$
\lambda^{3}-(s-2) \lambda^{2}-\left(e_{1}+s-1\right) \lambda+e_{1}(s-\ell-1),
$$

and the maximum real root of a cubic polynomial with positive leading coefficient is increasing when the constant term decreases. Consider the constant term of this equation,

$$
\begin{aligned}
e_{1}(s-\ell-1) & =(e-s(s-1)-\ell)(s-\ell-1) \\
& =\ell^{2}+\left((s-1)^{2}-e\right) \ell+(s-1) t
\end{aligned}
$$

which is a quadratic polynomial of ℓ and has the minimum value when $\ell=\frac{e-(s-1)^{2}}{2}$, so we can narrow down the range of ℓ to $\ell \in\left[\frac{e-s(s-1)}{2}, \frac{e-(s-1)^{2}}{2}\right]$.

Let $\left(e_{1}, \ell_{1}\right)$ and $\left(e_{2}, \ell_{2}\right)$ be two pairs which satisfy the condition of e_{1} and ℓ above and assume $e_{1}>e_{2}$ (and hence $1 \leq e_{2}<e_{1} \leq \ell_{1}<\ell_{2} \leq s-1$). Then we have two polynomials:

$$
\begin{aligned}
& f(\lambda)=\lambda^{3}-(s-2) \lambda^{2}-\left(e_{1}+s-1\right) \lambda+e_{1}\left(s-\ell_{1}-1\right) \\
& g(\lambda)=\lambda^{3}-(s-2) \lambda^{2}-\left(e_{2}+s-1\right) \lambda+e_{2}\left(s-\ell_{2}-1\right)
\end{aligned}
$$

and

$$
f(\lambda)-g(\lambda)=\left(e_{2}-e_{1}\right) \lambda+\left(e_{1}-e_{2}\right)(s-1)+e_{2} \ell_{2}-e_{1} \ell_{1} .
$$

Let λ_{0} be the root of $f(\lambda)-g(\lambda)$, then

$$
\begin{aligned}
\lambda_{0} & =\frac{\left(e_{1}-e_{2}\right)(s-1)+e_{2} \ell_{2}-e_{1} \ell_{1}}{\left(e_{1}-e_{2}\right)} \\
& =\frac{\left(e_{1}-e_{2}\right)(s-1)+\left(e_{1}-e_{2}\right)\left(e_{1}-\ell_{2}\right)}{\left(e_{1}-e_{2}\right)} \\
& =s-1+e_{1}-\ell_{2}>0 .
\end{aligned}
$$

and then

$$
\begin{aligned}
f\left(\lambda_{0}\right) & =\lambda_{0}^{3}-(s-2) \lambda_{0}^{2}-\left(e_{1}+s-1\right) \lambda_{0}+e_{1}\left(s-\ell_{1}-1\right) \\
& =\lambda_{0}^{2}\left(e_{1}-\ell_{2}\right)+\lambda_{0}\left(e_{1}-\ell_{2}\right)-e_{1}\left(e_{1}-\ell_{2}+\ell_{1}\right) \\
& =\lambda_{0}^{2}\left(e_{1}-\ell_{2}\right)+\lambda_{0}\left(e_{1}-\ell_{2}\right)-e_{1} e_{2}<0 .
\end{aligned}
$$

Since $f\left(\lambda_{0}\right)<0$, the maximum real root α of $f(\lambda)$ is larger than λ_{0}. Then $f(\alpha)-g(\alpha)<0$ and $g(\alpha)>0$, hence the maximum real root of $g(\lambda)$ is less than $f(\lambda)$. And we have

$$
\phi\left(s, \ell, e_{1}, 0\right) \leq \phi\left(s,\left\lceil\frac{t}{2}\right\rceil,\left\lfloor\frac{t}{2}\right\rfloor, 0\right)
$$

for $\ell \leq s-1$.
Moreover, if $t \geq s$, then $\phi(s, s, t-s, 0) \leq \phi\left(s, \ell, e_{1}, 0\right)$ and the equality holds when $t=2 s-1, \ell=s=\left\lceil\frac{t}{2}\right\rceil$ and $e_{1}=s-1=\left\lfloor\frac{t}{2}\right\rfloor$. So we conclude that for $1 \leq e_{1} \leq \ell \leq s$ and $e_{1}+\ell=t, \phi\left(s, \ell, e_{1}, 0\right)$ has the maximum when $e_{1}=\left\lfloor\frac{t}{2}\right\rfloor$ and $\ell=\left\lceil\frac{t}{2}\right\rceil$.

Lemma 5.5. Let $e=s(s-1)+t, 2 s-7 \leq t \leq 2 s-4$. Then
(i) $\phi\left(k, k-1, e_{1}, 0\right) \leq \phi\left(s,\left\lceil\frac{t}{2}\right\rceil,\left\lfloor\frac{t}{2}\right\rfloor, 0\right)$ for $1 \leq k \leq s-1$ and $e_{1} \leq\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor$;
(ii) $\phi\left(k, k, e_{1}, 0\right) \leq \phi\left(s,\left\lceil\frac{t}{2}\right\rceil,\left\lfloor\frac{t}{2}\right\rfloor, 0\right)$ for $1 \leq k \leq s-2$ and $e_{1} \leq\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor$.

