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簡單有向圖的布勞帝-賀夫曼推測

研究生: 温佳宜 指導教授: 翁志文 教授

國立交通大學

應用數學系

摘要

在一有向圖中，若有向邊 ba 不屬於此圖之邊集合，則我們稱有向邊 ab 為單

向。令 e 為一正整數，則存在唯一的正整數 s 及整數 t，使得 e = s(s − 1) + t 且

0 ≤ t ≤ 2s − 1。本篇論文中，我們證明了當 e 滿足 2s − 7 ≤ t ≤ 2s − 3 時且 t 不

等於 0,1，在所有邊數為 e 的簡單有向圖中，擁有最大譜半徑的圖排除孤立點後即

為 D。此圖 D 是由 s 個點的有向完全圖加上一個新的頂點 x 和新的 t 條邊，使頂

點 x 與此完全圖中的
⌊
t
2

⌋
個頂點相連且至多一個邊為單向所形成。

關鍵字: 譜半徑, 鄰接矩陣

i



Simple digraph analogue of Brualdi-Hoffman-conjecture

Student: Chia-Yi Wen Advisor: Chih-Wen Weng

Department of Applied Mathematics

National Chiao Tung University

abstract

An arc ab is single-direction if ba is not an arc in a digraph. Let e be a positive

integer. Then there is a unique pair (s, t) of integers such that e = s(s − 1) + t,

where s is positive and 0 ≤ t ≤ 2s−1. For 2s−7 ≤ t ≤ 2s−3 and t ̸= 0, 1, we prove

that the maximum spectral radius of a simple digraph D with e arcs and without

isolated vertices is when D is obtained from complete digraph ←→Ks by adding a new

vertex x and t arcs, connecting x and
⌊
t
2

⌋
vertices in←→Ks with at most one arc being

single-direction.

Keywords: spectral radius, adjacency matrix
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1 Introduction

The digraphs in this thesis are simple without loops and without isolated vertices.

Given a digraph D, the spectral radius of D is the spectral radius of its adjacency matrix,

denoted by ρ(D). Let e be a positive integer and let D(e) be the set of all simple digraphs

with e arcs. The function ρ(e) is defined to be the largest spectral radius of a digraph in

D(e), that is

ρ(e) = max{ρ(D) | D ∈ D(e)}. (1)

It is immediate from the above definitions that ρ(0) = 0, ρ(1) = 0, ρ(2) = 1 and

ρ(3) = 1. Moreover, there are three non-isomorphic diagraphs with 3 arcs and spectral

radius 1: (1) Adding a new vertex to a clique of order 2 and a single-direction arc from a

vertex in the clique to the new vertex; (2) Adding a new vertex to a clique of order 2 and

a single-direction arc from the new vertex to a vertex in the clique; (3) A directed cycle

of order 3. Indeed their adjacency matrices (after suitable reordering of the vertices) are
0 1 1

1 0 0

0 0 0

 ,


0 1 0

1 0 0

1 0 0

 ,


0 1 0

0 0 1

1 0 0

 .

Brualdi-Hoffman conjectured that the maximum spectral radius of a simple undirected

graph with e edges is attained by adding a new vertex if necessary which is adjacent to the

corresponding number of vertices of a complete graph and possibly adding some isolated

vertices [2]. This conjecture was proved by Rowlinson in [6]. The following is the simple

digraphs analogue of Brualdi-Hoffman-conjecture.

Conjecture 1.1. For integer e ̸= 3, the maximum spectral radius of a simple digraph D

with e arcs is when D is obtained from a clique by adding a new vertex if necessary and

the corresponding number of arcs between the new vertex and some vertices in the clique

with at most one arc being single-direction.
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For a positive integer e, there is a unique pair (s, t) such that e = s(s− 1) + t, where

s is positive and 0 ≤ t ≤ 2s− 1. In 2015, Jin and Zhang [5] proved Conjecture 1.1 for the

cases t = 0, 1, 2s − 2, 2s − 1 and s > 4t4 + 4. In this paper, we prove Conjecture 1.1 for

2s− 7 ≤ t ≤ 2s− 3 and t ̸= 0, 1. Hence Conjecture 1.1 is solved for e ≤ 21 and remains

open for 4

√
s−4
4
≤ t ≤ 2s− 8.

This thesis is organized as follows. In Section 2, we introduce notations used in this

thesis and recall some basic concepts. In Section 3, we give a theorem that will be

used in following sections. Section 4 gives some upper bounds of the spectral radius of

the digraphs which we are concerned and we investigate properties of these bounds in

Section 5. Section 6 talks about how we find ρ(e) and characterize the extremal digraphs.

To complementize, we also give a lower bound of the spectral radius of a digraph in

Section 7.

2 Notation and Preliminaries

Let [n] = {1, 2, . . . , n}. Let D be a digraph with the vertex set V (D) = [n] and the

arc set E(D) = {ij | i ̸= j and i, j ∈ V (D)}. The dual graph Dt of D is the digraph

with the vertex set V (D) and arc set E(Dt) = {ji | ij ∈ E(D)}. The adjacency matrix

A(D) = (aij) of D is defined by

aij =

 1, if ij ∈ E(D);

0, otherwise.

The spectral radius of a square matrix A is defined by

ρ(A) = max{|λ| | λ is an eigenvalue of A}.

Recall that the spectral radius of a digraph D is the spectral radius of its adjacency

matrix A(D), denoted by ρ(D). Note that the spectral radius ρ(D) is independent of the

ordering of the vertex set of D, and ρ(Dt) = ρ(D). For a vertex i ∈ V (D), the out-degree

2



di of i is defined to be the size of the set {j | ij ∈ E(D)}. A clique of order k in D is a

subgraph that contains k(k − 1) arcs.

2.1 The set D∗∗(e)

Let D∗∗(e) denote the set of all simple strongly connected digraphs with e arcs whose

vertex set [n] can be arranged such that

(i) If ij ∈ E(D) then iℓ ∈ E(D) for ℓ ≤ j and ℓ ̸= i; and

(ii) N+(i) \ {j} ⊇ N+(j) \ {i} for 1 ≤ i < j ≤ n, where N+(i) = {k | ik ∈ E(D)}.

As before let e = s(s− 1) + t and 0 ≤ t ≤ 2s− 1. Jin and Zhang [5, Proposition 2.5]

showed that if t ̸= 1 and ρ(D) = ρ(e), then D ∈ D∗∗(e). Let D ∈ D∗∗(e) and the vertex

set V (D) = [n] be arranged to satisfy (i)-(ii) above. Since D is strongly connected, the

out-degrees of 1 and n satisfy d1 = n− 1 and dn ≥ 1. Let k be the maximum integer such

that the subgraph of D induced on [k] is a clique. Then di ≥ k − 1 for i ≤ k. Moreover,

either k = n or at least one of D and Dt whose vertex k+ 1 has out-degree dk+1 ≤ k− 1.

