國 立 交 通 大 學 應用數學系 碩士論文

Simple digraph analogue of Brualdi-Hoffman-conjecture 簡單有向圖的布勞帝-賀夫曼推測

研究生 : 温佳宜

指導教授 : 翁志文教授

中華民國一百零八年六月

Simple digraph analogue of Brualdi-Hoffman-conjecture

簡單有向圖的布勞帝-賀夫曼推測

Student: Chia-Yi WenAdvisor: Chih-Wen Weng研究生: 温佳宜指導教授: 翁志文 教授

國 立 交 通 大 學 應用數學系 碩士論文

A Thesis Submitted to Department of Applied Mathematics College of Science National Chiao Tung University in Partial Fulfillment of Requirements for the Degree of Master in Applied Mathematics

> June 2019 Hsinchu, Taiwan, Republic of China

中華民國一百零八年六月

簡單有向圖的布勞帝-賀夫曼推測

研究生:温佳宜

指導教授: 翁志文 教授

國立交通大學

應用數學系

摘要

在一有向圖中,若有向邊 ba 不屬於此圖之邊集合,則我們稱有向邊 ab 為單向。令 e 為一正整數,則存在唯一的正整數 s 及整數 t,使得 e = s(s-1) + t 且 $0 \le t \le 2s - 1$ 。本篇論文中,我們證明了當 e 满足 $2s - 7 \le t \le 2s - 3$ 時且 t 不 等於 0,1,在所有邊數為 e 的簡單有向圖中,擁有最大譜半徑的圖排除孤立點後即 為 D。此圖 D 是由 s 個點的有向完全圖加上一個新的頂點 x 和新的 t 條邊,使頂 點 x 與此完全圖中的 $\left|\frac{t}{2}\right|$ 個頂點相連且至多一個邊為單向所形成。

關鍵字: 譜半徑, 鄰接矩陣

Simple digraph analogue of Brualdi-Hoffman-conjecture

Student: Chia-Yi Wen

Advisor: Chih-Wen Weng

Department of Applied Mathematics National Chiao Tung University

abstract

An arc ab is single-direction if ba is not an arc in a digraph. Let e be a positive integer. Then there is a unique pair (s,t) of integers such that e = s(s-1) + t, where s is positive and $0 \le t \le 2s-1$. For $2s-7 \le t \le 2s-3$ and $t \ne 0, 1$, we prove that the maximum spectral radius of a simple digraph D with e arcs and without isolated vertices is when D is obtained from complete digraph \overrightarrow{K}_s by adding a new vertex x and t arcs, connecting x and $\lfloor \frac{t}{2} \rfloor$ vertices in \overrightarrow{K}_s with at most one arc being single-direction.

Keywords: spectral radius, adjacency matrix

誌 謝

碩班兩年的生活接近尾聲,首先感謝我的指導教授翁志文老師兩年來細心的栽培, 除了學術上的指導,擔任老師的線性代數助教這一年也使我在教學及處事方面獲益良 多,更要感謝老師在論文寫作方面給予我的提點與不厭其煩地反覆修改。謝謝老師一 路來的栽培及支持。另外,我要感謝傅恆霖老師、陳秋媛老師、符麥克老師及林武雄 老師的用心教學,從老師們身上不僅學到了許多組合數學方面的專業知識,也教會我 一些待人處事的道理;也謝謝口試委員張耀祖教授與傅東山教授遠道而來,給予寶貴 的建議以及指導。

再來感謝研究所期間認識的學長姐及同學們,感謝至梵學長、婉真、逸蓁、采霓、 迺筑、俊彥等諸位研究所同學們,兩年來陪著我一起修課、為論文奮鬥、出遊、吃遍 新竹的美食等等,在我遇到問題時也大方的給予我幫助,種種回憶都使我的碩班生活 更加的豐富。

運動一直是我求學期間的另一個重心,雖然來到交大後較少機會可以打籃球,但很快的也融入了系女排這個家庭。謝謝維之學姊邀請我加入這個系隊、跟我們一起跑遍 北中南比賽;謝謝惠中在我狀況不好的時候總是正向的鼓勵我;謝謝晴羽這兩年用心 的帶練球,也謝謝其他學妹們一直都很投入在這項運動中。兩年來我們打了大大小小 的比賽、打了無數個第三局,一起在場上拚搏的過程都將成為最美好的回憶。

最後,感謝父母的付出及栽培、感謝哥哥及弟弟的陪伴,生活中有時候或許有一些 想法上的差異,但你們總是會包容我、相信我,到最後慢慢放手讓我去做想做的事。 這二十多年來總是不斷的鼓勵我、支持著我,成為我最堅強的後盾,讓我能夠無後顧 之憂完成碩士學位,謝謝你們!在此,與所有人共享這份成果以及榮耀。