Proof. Let $\beta:=\phi\left(s-1, s-2,\left\lfloor\frac{e-(s-1)(s-2)}{2}\right\rfloor, 0\right)$, which is the maximum real root of

$$
f(\lambda)=\lambda^{3}-(s-3) \lambda^{2}-\left(\left\lfloor\frac{t}{2}\right\rfloor+2 s-3\right) \lambda .
$$

Then

$$
\beta=\frac{s-3+\sqrt{(s-3)^{2}+4\left(\left\lfloor\frac{t}{2}\right\rfloor+2 s-3\right)}}{2} .
$$

Note that $\phi\left(s,\left\lceil\frac{t}{2}\right\rceil,\left\lfloor\frac{t}{2}\right\rfloor, 0\right)$ is the maximum real root of

$$
g(\lambda)=\lambda^{3}-(s-2) \lambda^{2}-\left(\left\lfloor\frac{t}{2}\right\rfloor+s-1\right) \lambda+\left\lfloor\frac{t}{2}\right\rfloor\left(s-\left\lceil\frac{t}{2}\right\rceil-1\right) .
$$

Consider the following equation:

$$
f(\lambda)-g(\lambda)=\lambda^{2}-(s-2) \lambda-\left\lfloor\frac{t}{2}\right\rfloor\left(s-\left\lceil\frac{t}{2}\right\rceil-1\right)
$$

which has the maximum real root

$$
\alpha:=\frac{s-2+\sqrt{(s-2)^{2}+4\left(\left\lfloor\frac{t}{2}\right\rfloor\left(s-\left\lceil\frac{t}{2}\right\rceil-1\right)\right)}}{2} .
$$

Since $2 s-7 \leq t \leq 2 s-4$, then

$$
\begin{aligned}
& 4(\beta+\alpha-(s-3))(\beta-\alpha) \\
= & (2 \beta-(s-3))^{2}-(2 \alpha-(s-3))^{2} \\
= & 6 s-8-4\left\lfloor\frac{t}{2}\right\rfloor\left(s-\left\lceil\frac{t}{2}\right\rceil-2\right)-2 \sqrt{(s-2)^{2}+4\left(\left\lfloor\frac{t}{2}\right\rfloor\left(s-\left\lceil\frac{t}{2}\right\rceil-1\right)\right)} \\
> & 0 .
\end{aligned}
$$

Note that $\beta+\alpha>(s-3)$ and $(\beta+\alpha-(s-3))(\beta-\alpha)>0$, so $\beta>\alpha$. Since $f(\lambda)-g(\lambda)>0$ for $\lambda>\alpha$, we have

$$
-g(\beta)=f(\beta)-g(\beta)>0
$$

hence $g(\beta)<0$ and the maximum real root of $g(\lambda)$ is larger than which of $f(\lambda)$. On the other hand,

$$
\phi\left(s-1, s-2,\left\lfloor\frac{e-(s-1)(s-2)}{2}\right\rfloor, 0\right)=\phi\left(s-2, s-2,\left\lfloor\frac{e-(s-2)(s-3)}{2}\right\rfloor, 0\right) .
$$

Then by Lemma 5.1 and 5.3,

$$
\max \left\{\phi\left(k, k-1, e_{1}, 0\right) \mid 1 \leq k \leq s-1, e_{1} \leq\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor\right\} \leq \phi\left(s,\left\lceil\frac{t}{2}\right\rceil,\left\lfloor\frac{t}{2}\right\rfloor, 0\right),
$$

and

$$
\max \left\{\phi\left(k, k, e_{1}, 0\right) \mid 1 \leq k \leq s-2, e_{1} \leq\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor\right\} \leq \phi\left(s,\left\lceil\frac{t}{2}\right\rceil,\left\lfloor\frac{t}{2}\right\rfloor, 0\right),
$$

for $2 s-7 \leq t \leq 2 s-4$.

$6 \rho(D)$ for $2 s-7 \leq t \leq 2 s-3, t \neq 0,1$

For $D \in \mathscr{D}^{* *}(e)$, Lemma 4.1 showed that ϕ is an upper bound of $\rho(D)$, and we have investigated some properties for ϕ in Section 5: Lemma 5.1 and 5.3 showed that ϕ is increasing as a function of k when D is in \mathscr{D}_{2} and $\mathscr{D}_{4} \cup \mathscr{D}_{6}$, respectively; Lemma 5.2 showed that ϕ of $D \in \mathscr{D}_{3} \cup \mathscr{D}_{5}$ is less than which of $D \in \mathscr{D}_{2}$; Lemma 5.4 showed that ϕ has the maximum when $\ell-e_{1} \leq 1$ for $k(D)=s$. Now we use these upper bounds to prove Conjecture 1.1 for $e=s(s-1)+t$, where $2 s-7 \leq t \leq 2 s-3, t \neq 0,1$.

Fix $e=s(s-1)+t$ for $2 \leq t \leq 2 s-1$, define D^{*} to be the digraph which is obtained from a clique of order s by adding a new vertex and t arcs from the new vertex to the clique with at most one arc being single-direction which is pointing to the clique.

Lemma 6.1. Let $e=s(s-1)+t$ be a positive integer with $2 \leq t \leq 2 s-1$. Then for any digraph D in $\mathscr{D}^{* *}(e)$ with $k(D)=s$, we have $\rho(D) \leq \rho\left(D^{*}\right)$ and equality holds if and only if $D \in\left\{D^{*}, D^{* t}\right\}$.