The spectral radius ρ(D) of the diagraph D satisfying di ≥ k − 1 for i ≤ k and

E(D) ∩ ([n]− [k])× ([n]− [ℓ]) = ∅, (2)

where ℓ ≤ k will be studied in Theorem 3.4.

3 The upper bound ϕ(k, ℓ, e1, e2)

For integers 1 ≤ ℓ ≤ k < n and nonnegative integers d′i with i ∈ [k], the spectral

radius of the following n× n matrix C = (Cij)n×n

Cij =


0, if i = j or (i, j) ∈ ([n]− [k])× ([n]− [ℓ]);

d′i − (n− 1− k), if 1 ≤ i ≤ k, j = n;

1, otherwise.

(3)

will serve as an upper bound of spectral radius in the main theorem of this section.
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Remark 3.1. If ℓ < k then the matrix C in (3) has eigenvalue −1 with multiplicity

k − 2, eigenvalue 0 with multiplicity n − k − 1 and the remaining three eigenvalues are

the eigenvalues of the following matrix
ℓ− 1 k − ℓ 1

ℓ k − ℓ− 1 0
ℓ∑

i=1

d′i
k∑

i=ℓ+1

d′i 0

 , (4)

whose characteristic polynomial is

f(λ) = λ3 − (k − 2)λ2 − (e1 + k − 1)λ− ℓe2 + e1(k − ℓ− 1), (5)

where

e1 =
ℓ∑

i=1

d′i, e2 =
k∑

i=ℓ+1

d′i. (6)

For the case ℓ = k, the matrix C in (3) has eigenvalue−1 with multiplicity k−1, eigenvalue

0 with multiplicity n− k − 1zp and the remaining two eigenvalues are the eigenvalues of

the following matrix k − 1 1
k∑

i=1

d′i 0

 , (7)

whose characteristic polynomial is

f(λ) = λ2 − (k − 1)λ− e1. (8)

Since the matrices in (4) and (7) are nonnegative with an eigenvalue at least k − 1, ρ(C)

is still the largest real eigenvalue of C and ρ(C) = ρ(C + I) − 1, despite that C is not

necessarily nonnegative in general, where I is the n× n identity matrix.

Definition 3.2. Let ϕ(k, ℓ, e1, e2) denote the spectral radius of the matrix C in (3), where

1 ≤ ℓ ≤ k and e1, e2 ≥ 0 are defined in (6).

Hence ϕ(k, ℓ, e1, e2) is the maximum real root of the cubic polynomial in (5) if ℓ < k,

and ϕ(k, k, e1, 0) is the maximum real root of the quadratic polynomial in (8).
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Definition 3.3. For real matrices M = (Mij) and M ′ = (M ′
ij), we write M ≤ M ′ if

Mij ≤M ′
ij for all i, j.

Theorem 3.4. Let D be a strongly connected digraph of order n such that there exists

1 ≤ ℓ ≤ k < n with E(D) ∩ ([n]− [k])× ([n]− [ℓ]) = ∅. Let A = A(D) and C = (Cij) be

as in (3) with

d′i := |{j ∈ [n]− [k] | ij ∈ E(D)}| (i ∈ [k])

Then ρ(A) ≤ ρ(C) = ϕ(k, ℓ, e1, e2). Moreover, ρ(A) = ρ(C) if and only if Ats = Cts for

1 ≤ t ≤ n and 1 ≤ s ≤ k.

Proof. Let Q = (Qij) be the n× n matrix with

Qij =

 1, if i = j ∈ [n] or (i, j) ∈ ([n− 1]− [k])× {n};

0, otherwise.

Then the inverse of Q has entries

Q−1
ij =


1, if i = j ∈ [n];

−1, if (i, j) ∈ ([n− 1]− [k])× {n};

0, otherwise.

Note that AQ (resp. CQ) has the same columns as A (resp. C) except that the last

column of AQ (resp. CQ) is (d′1, d
′
2, . . . , d

′
k, 0, . . . , 0)

T , which is the sum of the last n− k

columns of A (resp. C). Hence

AQ ≤ CQ. (9)

Note that Q−1(C + I)Q has the same first k rows and the same last row as (C + I)Q

has. The remaining n− 1− k rows of Q−1(C + I)Q are obtained by subtracting the last

row from the corresponding row of (C + I)Q. Hence Q−1(C + I)Q is nonnegative. Then

there exists a nonnegative and nonzero column vector u = (u1, u2, . . . , un)
T such that

Q−1(C + I)Qu = ρ(C + I)u, which implies CQu = (ρ(C + I) − 1)Qu = ρ(C)u. By (9)

and since u is nonnegative,

AQu ≤ CQu = ρ(C)Qu. (10)
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Since A is irreducible, there exists a positive row vector vT ̸= 0 such that vTA = ρ(A)vT .

Multiplying vT to the left of all terms in (10), we have

ρ(A)vTQu = vTAQu ≤ vTCQu = ρ(C)vTQu. (11)

Since Qu is nonnegative and vT is positive, the term vTQu is a positive. Delete vTQu in

both sides of (11) to obtain ρ(A) ≤ ρ(C) and finish the proof of the first part.

Suppose ρ(A) = ρ(C). Then vTAQu = vTCQu in (11). Since vT is positive, AQu =

CQu. Solving u from Q−1(C + I)Qu = ρ(C + I)u, we find ui = 0 for i ∈ [n − 1] − [k]

directly and uj > 0 for j ∈ [k] ∪ {n} since d′1 > 0. Hence Ats = (AQ)ts = (CQ)ts = Cts

for (t, s) ∈ [n]× [k].

Conversely, if Ats = Cts for for (t, s) ∈ [n]× [k], then AQu = CQu, and inequality in

(11) is equality, which implies ρ(A) = ρ(C) as in the first part.

4 A partition of D∗∗(e)

Let e = s(s − 1) + t and 0 ≤ t ≤ 2s − 1. We want to determine ρ(e). By Jin and

Zhang’s result [5], for the case t ̸= 1, it suffices to consider the digraphs in the set D∗∗(e).

For D ∈ D∗∗(e), let k = k(D) denote the largest integer c such that the subgraph of D

induced on [c] is a clique. Recall that di = di(D) is the out-degree of node i in D. Note

that k = k(D) = k(Dt), and either dk+1 ≤ dk or dk+1 = dk + 1 = k from the definition of

k. Let dti := di(D
t), and we will use the notation

er =
n∑

i=k+1

dti and ed =
n∑

i=k+1

di,

6



where n is the number of vertices of D. We assume t ̸= 0, 1 and partition D∗∗(e) into six

families:

D1 = {D ∈ D∗∗(e) | dk+1 ≤ dk ≤ k − 1, er < k − 1 and ed < k − 1};

D2 = {D ∈ D∗∗(e) | dk+1 ≤ dk ≤ k − 1, and er ≥ k − 1 or ed ≥ k − 1};

D3 = {D ∈ D∗∗(e) | dk+1 = dk + 1 = k, and ed ≤ er};

D4 = {D ∈ D∗∗(e) | dk+1 = dk + 1 = k, and ed > er};

D5 = {D ∈ D∗∗(e) | dtk+1 = dtk + 1 = k, and er ≤ ed};

D6 = {D ∈ D∗∗(e) | dtk+1 = dtk + 1 = k, and er > ed}.

The adjacency matrix of D ∈ Di for i ∈ [6] will be:

A(D) =



0 1 · · · 1

1 0 1

... . . . ...

1 1 · · · 0

A12

A21

0 0 · · · 0

0 0 · · · 0

... ... . . . ...

0 0 · · · 0



,

where there are er and ed 1’s in A12 and A21, respectively.

Note that the condition dk+1 ≤ dk ≤ k − 1 is equivalent to ak,k+1 = ak+1,k = 0,

where ap,q is the entry of the adjacency matrix of D. Hence for i ∈ [2], D ∈ Di implies

Dt ∈ Di. The condition dk+1 = dk + 1 = k and ed ≤ er (resp. ed > er) is equivalent to

dtk+1 = dtk + 1 = k and er ≤ ed (resp. er > ed). Hence for i ∈ {3, 4}, D ∈ Di if and only

if Dt ∈ Di+2. For each family Di and D ∈ Di, we apply Theorem 3.4 to get a suitable

matrix C (in (3)) with ρ(D) ≤ ρ(C).

Lemma 4.1. (i) Assume D ∈ D1. Then k = s. Moreover, if V (D) = [s + 1], then

7



ρ(D) = ϕ(s, ℓ, e1, 0), where

ℓ = max(ed, er), e1 = min(ed, er).

(ii) Assume D ∈ D2. Then ρ(D) ≤ ϕ(k, k − 1, e1, 0), where

e1 = min(ed, er).

Moreover, if dj = k−1 and e1 = er (or dtj = k−1 and e1 = ed) for any j ∈ [n]− [k],

then ρ(D) = ϕ(k, k − 1, e1, 0).

(iii) Assume D ∈ D3 (resp. D ∈ D5). Then ρ(D) ≤ ϕ(k, k − 1, e1, e2), where

e2 = dtk − k + 1, e1 = −e2 + ed (resp. e2 = dk − k + 1, e1 = −e2 + er).

(iv) Assume D ∈ D4 (resp. D ∈ D6). Then ρ(D) ≤ ϕ(k, k, e1, 0), where

e1 = er (resp. e1 = ed).

Moreover, if dj = k and e1 = er (or dtj = k and e1 = ed) for any j ∈ [n]− [k], then

ρ(D) = ϕ(k, k, e1, 0).

Proof. We will use the property ρ(D) = ρ(Dt) and apply Theorem 3.4 to the diagram D

if er ≤ ed, and to the diagraph Dt otherwise. We define the matrix C in (3) by setting

k = k(D) = k(Dt) and ℓ in case (i) as claimed, ℓ = k − 1 in cases (ii)-(iii), and ℓ = k in

case (iv). The last parameter d′i is either di − k + 1 or dti − k + 1 according to which D

or Dt is applied. The lemma follows from Theorem 3.4 by the above setting.

5 The shape of ϕ(k, ℓ, e1, e2)

Let e = s(s− 1)+ t be a positive integer, where 0 ≤ t ≤ 2s− 1 and s ≥ 1. We want to

determine the maximum value of ϕ(k, ℓ, e1, e2) subject to k(k − 1) + ℓ + e1 + e2 ≤ e and

e1+e2 ≤
⌊
e−k(k−1)

2

⌋
. Hopefully this value is ρ(e) and is when k = s, e2 = 0 and e1+ℓ = t.

In this section we will investigate some properties of ϕ for each Di, where i ∈ [6].
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Lemma 5.1. Assume t ≥ s− 1. Then

max
{
ϕ(k, k − 1, e1, 0) | k ∈ [s], 0 ≤ e1 ≤

⌊
e− k(k − 1)

2

⌋}
= ϕ

(
s, s− 1,

⌊
t

2

⌋
, 0

)
.

Proof. From Definition 3.2, ϕ(k, k− 1, e1, 0) is the maximum root of the function f(λ) =

λ3 − (k − 2)λ2 − (e1 + k − 1)λ, which appears in (5) with ℓ = k − 1 and e2 = 0. By

the assumption, e1 ≤
⌊
e−k(k−1)

2

⌋
, and with equality and when k = s, we have e1 =

⌊
t
2

⌋
.

Hence,

ϕ(k, k − 1, e1, 0) =
(k − 2) +

√
(k − 2)2 + 4(e1 + k − 1)

2

=
(k − 2) +

√
k2 + 4e1

2

≤
(k − 2) +

√
k2 + 4

⌊
e−k(k−1)

2

⌋
2

≤
(s− 2) +

√
s2 + 4

⌊
t
2

⌋
2

=ϕ

(
s, s− 1,

⌊
t

2

⌋
, 0

)
,

where the second inequality follows from the increasing of its previous term as a function

of k when k ≤ 1 +
√
e+ 1

2
and k = s is in this range.

Lemma 5.2. Suppose k ≤ s− 1 ≤ t, e1 + e2 ≤ e−k(k−1)
2

and e2 ≥ 1. Then

ϕ(k, k − 1, e1, e2) < ϕ

(
k, k − 1,

⌊
e− k(k − 1)

2

⌋
, 0

)
.

Moreover,

max{ϕ(k, k − 1, e1, e2)} < ϕ

(
s, s− 1,

⌊
t

2

⌋
, 0

)
.

Proof. Let

f(λ) :=λ3 − (k − 2)λ2 −
(⌊

e− k(k − 1)

2

⌋
+ k − 1

)
λ;

g(λ) :=λ3 − (k − 2)λ2 − (e1 + k − 1)λ− (k − 1)e2,

9



where

k ≥ 1, e1 + e2 =

⌊
e− k(k − 1)

2

⌋
and e2 ≥ 1.

Consider the following function

f(λ)− g(λ) =

(
e1 −

⌊
e− k(k − 1)

2

⌋)
λ+ (k − 1)e2 = e2(k − 1− λ),

which has a root α := k − 1. And f(λ) has the maximum real root:

β :=

(k − 2) +

√
(k − 2)2 + 4

(⌊
e−k(k−1)

2

⌋
+ k − 1

)
2

=

(k − 2) +

√
k2 + 4

⌊
e−k(k−1)

2

⌋
2

>
(k − 2) + k

2
= k − 1 = α,

so −g(β) = f(β)− g(β) < 0 and g(β) > 0.