Proof. Let ℓ^{\prime} (resp. e_{1}^{\prime}) denote the number of arcs in D which are from $\{s+1\}$ to $[s]$ (resp. from $[s]$ to $\{s+1\}$). And we might assume $\ell^{\prime} \geq e_{1}^{\prime}$ by considering D^{t} if necessary. Let ℓ (resp. e_{1}) denote the number of arcs from $V(D)-[s]$ to $[s]$ (resp. from $[s]$ to $V(D)-[s]$). Note that $\ell^{\prime} \leq \ell, e_{1}^{\prime} \leq e_{1}$ and $\ell+e_{1}=t$ since $k(D)=s$. Then by Lemma 5.4,

$$
\rho(D) \leq \phi\left(s, \ell^{\prime}, e_{1}, 0\right) \leq \phi\left(s, \ell, e_{1}, 0\right) \leq \rho\left(D^{*}\right)
$$

Note that $\ell=\ell^{\prime}$ if and only if $D=D^{*}$ since the diagraphs are strongly connected.
Theorem 6.2. Let $e=s(s-1)+t$ be a positive integer with $t=2 s-3$ and $t \neq 1$. Then $\rho(e)=\frac{(s-2)+\sqrt{(s+2)^{2}-12}}{2}$. Moreover, for $D \in \mathscr{D}(e), \rho(D)=\rho(e)$ if and only if $D \in\left\{D^{*}, D^{* t}\right\}$.

Proof. Since $e=s(s-1)+2 s-3$ and $s \neq 2, \mathscr{D}_{1}=\emptyset$. For a digraph in \mathscr{D}_{2}, the maximum upper bound $\phi\left(s, s-1,\left\lfloor\frac{e-s(s-1)}{2}\right\rfloor, 0\right)$ can be attained by D^{*} since $s-1=\left\lceil\frac{t}{2}\right\rceil$. And by Lemma 5.2, $\rho(D)<\phi\left(s, s-1,\left\lfloor\frac{e-s(s-1)}{2}\right\rfloor, 0\right)=\rho\left(D^{*}\right)$ for $D \in \mathscr{D}_{3} \cup \mathscr{D}_{5}$. On the other hand, for the digraph in $\mathscr{D}_{4} \cup \mathscr{D}_{6}$ with clique number $k=s-1$, the maximum upper bound $\phi\left(s-1, s-1,\left\lfloor\frac{e-(s-1)(s-2)}{2}\right\rfloor, 0\right)$ is equal to $\phi\left(s, s-1,\left\lfloor\frac{e-s(s-1)}{2}\right\rfloor, 0\right)=\rho\left(D^{*}\right)$ (notice that this upper bound can't be attained by the digraph in $\mathscr{D}_{4} \cup \mathscr{D}_{6}$). Then by Lemma 5.3 and 6.1, $\rho(D)<\rho\left(D^{*}\right)$ for $D \in \mathscr{D}_{4} \cup \mathscr{D}_{6}$.

Hence $\rho(D) \leq \rho\left(D^{*}\right)=\frac{(s-2)+\sqrt{(s+2)^{2}-12}}{2}$ for D with e arcs, where $e=s(s-1)+2 s-3$, $t \neq 0,1$. That is, $\rho(e)=\frac{(s-2)+\sqrt{(s+2)^{2}-12}}{2}$. Moreover, by Theorem 3.4, $\rho(D)=\rho(e)=$ $\frac{(s-2)+\sqrt{(s+2)^{2}-12}}{2}$ if and only if $D \in\left\{D^{*}, D^{* t}\right\}$.

Let $e=s(s-1)+t$, for $2 s-7 \leq t \leq 2 s-4, t \neq 0,1$. Then by Lemmas 5.2, 5.5 and 6.1, we only need to consider D^{*} and the digraphs $D \in \mathscr{D}_{4} \cup \mathscr{D}_{6}$, with $k(D)=s-1$ for this problem. On the other hand, according to the proof of [5, Lemma 3.2], they showed that when $k(D)=s$, we may assume that $|V(D)|=s+1$, and we can also prove the same result for $k(D)=s-1$ by a similar proof. So for the following four theorems, we only consider the digraphs with $s+1$ vertices.

Theorem 6.3. Let $e=s(s-1)+t$ be a positive integer with $t=2 s-4$ and $t \neq 0$. Then $\rho(e)=\phi(s, s-2, s-2,0)$, i.e. $\rho(e)$ is equal to the maximum real root of

$$
\lambda^{3}-(s-2) \lambda^{2}-(2 s-3) \lambda+(s-2)
$$

Moreover for $D \in \mathscr{D}(e), \rho(D)=\rho(e)$ if and only if $D \in\left\{D^{*}, D^{* t}\right\}$.
Proof. The digraph $D \in \mathscr{D}_{4} \cup \mathscr{D}_{6}$ with $k(D)=s-1$ and $|V(D)|=s+1$ is unique, which has the spectral radius $\rho(D)=\phi(s-1, s-1,2 s-4,0)$. Recall that $\rho(D)$ is the maximum real root of

$$
f(\lambda)=\lambda^{2}-(s-2) \lambda-(2 s-4),
$$

and $\phi\left(s,\left\lceil\frac{t}{2}\right\rceil,\left\lfloor\frac{t}{2}\right\rfloor, 0\right)=\phi(s, s-2, s-2,0)$ is the maximum real root of

$$
g(\lambda)=\lambda^{3}-(s-2) \lambda^{2}-(2 s-3) \lambda+(s-2) .
$$

Consider the following function

$$
\lambda f(\lambda)-g(\lambda)=\lambda-(s-2)
$$

which has the root $s-2$. Since $s>1, s-2 \leq \rho(D)$. Then $-g(\rho(D))=\rho(D) f(\rho(D))-$ $g(\rho(D))>0$ and $g(\rho(D))<0$, hence $\phi(s, s-2, s-2,0)>\rho(D)$. We conclude that for $D \in \mathscr{D}(e), \rho(D) \leq \phi(s, s-2, s-2,0)$. Moreover, by Theorem $3.4 \rho(D)=\phi(s, s-2, s-$ $2,0)=\rho(e)$ if and only if $D \in\left\{D^{*}, D^{* t}\right\}$.