Since f(λ)− g(λ) is linear and g(β) > 0, the maximum real root of f(λ) is larger than

g(λ). On the other hand, the maximum real root of a cubic equation is increasing when

the linear term and the constant term decrease, so ϕ(k, k− 1, e1, e2) for e1+ e2 ≤ e−k(k−1)
2

and e2 ≥ 1 has the maximum when e1+ e2 =
⌊
e−k(k−1)

2

⌋
. Recall that ϕ(k, k− 1, e1, e2) for

e1+e2 =
⌊
e−k(k−1)

2

⌋
is the maximum real root of g(λ) = 0, and ϕ

(
k, k − 1,

⌊
e−k(k−1)

2

⌋
, 0
)

is the maximum real root of f(λ) = 0, we complete the proof of the first part. The second

part immediately follows from the result of first part and Lemma 5.1

Lemma 5.3. Suppose t ≥ s. Then

max
{
ϕ(k, k, e1, 0) | k ∈ [s], 0 ≤ e1 ≤

⌊
e− k(k − 1)

2

⌋}
= ϕ

(
s, s,

⌊
t

2

⌋
, 0

)
.

Proof. From Definition 3.2, ϕ(k, k, e1, 0) is the maximum real root of the function f(λ) =

λ2 − (k − 1)λ − e1, which appears in (8). By the assumption, e1 ≤
⌊
e−k(k−1)

2

⌋
, and with

10



equality and when k = s− 1, we have e1 =
⌊
t+2s−2

2

⌋
. Hence

ϕ(k, k, e1, 0) =
(k − 1) +

√
(k − 1)2 + 4e1
2

≤
(k − 1) +

√
(k − 1)2 + 4

⌊
e−k(k−1)

2

⌋
2

≤
(s− 2) +

√
(s− 2)2 + 4

⌊
e−(s−1)(s−2)

2

⌋
2

=
(s− 2) +

√
(s− 2)2 + 4

⌊
t+2s−2

2

⌋
2

=ϕ

(
s− 1, s− 1,

⌊
t+ 2s− 2

2

⌋
, 0

)
,

where the second inequality follows from the increasing of its previous term as a function

of k when k ≤
√

e+ 1
2

and k = s− 1 is in this range.

On the other hand, for k = s− 1 and k = s, define

α :=ϕ

(
s− 1, s− 1,

⌊
t+ 2s− 2

2

⌋
, 0

)
=

(s− 2) +
√

(s− 2)2 + 4
⌊
t+2s−2

2

⌋
2

;

β :=ϕ

(
s, s,

⌊
t

2

⌋
, 0

)
=

(s− 1) +
√
(s− 1)2 + 4

⌊
t
2

⌋
2

.

Since

2(β − α)(β + α− s+ 2) =

√
(s− 1)2 + 4

⌊
t

2

⌋
− s+ 1 > 0

and

β + α =
(s− 1) +

√
(s− 1)2 + 4

⌊
t
2

⌋
2

+
(s− 2) +

√
s2 + 4

⌊
t
2

⌋
2

> s− 2,

so β > α and hence ϕ(k, k, e1, 0) reaches the maximum when k = s and e1 =
⌊
t
2

⌋
Lemma 5.4. We have

max {ϕ(s, ℓ, e1, 0) | 1 ≤ e1 ≤ ℓ ≤ s, ℓ+ e1 = t} = ϕ

(
s,

⌈
t

2

⌉
,

⌊
t

2

⌋
, 0

)
.

Proof. For ℓ ≤ s − 1, recall that ϕ(s, ℓ, e1, 0) is the maximum real root of the following

function

λ3 − (s− 2)λ2 − (e1 + s− 1)λ+ e1(s− ℓ− 1),

11



and the maximum real root of a cubic polynomial with positive leading coefficient is

increasing when the constant term decreases. Consider the constant term of this equation,

e1(s− ℓ− 1) = (e− s(s− 1)− ℓ)(s− ℓ− 1)

= ℓ2 + ((s− 1)2 − e)ℓ+ (s− 1)t,

which is a quadratic polynomial of ℓ and has the minimum value when ℓ = e−(s−1)2

2
, so

we can narrow down the range of ℓ to ℓ ∈ [ e−s(s−1)
2

, e−(s−1)2

2
].

Let (e1, ℓ1) and (e2, ℓ2) be two pairs which satisfy the condition of e1 and ℓ above

and assume e1 > e2 (and hence 1 ≤ e2 < e1 ≤ ℓ1 < ℓ2 ≤ s − 1). Then we have two

polynomials:

f(λ) = λ3 − (s− 2)λ2 − (e1 + s− 1)λ+ e1(s− ℓ1 − 1),

g(λ) = λ3 − (s− 2)λ2 − (e2 + s− 1)λ+ e2(s− ℓ2 − 1),

and

f(λ)− g(λ) = (e2 − e1)λ+ (e1 − e2)(s− 1) + e2ℓ2 − e1ℓ1.

Let λ0 be the root of f(λ)− g(λ), then

λ0 =
(e1 − e2)(s− 1) + e2ℓ2 − e1ℓ1

(e1 − e2)

=
(e1 − e2)(s− 1) + (e1 − e2)(e1 − ℓ2)

(e1 − e2)

= s− 1 + e1 − ℓ2 > 0.

and then

f(λ0) = λ3
0 − (s− 2)λ2

0 − (e1 + s− 1)λ0 + e1(s− ℓ1 − 1)

= λ0
2(e1 − ℓ2) + λ0(e1 − ℓ2)− e1(e1 − ℓ2 + ℓ1)

= λ0
2(e1 − ℓ2) + λ0(e1 − ℓ2)− e1e2 < 0.

Since f(λ0) < 0, the maximum real root α of f(λ) is larger than λ0. Then f(α)−g(α) < 0

and g(α) > 0, hence the maximum real root of g(λ) is less than f(λ). And we have

ϕ(s, ℓ, e1, 0) ≤ ϕ

(
s,

⌈
t

2

⌉
,

⌊
t

2

⌋
, 0

)
12



for ℓ ≤ s− 1.

Moreover, if t ≥ s, then ϕ(s, s, t − s, 0) ≤ ϕ(s, ℓ, e1, 0) and the equality holds when

t = 2s − 1, ℓ = s =
⌈
t
2

⌉
and e1 = s − 1 =

⌊
t
2

⌋
. So we conclude that for 1 ≤ e1 ≤ ℓ ≤ s

and e1 + ℓ = t, ϕ(s, ℓ, e1, 0) has the maximum when e1 =
⌊
t
2

⌋
and ℓ =

⌈
t
2

⌉
.