Definition 6.4. Let $A^{(i)}$ denote an $(s-1)$-dimensional column vector with the first i entries be 1 , and 0 otherwise. Let $A_{(j)}$ denote an $(s-1)$-dimensional row vector with the first j entries be 1 , and 0 otherwise.

Theorem 6.5. Let $e=s(s-1)+t$ be a positive integer with $t=2 s-5$ and $t \neq 1$. Then $\rho(e)=\phi(s, s-2, s-3,0)$, i.e. $\rho(e)$ is the maximum real root of

$$
\lambda^{3}-(s-2) \lambda^{2}-(2 s-4) \lambda+(s-3)
$$

Moreover for $D \in \mathscr{D}(e), \rho(D)=\rho(e)$ if and only if $D \in\left\{D^{*}, D^{* t}\right\}$.

Proof. There are two non-isomorphic digraphs D_{1}, D_{2} in $\mathscr{D}_{4} \cup \mathscr{D}_{6}$ with $k\left(D_{1}\right), k\left(D_{2}\right)=s-1$ and $\left|V\left(D_{1}\right)\right|=\left|V\left(D_{2}\right)\right|=s+1$, where

$$
A\left(D_{1}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-2)} & A^{(s-3)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-1)} & 0 & 0
\end{array}\right), \quad A\left(D_{2}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-2)} & A^{(s-2)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-2)} & 0 & 0
\end{array}\right) .
$$

Moreover,

$$
\begin{aligned}
& \rho\left(D_{1}\right)=\phi(s-1, s-1,2 s-5,0) \\
& \rho\left(D_{2}\right)=\phi(s-1, s-2,2 s-4,1)
\end{aligned}
$$

Compare $\rho\left(D^{*}\right), \rho\left(D_{1}\right)$ and $\rho\left(D_{2}\right)$. Recall that $\rho\left(D^{*}\right), \rho\left(D_{1}\right)$ and $\rho\left(D_{2}\right)$ are the maximum real roots of $f(\lambda), g(\lambda)$ and $h(\lambda)$, respectively, where

$$
\begin{aligned}
& f(\lambda)=\lambda^{3}-(s-2) \lambda^{2}-(2 s-4) \lambda+(s-3) ; \\
& g(\lambda)=\lambda^{2}-(s-2) \lambda-(2 s-5) ; \\
& h(\lambda)=\lambda^{3}-(s-3) \lambda^{2}-(3 s-6) \lambda-(s-2) .
\end{aligned}
$$

For $\rho\left(D^{*}\right)$ and $\rho\left(D_{1}\right)$, consider the following equation

$$
f(\lambda)-\lambda g(\lambda)=-\lambda+(s-3)=0
$$

which has a root $s-3$ and $\rho\left(D_{1}\right)>s-3$. Then $f\left(\rho\left(D_{1}\right)\right)-\rho\left(D_{1}\right) g\left(\rho\left(D_{1}\right)\right)<0$ and $f\left(\rho\left(D_{1}\right)\right)<0$. Hence $\rho\left(D^{*}\right)>\rho\left(D_{1}\right)$.
For $\rho\left(D^{*}\right)$ and $\rho\left(D_{2}\right)$, consider the following function

$$
f(\lambda)-h(\lambda)=-\lambda^{2}+(s-2) \lambda+(2 s-5),
$$

which has the same maximum real root as $g(\lambda)$, i.e. such a maximum real root is equal to $\rho\left(D_{1}\right)$. So $f(\lambda)-h(\lambda)<0$ for $\lambda>\rho\left(D_{1}\right)$. Since $\rho\left(D^{*}\right)>\rho\left(D_{1}\right), f\left(\rho\left(D^{*}\right)\right)-h\left(\rho\left(D^{*}\right)\right)<0$ and $h\left(\rho\left(D^{*}\right)\right)>0$. Hence the maximum real root $\rho\left(D_{2}\right)$ of $h(\lambda)$ is less than $\rho\left(D^{*}\right)$. We conclude that for $D \in \mathscr{D}(e), \rho(D) \leq \rho\left(D^{*}\right)=\phi(s, s-2, s-3,0)$. Moreover, by Theorem 3.4 $\rho(D)=\phi(s, s-2, s-3,0)=\rho(e)$ if and only if $D \in\left\{D^{*}, D^{* t}\right\}$.

Theorem 6.6. Let $e=s(s-1)+t$ be a positive integer with $t=2 s-6$ and $t \neq 0$. Then $\rho(e)=\phi(s, s-3, s-3,0)$, i.e. $\rho(e)$ is the maximum real root of the following function

$$
\lambda^{3}-(s-3) \lambda^{2}-(2 s-4) \lambda+2(s-3) .
$$

Moreover, for $D \in \mathscr{D}(e), \rho(D)=\rho(e)$ if and only if $D \in\left\{D^{*}, D^{* t}\right\}$.
Proof. Assume that all of the digraphs have $s+1$ vertices, then there are three nonisomorphic digraphs D_{1}, D_{2} and D_{3} in $\mathscr{D}_{4} \cup \mathscr{D}_{6}$ with $k\left(D_{1}\right), k\left(D_{2}\right), k\left(D_{3}\right)=s-1$, where

$$
\begin{gathered}
A\left(D_{1}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-2)} & A^{(s-4)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-1)} & 0 & 0
\end{array}\right), \quad A\left(D_{2}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-3)} & A^{(s-3)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-1)} & 0 & 0
\end{array}\right), \\
A\left(D_{3}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-2)} & A^{(s-3)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-2)} & 0 & 0
\end{array}\right),
\end{gathered}
$$

and

$$
\rho\left(D_{1}\right)=\rho\left(D_{2}\right)=\phi(s-1, s-1,2 s-6,0)=\frac{s-2+\sqrt{(s+2)^{2}-24}}{2} .
$$