Lemma 5.5. Let e = s(s− 1) + t, 2s− 7 ≤ t ≤ 2s− 4. Then

(i) ϕ(k, k − 1, e1, 0) ≤ ϕ(s,
⌈
t
2

⌉
,
⌊
t
2

⌋
, 0) for 1 ≤ k ≤ s− 1 and e1 ≤

⌊
e−k(k−1)

2

⌋
;

(ii) ϕ(k, k, e1, 0) ≤ ϕ(s,
⌈
t
2

⌉
,
⌊
t
2

⌋
, 0) for 1 ≤ k ≤ s− 2 and e1 ≤

⌊
e−k(k−1)

2

⌋
.

Proof. Let β := ϕ
(
s− 1, s− 2,

⌊
e−(s−1)(s−2)

2

⌋
, 0
)

, which is the maximum real root of

f(λ) = λ3 − (s− 3)λ2 −
(⌊

t

2

⌋
+ 2s− 3

)
λ.

Then

β =
s− 3 +

√
(s− 3)2 + 4(

⌊
t
2

⌋
+ 2s− 3)

2
.

Note that ϕ(s,
⌈
t
2

⌉
,
⌊
t
2

⌋
, 0) is the maximum real root of

g(λ) = λ3 − (s− 2)λ2 − (

⌊
t

2

⌋
+ s− 1)λ+

⌊
t

2

⌋
(s−

⌈
t

2

⌉
− 1).

Consider the following equation:

f(λ)− g(λ) = λ2 − (s− 2)λ−
⌊
t

2

⌋
(s−

⌈
t

2

⌉
− 1)

which has the maximum real root

α :=
s− 2 +

√
(s− 2)2 + 4(

⌊
t
2

⌋
(s−

⌈
t
2

⌉
− 1))

2
.

Since 2s− 7 ≤ t ≤ 2s− 4, then

4(β + α− (s− 3))(β − α)

= (2β − (s− 3))2 − (2α− (s− 3))2

= 6s− 8− 4

⌊
t

2

⌋(
s−

⌈
t

2

⌉
− 2

)
− 2

√
(s− 2)2 + 4

(⌊
t

2

⌋(
s−

⌈
t

2

⌉
− 1

))
> 0.

13



Note that β+α > (s−3) and (β+α−(s−3))(β−α) > 0, so β > α. Since f(λ)−g(λ) > 0

for λ > α, we have

−g(β) = f(β)− g(β) > 0,

hence g(β) < 0 and the maximum real root of g(λ) is larger than which of f(λ). On the

other hand,

ϕ

(
s− 1, s− 2,

⌊
e− (s− 1)(s− 2)

2

⌋
, 0

)
= ϕ

(
s− 2, s− 2,

⌊
e− (s− 2)(s− 3)

2

⌋
, 0

)
.

Then by Lemma 5.1 and 5.3,

max
{
ϕ(k, k − 1, e1, 0) | 1 ≤ k ≤ s− 1, e1 ≤

⌊
e− k(k − 1)

2

⌋}
≤ ϕ

(
s,

⌈
t

2

⌉
,

⌊
t

2

⌋
, 0

)
,

and

max
{
ϕ(k, k, e1, 0) | 1 ≤ k ≤ s− 2, e1 ≤

⌊
e− k(k − 1)

2

⌋}
≤ ϕ

(
s,

⌈
t

2

⌉
,

⌊
t

2

⌋
, 0

)
,

for 2s− 7 ≤ t ≤ 2s− 4.

6 ρ(D) for 2s− 7 ≤ t ≤ 2s− 3, t ̸= 0, 1

For D ∈ D∗∗(e), Lemma 4.1 showed that ϕ is an upper bound of ρ(D), and we have

investigated some properties for ϕ in Section 5: Lemma 5.1 and 5.3 showed that ϕ is

increasing as a function of k when D is in D2 and D4 ∪ D6, respectively; Lemma 5.2

showed that ϕ of D ∈ D3 ∪ D5 is less than which of D ∈ D2; Lemma 5.4 showed that

ϕ has the maximum when ℓ − e1 ≤ 1 for k(D) = s. Now we use these upper bounds to

prove Conjecture 1.1 for e = s(s− 1) + t, where 2s− 7 ≤ t ≤ 2s− 3, t ̸= 0, 1.

Fix e = s(s− 1) + t for 2 ≤ t ≤ 2s− 1, define D∗ to be the digraph which is obtained

from a clique of order s by adding a new vertex and t arcs from the new vertex to the

clique with at most one arc being single-direction which is pointing to the clique.

Lemma 6.1. Let e = s(s − 1) + t be a positive integer with 2 ≤ t ≤ 2s − 1. Then for

any digraph D in D∗∗(e) with k(D) = s , we have ρ(D) ≤ ρ(D∗) and equality holds if and

only if D ∈ {D∗, D∗t}.
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Proof. Let ℓ′ (resp. e′1) denote the number of arcs in D which are from {s+1} to [s] (resp.

from [s] to {s + 1}). And we might assume ℓ′ ≥ e′1 by considering Dt if necessary. Let ℓ

(resp. e1) denote the number of arcs from V (D)− [s] to [s] (resp. from [s] to V (D)− [s]).

Note that ℓ′ ≤ ℓ, e′1 ≤ e1 and ℓ+ e1 = t since k(D) = s. Then by Lemma 5.4,

ρ(D) ≤ ϕ(s, ℓ′, e1, 0) ≤ ϕ(s, ℓ, e1, 0) ≤ ρ(D∗).

Note that ℓ = ℓ′ if and only if D = D∗ since the diagraphs are strongly connected.

Theorem 6.2. Let e = s(s − 1) + t be a positive integer with t = 2s − 3 and t ̸= 1.

Then ρ(e) =
(s−2)+

√
(s+2)2−12

2
. Moreover, for D ∈ D(e), ρ(D) = ρ(e) if and only if

D ∈ {D∗, D∗t}.

Proof. Since e = s(s− 1)+ 2s− 3 and s ̸= 2, D1 = ∅. For a digraph in D2, the maximum

upper bound ϕ
(
s, s− 1,

⌊
e−s(s−1)

2

⌋
, 0
)

can be attained by D∗ since s− 1 =
⌈
t
2

⌉
. And by

Lemma 5.2, ρ(D) < ϕ
(
s, s− 1,

⌊
e−s(s−1)

2

⌋
, 0
)
= ρ(D∗) for D ∈ D3 ∪ D5. On the other

hand, for the digraph in D4 ∪ D6 with clique number k = s − 1, the maximum upper

bound ϕ
(
s− 1, s− 1,

⌊
e−(s−1)(s−2)

2

⌋
, 0
)

is equal to ϕ
(
s, s− 1,

⌊
e−s(s−1)

2

⌋
, 0
)

= ρ(D∗)

(notice that this upper bound can’t be attained by the digraph in D4 ∪ D6). Then by

Lemma 5.3 and 6.1, ρ(D) < ρ(D∗) for D ∈ D4 ∪D6.