Compare $\rho\left(D^{*}\right)$ and $\rho\left(D_{1}\right)$, and recall that $\rho\left(D^{*}\right)=\phi(s, s-3, s-3,0)$ and $\rho\left(D_{1}\right)=$ $\phi(s-1, s-1,2 s-6,0)$ are the maximum real roots of $f(\lambda)$ and $g(\lambda)$, respectively, where

$$
\begin{aligned}
& f(\lambda)=\lambda^{3}-(s-2) \lambda^{2}-(2 s-4) \lambda+2(s-3) ; \\
& g(\lambda)=\lambda^{2}-(s-2) \lambda-(2 s-6) .
\end{aligned}
$$

Consider the following function

$$
f(\lambda)-\lambda g(\lambda)=-2 \lambda+(2 s-6)=0,
$$

which has the root $s-3$ and for $\lambda>s-3, f(\lambda)-\lambda g(\lambda)<0$. Since $\rho\left(D_{1}\right)>s-3$, $f\left(\rho\left(D_{1}\right)\right)<0$ and hence $\rho\left(D_{1}\right)$ is less than the maximum real root of $f(\lambda)=0$, i.e. $\rho\left(D_{1}\right)<\rho\left(D^{*}\right)$.

Next, we compare $\rho\left(D^{*}\right)$ and $\rho\left(D_{3}\right)$. The adjacency matrix of D^{*} is

$$
A\left(D^{*}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-1)} & A^{(s-3)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-3)} & 0 & 0
\end{array}\right)
$$

Since $A\left(D^{*}\right)$ and $A\left(D_{3}\right)$ are nonnegative and irreducible, by Perron-Frobenius theorem, there exist a positive column vector $u=\left(u_{1}, u_{2}, \ldots, u_{s+1}\right)^{T}$ and a positive row vector $v^{T}=\left(v_{1}, v_{2}, \ldots, v_{s+1}\right)$ such that $A\left(D_{3}\right) u=\rho\left(D_{3}\right) u$ and $v^{T} A\left(D^{*}\right)=\rho\left(D^{*}\right) v^{T}$. Then

$$
\begin{aligned}
\left(\rho\left(D^{*}\right)-\rho\left(D_{3}\right)\right) v^{T} u & =v^{T}\left(A\left(D^{*}\right)-A\left(D_{3}\right)\right) u \\
& =v^{T}\left(\begin{array}{ccc}
0 & A^{(s-1)}-A^{(s-2)} & 0 \\
0 & 0 & 0 \\
A^{(s-3)}-A^{(s-2)} & 0 & 0
\end{array}\right) u \\
& =u_{s} v_{s-1}-u_{s-2} v_{s+1} \\
& =u_{s}\left(v_{s-1}-v_{s+1}\right)>0
\end{aligned}
$$

so $\rho\left(D^{*}\right)-\rho\left(D_{3}\right)>0$, and hence $\rho\left(D^{*}\right)>\rho\left(D_{3}\right)$. We conclude that for $D \in \mathscr{D}(e), \rho(D) \leq$ $\rho\left(D^{*}\right)=\phi(s, s-3, s-3,0)$. Moreover, by Theorem 3.4, $\rho(D)=\phi(s, s-3, s-3,0)=\rho(e)$ if and only if $D \in\left\{D^{*}, D^{* t}\right\}$.

Theorem 6.7. Let $e=s(s-1)+t$ be a positive integer with $t=2 s-7$ and $t \neq 1$. Then $\rho(e)=\phi(s, s-3, s-4,0)$, i.e. $\rho(e)$ is the maximum real root of the following function

$$
\lambda^{3}-(s-2) \lambda^{2}-(2 s-5) \lambda+2(s-4)
$$

Moreover, for $D \in \mathscr{D}(e), \rho(D)=\rho(e)$ if and only if $D \in\left\{D^{*}, D^{* t}\right\}$.

Proof. Assume that all of the digraphs have $s+1$ vertices, then there are five nonisomorphic digraphs $D_{1}, D_{2}, D_{3}, D_{4}$ and D_{5} in $\mathscr{D}_{5} \cup \mathscr{D}_{6}$ with $k\left(D_{1}\right), k\left(D_{2}\right), k\left(D_{3}\right), k\left(D_{4}\right), k\left(D_{5}\right)=$
$s-1$, where

$$
\begin{gathered}
A\left(D_{1}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-2)} & A^{(s-5)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-1)} & 0 & 0
\end{array}\right), \quad A\left(D_{2}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-3)} & A^{(s-4)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-1)} & 0 & 0
\end{array}\right), \\
A\left(D_{3}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-2)} & A^{(s-4)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-2)} & 0 & 0
\end{array}\right), \quad A\left(D_{4}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-3)} & A^{(s-3)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-2)} & 0 & 0
\end{array}\right), \\
A\left(D_{5}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-2)} & A^{(s-3)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-3)} & 0 & 0
\end{array}\right)
\end{gathered}
$$

and

$$
\rho\left(D_{1}\right)=\rho\left(D_{2}\right)=\phi(s-1, s-1,2 s-7,0)=\frac{s-2+\sqrt{(s+2)^{2}-28}}{2} .
$$