Hence ρ(D) ≤ ρ(D∗) =
(s−2)+

√
(s+2)2−12

2
for D with e arcs, where e = s(s−1)+2s−3,

t ̸= 0, 1. That is, ρ(e) =
(s−2)+

√
(s+2)2−12

2
. Moreover, by Theorem 3.4, ρ(D) = ρ(e) =

(s−2)+
√

(s+2)2−12

2
if and only if D ∈ {D∗, D∗t}.

Let e = s(s− 1) + t, for 2s− 7 ≤ t ≤ 2s− 4, t ̸= 0, 1. Then by Lemmas 5.2, 5.5 and

6.1, we only need to consider D∗ and the digraphs D ∈ D4 ∪ D6, with k(D) = s − 1 for

this problem. On the other hand, according to the proof of [5, Lemma 3.2], they showed

that when k(D) = s, we may assume that | V (D) |= s + 1, and we can also prove the

same result for k(D) = s − 1 by a similar proof. So for the following four theorems, we

only consider the digraphs with s+ 1 vertices.
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Theorem 6.3. Let e = s(s− 1) + t be a positive integer with t = 2s− 4 and t ̸= 0. Then

ρ(e) = ϕ(s, s− 2, s− 2, 0), i.e. ρ(e) is equal to the maximum real root of

λ3 − (s− 2)λ2 − (2s− 3)λ+ (s− 2).

Moreover for D ∈ D(e), ρ(D) = ρ(e) if and only if D ∈ {D∗, D∗t}.

Proof. The digraph D ∈ D4 ∪D6 with k(D) = s− 1 and | V (D) |= s+1 is unique, which

has the spectral radius ρ(D) = ϕ(s− 1, s− 1, 2s− 4, 0). Recall that ρ(D) is the maximum

real root of

f(λ) = λ2 − (s− 2)λ− (2s− 4),

and ϕ
(
s,
⌈
t
2

⌉
,
⌊
t
2

⌋
, 0
)
= ϕ(s, s− 2, s− 2, 0) is the maximum real root of

g(λ) = λ3 − (s− 2)λ2 − (2s− 3)λ+ (s− 2).

Consider the following function

λf(λ)− g(λ) = λ− (s− 2)

which has the root s− 2. Since s > 1, s− 2 ≤ ρ(D). Then −g(ρ(D)) = ρ(D)f(ρ(D))−

g(ρ(D)) > 0 and g(ρ(D)) < 0, hence ϕ(s, s − 2, s − 2, 0) > ρ(D). We conclude that for

D ∈ D(e), ρ(D) ≤ ϕ(s, s− 2, s− 2, 0). Moreover, by Theorem 3.4 ρ(D) = ϕ(s, s− 2, s−

2, 0) = ρ(e) if and only if D ∈ {D∗, D∗t}.

Definition 6.4. Let A(i) denote an (s − 1)-dimensional column vector with the first i

entries be 1, and 0 otherwise. Let A(j) denote an (s− 1)-dimensional row vector with the

first j entries be 1, and 0 otherwise.

Theorem 6.5. Let e = s(s− 1) + t be a positive integer with t = 2s− 5 and t ̸= 1. Then

ρ(e) = ϕ(s, s− 2, s− 3, 0), i.e. ρ(e) is the maximum real root of

λ3 − (s− 2)λ2 − (2s− 4)λ+ (s− 3).

Moreover for D ∈ D(e), ρ(D) = ρ(e) if and only if D ∈ {D∗, D∗t}.
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Proof. There are two non-isomorphic digraphs D1, D2 in D4∪D6 with k(D1), k(D2) = s−1

and | V (D1) |=| V (D2) |= s+ 1, where

A(D1) =


Js−1 − Is−1 A(s−2) A(s−3)

A(s−1) 0 0

A(s−1) 0 0

 , A(D2) =


Js−1 − Is−1 A(s−2) A(s−2)

A(s−1) 0 0

A(s−2) 0 0

 .

Moreover,

ρ(D1) =ϕ(s− 1, s− 1, 2s− 5, 0)

ρ(D2) =ϕ(s− 1, s− 2, 2s− 4, 1),

Compare ρ(D∗), ρ(D1) and ρ(D2). Recall that ρ(D∗), ρ(D1) and ρ(D2) are the maximum

real roots of f(λ), g(λ) and h(λ), respectively, where

f(λ) =λ3 − (s− 2)λ2 − (2s− 4)λ+ (s− 3);

g(λ) =λ2 − (s− 2)λ− (2s− 5);

h(λ) =λ3 − (s− 3)λ2 − (3s− 6)λ− (s− 2).

For ρ(D∗) and ρ(D1), consider the following equation

f(λ)− λg(λ) = −λ+ (s− 3) = 0,

which has a root s − 3 and ρ(D1) > s − 3. Then f(ρ(D1)) − ρ(D1)g(ρ(D1)) < 0 and

f(ρ(D1)) < 0. Hence ρ(D∗) > ρ(D1).

For ρ(D∗) and ρ(D2), consider the following function

f(λ)− h(λ) = −λ2 + (s− 2)λ+ (2s− 5),

which has the same maximum real root as g(λ), i.e. such a maximum real root is equal to

ρ(D1). So f(λ)−h(λ) < 0 for λ > ρ(D1). Since ρ(D∗) > ρ(D1), f(ρ(D∗))−h(ρ(D∗)) < 0

and h(ρ(D∗)) > 0. Hence the maximum real root ρ(D2) of h(λ) is less than ρ(D∗).

We conclude that for D ∈ D(e), ρ(D) ≤ ρ(D∗) = ϕ(s, s − 2, s − 3, 0). Moreover, by

Theorem 3.4 ρ(D) = ϕ(s, s− 2, s− 3, 0) = ρ(e) if and only if D ∈ {D∗, D∗t}.
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Theorem 6.6. Let e = s(s− 1) + t be a positive integer with t = 2s− 6 and t ̸= 0. Then

ρ(e) = ϕ(s, s− 3, s− 3, 0), i.e. ρ(e) is the maximum real root of the following function

λ3 − (s− 3)λ2 − (2s− 4)λ+ 2(s− 3).

Moreover, for D ∈ D(e), ρ(D) = ρ(e) if and only if D ∈ {D∗, D∗t}.

Proof. Assume that all of the digraphs have s + 1 vertices, then there are three non-

isomorphic digraphs D1, D2 and D3 in D4 ∪D6 with k(D1), k(D2), k(D3) = s− 1, where

A(D1) =


Js−1 − Is−1 A(s−2) A(s−4)

A(s−1) 0 0

A(s−1) 0 0

 , A(D2) =


Js−1 − Is−1 A(s−3) A(s−3)

A(s−1) 0 0

A(s−1) 0 0

 ,

A(D3) =


Js−1 − Is−1 A(s−2) A(s−3)

A(s−1) 0 0

A(s−2) 0 0

 ,

and

ρ(D1) = ρ(D2) = ϕ(s− 1, s− 1, 2s− 6, 0) =
s− 2 +

√
(s+ 2)2 − 24

2
.