Compare $\rho\left(D^{*}\right)$ and $\rho\left(D_{1}\right)$, and recall that $\rho\left(D^{*}\right)=\phi(s, s-3, s-4,0)$ and $\rho\left(D_{1}\right)=$ $\phi(s-1, s-1,2 s-7,0)$ are the maximum real roots of $f(\lambda)$ and $g(\lambda)$, respectively, where

$$
\begin{aligned}
& f(\lambda)=\lambda^{3}-(s-2) \lambda^{2}-(2 s-5) \lambda+2(s-4) ; \\
& g(\lambda)=\lambda^{2}-(s-2) \lambda-(2 s-7) .
\end{aligned}
$$

Consider the following function

$$
f(\lambda)-\lambda g(\lambda)=-2 \lambda+(2 s-8),
$$

which has the root $s-4$ and for $\lambda>s-4, f(\lambda)-\lambda g(\lambda)<0$. Since $\rho\left(D_{1}\right)>s-4$, $f\left(\rho\left(D_{1}\right)\right)<0$ and hence $\rho\left(D_{1}\right)$ is less than the maximum real root of $f(\lambda)=0$, i.e. $\rho\left(D_{1}\right)<\rho\left(D^{*}\right)$.

Next, we compare $\rho\left(D_{4}\right)$ with $\rho\left(D_{5}\right)$. Since $A\left(D_{4}\right)$ and $A\left(D_{5}\right)$ are nonnegative and irreducible, there exist a positive column vectors y and a positive row vector x^{T} such that $A\left(D_{4}\right) y=\rho\left(D_{4}\right) y, A\left(D_{5}\right) x=x^{T} \rho\left(D_{5}\right)$. Then

$$
\left(\rho\left(D_{5}\right)-\rho\left(D_{4}\right)\right) x^{T} y=x^{T}\left(A\left(D_{5}\right)-A\left(D_{4}\right)\right) y>0
$$

and hence $\rho\left(D_{5}\right)>\rho\left(D_{4}\right)$.
Finally, we discuss $\rho\left(D_{3}\right), \rho\left(D_{5}\right)$ and $\rho\left(D^{*}\right)$. The adjacency matrix of D^{*} is

$$
A\left(D^{*}\right)=\left(\begin{array}{ccc}
J_{s-1}-I_{s-1} & A^{(s-1)} & A^{(s-4)} \\
A_{(s-1)} & 0 & 0 \\
A_{(s-3)} & 0 & 0
\end{array}\right)
$$

Since $A\left(D_{3}\right), A\left(D_{5}\right)$ and $A\left(D^{*}\right)$ are nonnegative and irreducible, by Perron-Frobenius theorem, there exist two positive column vectors u, w and two positive row vectors v^{T}, z^{T} such that $A\left(D_{3}\right) u=\rho\left(D_{3}\right) u, A\left(D_{5}\right) w=\rho\left(D_{5}\right) w$ and $v^{T} A\left(D^{*}\right)=\rho\left(D^{*}\right) v^{T}$. Then

$$
\begin{aligned}
& \left(\rho\left(D^{*}\right)-\rho\left(D_{3}\right)\right) v^{T} u=v^{T}\left(A\left(D^{*}\right)-A\left(D_{3}\right)\right) u>0 ; \\
& \left(\rho\left(D^{*}\right)-\rho\left(D_{5}\right)\right) v^{T} w=v^{T}\left(A\left(D^{*}\right)-A\left(D_{5}\right)\right) w>0,
\end{aligned}
$$

so $\rho\left(D^{*}\right)-\rho\left(D_{3}\right)>0$ and $\rho\left(D^{*}\right)-\rho\left(D_{5}\right)>0$, and hence $\rho\left(D^{*}\right)>\rho\left(D_{3}\right)$ and $\rho\left(D^{*}\right)>$ $\rho\left(D_{5}\right)$. We conclude that for $D \in \mathscr{D}(e), \rho(D) \leq \rho\left(D^{*}\right)=\phi(s, s-3, s-4,0)$. Moreover, by Theorem $3.4 \rho(D)=\phi(s, s-3, s-4,0)=\rho(e)$ if and only if $D \in\left\{D^{*}, D^{* t}\right\}$.

$7 \quad$ A lower bound of the spectral radius of the digraph in $\mathscr{D}^{* *}(e)$

Definition 7.1. Let B be an $n \times n$ matrix and let $\Pi=\left\{\pi_{1}, \pi_{1}, \ldots, \pi_{k}\right\}$ be a partition of $[n]$. Let $B_{a, b}$ be the $\left|\pi_{a}\right| \times\left|\pi_{b}\right|$ submatrix of B formed by the rows in π_{a} and the columns in π_{b}, where $1 \leq a, b \leq k$. The $k \times k$ matrix $\Pi(B):=\left(\pi_{a b}\right)$, where $\pi_{a b}$ is the average row sum of $B_{a, b}$, is called the quotient matrix of B with respect to Π.

With the notation in Definition 7.1, we can write $\Pi(B)$ as

$$
\Pi(B)=\left(S^{T} S\right)^{-1} S^{T} B S
$$

where $S=\left(s_{i j}\right)$ is an $n \times k$ matrix with

$$
s_{i j}= \begin{cases}1, & \text { if } i \in \pi_{j} \\ 0, & \text { otherwise }\end{cases}
$$

It is known that $\rho(\Pi(A)) \leq \rho(A)$ for any symmetric matrix A. For particular types of partition Π and non-symmetric matrix A, we have the following similar result.

Theorem 7.2. Let $D \in \mathscr{D}^{* *}(e)$ with the adjacency matrix A and let $\Pi=\{\{1\},\{2\}, \ldots,\{k\},\{k+$ $1, \ldots, n\}\}$ be a partition of $[n]$, where k is the clique number of D. Then $\rho(\Pi(A)) \leq \rho(A)$, where $\Pi(A)$ is the quotient matrix of A with respect to Π.

Proof. Since $\Pi(A)$ is the quotient matrix of A with respect to $\Pi, \Pi(A)$ is a $(k+1) \times(k+1)$ matrix and

$$
\begin{equation*}
\Pi(A)=\left(S^{T} S\right)^{-1} S^{T} A S, \tag{12}
\end{equation*}
$$

where $S=\left(s_{i j}\right)$ is an $n \times(k+1)$ matrix with

$$
s_{i j}= \begin{cases}1, & \text { if } i=j \text { or }(i \in([n]-[k]) \text { and } j=k+1) ; \\ 0, & \text { otherwise, }\end{cases}
$$

Since A is nonnegative and irreducible, by Perron-Frobenius theorem, there exists a positive vector $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T}$ such that $\rho(A) u=A u$, then $(\rho(A)+1) u=(A+I) u$. By the computation of $(\rho(A)+1) u=(A+I) u$, we have

$$
\begin{equation*}
\frac{u_{k+1}+\cdots+u_{n}}{n-k} \leq \frac{u_{k+1}+\cdots+u_{k+\left(d_{i}-k+1\right)}}{d_{i}-k+1}, \tag{13}
\end{equation*}
$$

where d_{i} is the out-degree of vertex i. Let $u^{\prime}=\left(u_{1}, u_{2}, \ldots, u_{k}, \frac{u_{k+1}+\cdots+u_{n}}{n-k}\right)^{T}$, multiplying u^{\prime} to the right of both terms in (12):

$$
\begin{equation*}
\Pi(A) u^{\prime}=\left(S^{T} S\right)^{-1} S^{T} A S u^{\prime} . \tag{14}
\end{equation*}
$$

By (13), $A S u^{\prime} \leq A u$ and then (14) will be

$$
\begin{equation*}
\Pi(A) u^{\prime}=\left(S^{T} S\right)^{-1} S^{T} A S u^{\prime} \leq\left(S^{T} S\right)^{-1} S^{T} A u=\rho(A)\left(S^{T} S\right)^{-1} S^{T} u \tag{15}
\end{equation*}
$$

Since $\Pi(A)$ is nonnegative and irreducible, by Perron-Frobenius theorem again, there exists a positive vector $y^{T}=\left(y_{1}, y_{2}, \ldots, y_{k+1}\right)$ such that $\rho(\Pi(A)) y^{T}=y^{T} \Pi(A)$. Multiplying y^{T} to the left of all terms in (15), then

$$
\begin{equation*}
\rho(\Pi(A)) y^{T} u^{\prime}=y^{T} \Pi(A) u^{\prime} \leq y^{T}\left(S^{T} S\right)^{-1} S^{T} A u=\rho(A) y^{T}\left(S^{T} S\right)^{-1} S^{T} u \tag{16}
\end{equation*}
$$

Note that $y^{T} u^{\prime}=y^{T}\left(S^{T} S\right)^{-1} S^{T} u$ and it is positive. Deleting this term in both sides of (16) leads to $\rho(\Pi(A)) \leq \rho(A)$ and the proof is completed.

Corollary 7.3. Let A be the adjacency matrix of D, where $D \in \mathscr{D}^{* *}(e)$. Let $\Pi=$ $\{\{1\},\{2\}, \ldots,\{k\},\{k+1, \ldots, n\}\}$ and $\Pi^{\prime}=\{\{1,2, \ldots, k\},\{k+1\}\}$ be partitions of $[n]$ and $[k+1]$, respectively, where k is the clique number of D. Then $\rho\left(\Pi^{\prime}\left(\Pi(A)^{T}\right)\right) \leq \rho(A)$, where $\Pi^{\prime}\left(\Pi(A)^{T}\right)$ is the quotient matrix of $\Pi(A)^{T}$ with respect to Π^{\prime}.

Proof. Since $\Pi^{\prime}\left(\Pi(A)^{T}\right)$ is the quotient matrix of $\Pi(A)^{T}$ with respect to $\Pi^{\prime}, \Pi^{\prime}\left(\Pi(A)^{T}\right)$ is a 2×2 matrix and

$$
\begin{equation*}
\Pi^{\prime}\left(\Pi(A)^{T}\right)=\left(S^{T} S\right)^{-1} S^{T} \Pi(A)^{T} S \tag{17}
\end{equation*}
$$

where $S=\left(s_{i j}\right)$ is a $(k+1) \times 2$ matrix with

$$
s_{i j}= \begin{cases}1, & \text { if }(i, j) \in[k] \times\{1\} \text { or }(i=k+1 \text { and } j=2) \\ 0, & \text { otherwise },\end{cases}
$$