Compare ρ(D∗) and ρ(D1), and recall that ρ(D∗) = ϕ(s, s − 3, s − 3, 0) and ρ(D1) =

ϕ(s− 1, s− 1, 2s− 6, 0) are the maximum real roots of f(λ) and g(λ), respectively, where

f(λ) =λ3 − (s− 2)λ2 − (2s− 4)λ+ 2(s− 3);

g(λ) =λ2 − (s− 2)λ− (2s− 6).

Consider the following function

f(λ)− λg(λ) = −2λ+ (2s− 6) = 0,

which has the root s − 3 and for λ > s − 3, f(λ) − λg(λ) < 0. Since ρ(D1) > s − 3,

f(ρ(D1)) < 0 and hence ρ(D1) is less than the maximum real root of f(λ) = 0, i.e.

ρ(D1) < ρ(D∗).
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Next, we compare ρ(D∗) and ρ(D3). The adjacency matrix of D∗ is

A(D∗) =


Js−1 − Is−1 A(s−1) A(s−3)

A(s−1) 0 0

A(s−3) 0 0

 .

Since A(D∗) and A(D3) are nonnegative and irreducible, by Perron-Frobenius theorem,

there exist a positive column vector u = (u1, u2, . . . , us+1)
T and a positive row vector

vT = (v1, v2, . . . , vs+1) such that A(D3)u = ρ(D3)u and vTA(D∗) = ρ(D∗)vT . Then

(ρ(D∗)− ρ(D3))v
Tu =vT (A(D∗)− A(D3))u

=vT


0 A(s−1) − A(s−2) 0

0 0 0

A(s−3) − A(s−2) 0 0

u

=usvs−1 − us−2vs+1

=us(vs−1 − vs+1) > 0,

so ρ(D∗)−ρ(D3) > 0, and hence ρ(D∗) > ρ(D3). We conclude that for D ∈ D(e), ρ(D) ≤

ρ(D∗) = ϕ(s, s−3, s−3, 0). Moreover, by Theorem 3.4, ρ(D) = ϕ(s, s−3, s−3, 0) = ρ(e)

if and only if D ∈ {D∗, D∗t}.

Theorem 6.7. Let e = s(s− 1) + t be a positive integer with t = 2s− 7 and t ̸= 1. Then

ρ(e) = ϕ (s, s− 3, s− 4, 0), i.e. ρ(e) is the maximum real root of the following function

λ3 − (s− 2)λ2 − (2s− 5)λ+ 2(s− 4).

Moreover, for D ∈ D(e), ρ(D) = ρ(e) if and only if D ∈ {D∗, D∗t}.

Proof. Assume that all of the digraphs have s + 1 vertices, then there are five non-

isomorphic digraphs D1, D2, D3, D4 and D5 in D5∪D6 with k(D1), k(D2), k(D3), k(D4), k(D5) =
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s− 1, where

A(D1) =


Js−1 − Is−1 A(s−2) A(s−5)

A(s−1) 0 0

A(s−1) 0 0

 , A(D2) =


Js−1 − Is−1 A(s−3) A(s−4)

A(s−1) 0 0

A(s−1) 0 0

 ,

A(D3) =


Js−1 − Is−1 A(s−2) A(s−4)

A(s−1) 0 0

A(s−2) 0 0

 , A(D4) =


Js−1 − Is−1 A(s−3) A(s−3)

A(s−1) 0 0

A(s−2) 0 0

 ,

A(D5) =


Js−1 − Is−1 A(s−2) A(s−3)

A(s−1) 0 0

A(s−3) 0 0

 ,

and

ρ(D1) = ρ(D2) = ϕ(s− 1, s− 1, 2s− 7, 0) =
s− 2 +

√
(s+ 2)2 − 28

2
.

Compare ρ(D∗) and ρ(D1), and recall that ρ(D∗) = ϕ(s, s − 3, s − 4, 0) and ρ(D1) =

ϕ(s− 1, s− 1, 2s− 7, 0) are the maximum real roots of f(λ) and g(λ), respectively, where

f(λ) =λ3 − (s− 2)λ2 − (2s− 5)λ+ 2(s− 4);

g(λ) =λ2 − (s− 2)λ− (2s− 7).

Consider the following function

f(λ)− λg(λ) = −2λ+ (2s− 8),

which has the root s − 4 and for λ > s − 4, f(λ) − λg(λ) < 0. Since ρ(D1) > s − 4,

f(ρ(D1)) < 0 and hence ρ(D1) is less than the maximum real root of f(λ) = 0, i.e.

ρ(D1) < ρ(D∗).

Next, we compare ρ(D4) with ρ(D5). Since A(D4) and A(D5) are nonnegative and

irreducible, there exist a positive column vectors y and a positive row vector xT such that

A(D4)y = ρ(D4)y, A(D5)x = xTρ(D5). Then

(ρ(D5)− ρ(D4))x
Ty = xT (A(D5)− A(D4))y > 0
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and hence ρ(D5) > ρ(D4).

Finally, we discuss ρ(D3), ρ(D5) and ρ(D∗). The adjacency matrix of D∗ is

A(D∗) =


Js−1 − Is−1 A(s−1) A(s−4)

A(s−1) 0 0

A(s−3) 0 0

 .

Since A(D3), A(D5) and A(D∗) are nonnegative and irreducible, by Perron-Frobenius

theorem, there exist two positive column vectors u, w and two positive row vectors vT ,

zT such that A(D3)u = ρ(D3)u, A(D5)w = ρ(D5)w and vTA(D∗) = ρ(D∗)vT . Then

(ρ(D∗)− ρ(D3))v
Tu =vT (A(D∗)− A(D3))u > 0;

(ρ(D∗)− ρ(D5))v
Tw =vT (A(D∗)− A(D5))w > 0,

so ρ(D∗) − ρ(D3) > 0 and ρ(D∗) − ρ(D5) > 0, and hence ρ(D∗) > ρ(D3) and ρ(D∗) >

ρ(D5). We conclude that for D ∈ D(e), ρ(D) ≤ ρ(D∗) = ϕ(s, s − 3, s − 4, 0). Moreover,

by Theorem 3.4 ρ(D) = ϕ(s, s− 3, s− 4, 0) = ρ(e) if and only if D ∈ {D∗, D∗t}.

7 A lower bound of the spectral radius of the digraph

in D∗∗(e)

Definition 7.1. Let B be an n× n matrix and let Π = {π1, π1, . . . , πk} be a partition of

[n]. Let Ba,b be the |πa| × |πb| submatrix of B formed by the rows in πa and the columns

in πb, where 1 ≤ a, b ≤ k. The k × k matrix Π(B) := (πab), where πab is the average row

sum of Ba,b, is called the quotient matrix of B with respect to Π.