Since $\Pi(A)^{T}$ is nonnegative and irreducible, by Perron-Frobenius theorem, there exist a positive vector $u=\left(u_{1}, u_{2}, \ldots, u_{k+1}\right)^{T}$ such that $\Pi(A)^{T} u=\rho\left(\Pi(A)^{T}\right) u$. Let $u^{\prime}=$ $\left(\frac{\sum_{i=1}^{k} u_{i}}{k}, u_{k+1}\right)^{T}$. It is easy to see that $\Pi(A)^{T} S u^{\prime} \leq \Pi(A)^{T} u$. Multiplying u^{\prime} to the right of both terms in (17), we have

$$
\begin{equation*}
\Pi^{\prime}\left(\Pi(A)^{T}\right) u^{\prime}=\left(S^{T} S\right)^{-1} S^{T} \Pi(A)^{T} S u^{\prime} \leq\left(S^{T} S\right)^{-1} S^{T} \Pi(A)^{T} u=\rho\left(\Pi(A)^{T}\right)\left(S^{T} S\right)^{-1} S^{T} u \tag{18}
\end{equation*}
$$

Since $\Pi^{\prime}\left(\Pi(A)^{T}\right)$ is nonnegative and irreducible, by Perron-Frobenius theorem again, there exist a positive y^{T} such that $\rho\left(\Pi^{\prime}\left(\Pi(A)^{T}\right)\right) y^{T}=y^{T} \Pi^{\prime}\left(\Pi(A)^{T}\right)$. Multiplying y^{T} to the left of all terms in (18), then

$$
\begin{equation*}
\rho\left(\Pi^{\prime}\left(\Pi(A)^{T}\right)\right) y^{T} u^{\prime}=y^{T} \Pi^{\prime}\left(\Pi(A)^{T}\right) u^{\prime} \leq \rho\left(\Pi(A)^{T}\right) y^{T}\left(S^{T} S\right)^{-1} S^{T} u \tag{19}
\end{equation*}
$$

Note that $y^{T} u^{\prime}=y^{T}\left(S^{T} S\right)^{-1} S^{T} u$ and it is positive. Deleting this term in both sides of (18) leads to $\rho\left(\Pi^{\prime}\left(\Pi(A)^{T}\right)\right) \leq \rho\left(\Pi(A)^{T}\right)$, then by Theorem 7.2 , we have

$$
\rho\left(\Pi^{\prime}\left(\Pi(A)^{T}\right)\right) \leq \rho\left(\Pi(A)^{T}\right)=\rho(\Pi(A)) \leq \rho(A)
$$

and finish the proof is completed.
Remark 7.4. The matrix $\Pi^{\prime}\left(\Pi(A)^{T}\right)$ in Corollary 7.3 is

$$
\left(\begin{array}{cc}
k-1 & \sum_{i=k+1}^{n} d_{i} \\
(n-k) k \\
\sum_{i=1}^{k}\left(d_{i}-k+1\right) & 0
\end{array}\right),
$$

which has the characteristic polynomial

$$
f(\lambda)=\lambda^{2}-(k-1) \lambda-\frac{a_{1} a_{2}}{(n-k) k},
$$

where

$$
a_{1}=\sum_{i=1}^{k}\left(d_{i}-k+1\right), \quad a_{2}=\sum_{i=k+1}^{n} d_{i} .
$$

Corollary 7.5. Let $D \in \mathscr{D}^{* *}$ be a digraph with n vertices and $k(D)=k$, then

$$
\rho(D) \geq \frac{k-1+\sqrt{(k-1)^{2}+4 \frac{a_{1} a_{2}}{(n-k) k}}}{2}
$$

where $a_{1}=\sum_{i=1}^{k}\left(d_{i}-k+1\right), a_{2}=\sum_{i=k+1}^{n} d_{i}$.
Proof. This is proved immediately by Corollary 7.3 and Remark 7.4.

8 Conclusion

In this thesis, we give some upper bounds for the digraphs with $e \operatorname{arcs}$, where $e \in \mathbb{N}$, and compare these bounds to prove that the maximum spectral radius of a simple digraph D with e arcs and without isolated vertices occurs when $D \in\left\{D^{*}, D^{* t}\right\}$ for $e=s(s-1)+t$, $2 s-7 \leq t \leq 2 s-3$ and $t \neq 0,1$. But for $\sqrt[4]{\frac{s-4}{4}} \leq t \leq 2 s-8$, it remains open. In the last section, we also give a lower bound of the spectral radius of a digraph through the concept of quotient matrix.

In our research, we obtain a weaker restriction of e_{1} in Lemma 5.1 and Lemma 5.3, and get larger upper bounds to solve the problem, so there are a few cases for t can be solved.

If we narrow down the range of e_{1}, we believe that the conjecture can be solved by using Lemma 5.1 and Lemma 5.4 only, but the problem of the increasing of $\phi\left(k, k-1, e_{1}, 0\right)$ should be considered carefully.

References

[1] A.-E. Brouwer, W.-H. Haemers, Spectra of Graphs. Springer, 2012
[2] R.-A. Brualdi, A.-J. Hoffman, On the spectral radius of (0, 1)-matrices. Linear Algebra Appl., 65 (1985) pp.133-146.
[3] Y.-J. Cheng, C.-W. Weng, A matrix realization of spectral bounds of the spectral radius of a nonnegative matrix. arXiv:1711.03274, preprint
[4] S. Friedland, The maximal eigenvalue of 0-1 matrices with prescribed number of ones, Linear Algebra Appl., 69 (1985) 33-69.
[5] Y.-L. Jin, X.-D. Zhang, On the spectral radius of simple digraphs with prescribed number of arcs. Discrete Math., 338 (2015), pp.1555-1564
[6] P. Rowlinson, On the maximal index of graphs with a prescribed number of edges, Linear Algebra Appl., 110 (1988) 43-53.