With the notation in Definition 7.1, we can write Π(B) as

Π(B) = (STS)−1STBS,

where S = (sij) is an n× k matrix with

sij =

 1, if i ∈ πj;

0, otherwise.
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It is known that ρ(Π(A)) ≤ ρ(A) for any symmetric matrix A. For particular types of

partition Π and non-symmetric matrix A, we have the following similar result.

Theorem 7.2. Let D ∈ D∗∗(e) with the adjacency matrix A and let Π = {{1}, {2}, . . . , {k}, {k+

1, . . . , n}} be a partition of [n], where k is the clique number of D. Then ρ(Π(A)) ≤ ρ(A),

where Π(A) is the quotient matrix of A with respect to Π.

Proof. Since Π(A) is the quotient matrix of A with respect to Π, Π(A) is a (k+1)×(k+1)

matrix and

Π(A) = (STS)−1STAS, (12)

where S = (sij) is an n× (k + 1) matrix with

sij =

 1, if i = j or (i ∈ ([n]− [k]) and j = k + 1);

0, otherwise,

Since A is nonnegative and irreducible, by Perron-Frobenius theorem, there exists a posi-

tive vector u = (u1, u2, . . . , un)
T such that ρ(A)u = Au, then (ρ(A) + 1)u = (A+ I)u. By

the computation of (ρ(A) + 1)u = (A+ I)u, we have

uk+1 + · · ·+ un

n− k
≤

uk+1 + · · ·+ uk+(di−k+1)

di − k + 1
, (13)

where di is the out-degree of vertex i. Let u′ = (u1, u2, . . . , uk,
uk+1+···+un

n−k
)T , multiplying

u′ to the right of both terms in (12):

Π(A)u′ = (STS)−1STASu′. (14)

By (13), ASu′ ≤ Au and then (14) will be

Π(A)u′ = (STS)−1STASu′ ≤ (STS)−1STAu = ρ(A)(STS)−1STu. (15)

Since Π(A) is nonnegative and irreducible, by Perron-Frobenius theorem again, there ex-

ists a positive vector yT = (y1, y2, . . . , yk+1) such that ρ(Π(A))yT = yTΠ(A). Multiplying

yT to the left of all terms in (15), then

ρ(Π(A))yTu′ = yTΠ(A)u′ ≤ yT (STS)−1STAu = ρ(A)yT (STS)−1STu. (16)
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Note that yTu′ = yT (STS)−1STu and it is positive. Deleting this term in both sides of

(16) leads to ρ(Π(A)) ≤ ρ(A) and the proof is completed.

Corollary 7.3. Let A be the adjacency matrix of D, where D ∈ D∗∗(e). Let Π =

{{1}, {2}, . . . , {k}, {k + 1, . . . , n}} and Π′ = {{1, 2, . . . , k}, {k + 1}} be partitions of [n]

and [k + 1], respectively, where k is the clique number of D. Then ρ(Π′(Π(A)T )) ≤ ρ(A),

where Π′(Π(A)T ) is the quotient matrix of Π(A)T with respect to Π′.

Proof. Since Π′(Π(A)T ) is the quotient matrix of Π(A)T with respect to Π′, Π′(Π(A)T ) is

a 2× 2 matrix and

Π′(Π(A)T ) = (STS)−1STΠ(A)TS, (17)

where S = (sij) is a (k + 1)× 2 matrix with

sij =

 1, if (i, j) ∈ [k]× {1} or (i = k + 1 and j = 2);

0, otherwise,

Since Π(A)T is nonnegative and irreducible, by Perron-Frobenius theorem, there exist

a positive vector u = (u1, u2, . . . , uk+1)
T such that Π(A)Tu = ρ(Π(A)T )u. Let u′ =

(

k∑
i=1

ui

k
, uk+1)

T . It is easy to see that Π(A)TSu′ ≤ Π(A)Tu. Multiplying u′ to the right of

both terms in (17), we have

Π′(Π(A)T )u′ = (STS)−1STΠ(A)TSu′ ≤ (STS)−1STΠ(A)Tu = ρ(Π(A)T )(STS)−1STu.

(18)

Since Π′(Π(A)T ) is nonnegative and irreducible, by Perron-Frobenius theorem again, there

exist a positive yT such that ρ(Π′(Π(A)T ))yT = yTΠ′(Π(A)T ). Multiplying yT to the left

of all terms in (18), then

ρ(Π′(Π(A)T ))yTu′ = yTΠ′(Π(A)T )u′ ≤ ρ(Π(A)T )yT (STS)−1STu. (19)

Note that yTu′ = yT (STS)−1STu and it is positive. Deleting this term in both sides of

(18) leads to ρ(Π′(Π(A)T )) ≤ ρ(Π(A)T ), then by Theorem 7.2, we have

ρ(Π′(Π(A)T )) ≤ ρ(Π(A)T ) = ρ(Π(A)) ≤ ρ(A),
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and finish the proof is completed.

Remark 7.4. The matrix Π′(Π(A)T ) in Corollary 7.3 is k − 1

n∑
i=k+1

di

(n−k)k
k∑

i=1

(di − k + 1) 0

 ,

which has the characteristic polynomial

f(λ) = λ2 − (k − 1)λ− a1a2
(n− k)k

,

where

a1 =
k∑

i=1

(di − k + 1), a2 =
n∑

i=k+1

di.

Corollary 7.5. Let D ∈ D∗∗ be a digraph with n vertices and k(D) = k, then

ρ(D) ≥
k − 1 +

√
(k − 1)2 + 4 a1a2

(n−k)k

2
,

where a1 =
k∑

i=1

(di − k + 1), a2 =
n∑

i=k+1

di.

Proof. This is proved immediately by Corollary 7.3 and Remark 7.4.

8 Conclusion

In this thesis, we give some upper bounds for the digraphs with e arcs, where e ∈ N,

and compare these bounds to prove that the maximum spectral radius of a simple digraph

D with e arcs and without isolated vertices occurs when D ∈ {D∗, D∗t} for e = s(s−1)+t,

2s − 7 ≤ t ≤ 2s − 3 and t ̸= 0, 1. But for 4

√
s−4
4
≤ t ≤ 2s − 8, it remains open. In the

last section, we also give a lower bound of the spectral radius of a digraph through the

concept of quotient matrix.

In our research, we obtain a weaker restriction of e1 in Lemma 5.1 and Lemma 5.3, and

get larger upper bounds to solve the problem, so there are a few cases for t can be solved.
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If we narrow down the range of e1, we believe that the conjecture can be solved by using

Lemma 5.1 and Lemma 5.4 only, but the problem of the increasing of ϕ(k, k − 1, e1, 0)

should be considered carefully.
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