Contents

A	bstract (in Chinese)	i
A	bstract (in English)	ii
Contents		iv
1	Introduction	1
2	Notation and Preliminaries	2
	2.1 The set $\mathscr{D}^{**}(e)$. 3
3	The upper bound $\phi(k, \ell, e_1, e_2)$	3
4	A partition of $\mathscr{D}^{**}(e)$	6
5	The shape of $\phi(k, \ell, e_1, e_2)$	8
6	$ \rho(D) \text{ for } 2s - 7 \le t \le 2s - 3, \ t \ne 0, 1 $	14
7	A lower bound of the spectral radius of the digraph in $\mathscr{D}^{**}(e)$	21
8	Conclusion	24

1 Introduction

The digraphs in this thesis are simple without loops and without isolated vertices. Given a digraph D, the spectral radius of D is the spectral radius of its adjacency matrix, denoted by $\rho(D)$. Let e be a positive integer and let $\mathscr{D}(e)$ be the set of all simple digraphs with e arcs. The function $\rho(e)$ is defined to be the largest spectral radius of a digraph in $\mathscr{D}(e)$, that is

$$\rho(e) = \max\{\rho(D) \mid D \in \mathscr{D}(e)\}.$$
(1)

It is immediate from the above definitions that $\rho(0) = 0$, $\rho(1) = 0$, $\rho(2) = 1$ and $\rho(3) = 1$. Moreover, there are three non-isomorphic diagraphs with 3 arcs and spectral radius 1: (1) Adding a new vertex to a clique of order 2 and a single-direction arc from a vertex in the clique to the new vertex; (2) Adding a new vertex to a clique of order 2 and a single-direction arc from the new vertex to a vertex in the clique; (3) A directed cycle of order 3. Indeed their adjacency matrices (after suitable reordering of the vertices) are

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Brualdi-Hoffman conjectured that the maximum spectral radius of a simple undirected graph with *e* edges is attained by adding a new vertex if necessary which is adjacent to the corresponding number of vertices of a complete graph and possibly adding some isolated vertices [2]. This conjecture was proved by Rowlinson in [6]. The following is the simple digraphs analogue of Brualdi-Hoffman-conjecture.

Conjecture 1.1. For integer $e \neq 3$, the maximum spectral radius of a simple digraph D with e arcs is when D is obtained from a clique by adding a new vertex if necessary and the corresponding number of arcs between the new vertex and some vertices in the clique with at most one arc being single-direction.

For a positive integer e, there is a unique pair (s, t) such that e = s(s - 1) + t, where s is positive and $0 \le t \le 2s - 1$. In 2015, Jin and Zhang [5] proved Conjecture 1.1 for the cases t = 0, 1, 2s - 2, 2s - 1 and $s > 4t^4 + 4$. In this paper, we prove Conjecture 1.1 for $2s - 7 \le t \le 2s - 3$ and $t \ne 0, 1$. Hence Conjecture 1.1 is solved for $e \le 21$ and remains open for $\sqrt[4]{\frac{s-4}{4}} \le t \le 2s - 8$.

This thesis is organized as follows. In Section 2, we introduce notations used in this thesis and recall some basic concepts. In Section 3, we give a theorem that will be used in following sections. Section 4 gives some upper bounds of the spectral radius of the digraphs which we are concerned and we investigate properties of these bounds in Section 5. Section 6 talks about how we find $\rho(e)$ and characterize the extremal digraphs. To complementize, we also give a lower bound of the spectral radius of a digraph in Section 7.

2 Notation and Preliminaries

Let $[n] = \{1, 2, ..., n\}$. Let D be a digraph with the vertex set V(D) = [n] and the arc set $E(D) = \{ij \mid i \neq j \text{ and } i, j \in V(D)\}$. The dual graph D^t of D is the digraph with the vertex set V(D) and arc set $E(D^t) = \{ji \mid ij \in E(D)\}$. The adjacency matrix $A(D) = (a_{ij})$ of D is defined by

$$a_{ij} = \begin{cases} 1, & \text{if } ij \in E(D); \\ 0, & \text{otherwise.} \end{cases}$$

The spectral radius of a square matrix A is defined by

$$\rho(A) = \max\{|\lambda| \mid \lambda \text{ is an eigenvalue of } A\}.$$

Recall that the spectral radius of a digraph D is the spectral radius of its adjacency matrix A(D), denoted by $\rho(D)$. Note that the spectral radius $\rho(D)$ is independent of the ordering of the vertex set of D, and $\rho(D^t) = \rho(D)$. For a vertex $i \in V(D)$, the *out-degree* d_i of *i* is defined to be the size of the set $\{j \mid ij \in E(D)\}$. A *clique* of order *k* in *D* is a subgraph that contains k(k-1) arcs.

2.1 The set $\mathscr{D}^{**}(e)$

Let $\mathscr{D}^{**}(e)$ denote the set of all simple strongly connected digraphs with e arcs whose vertex set [n] can be arranged such that

- (i) If $ij \in E(D)$ then $i\ell \in E(D)$ for $\ell \leq j$ and $\ell \neq i$; and
- (ii) $N^+(i) \setminus \{j\} \supseteq N^+(j) \setminus \{i\}$ for $1 \le i < j \le n$, where $N^+(i) = \{k \mid ik \in E(D)\}$.

As before let e = s(s - 1) + t and $0 \le t \le 2s - 1$. Jin and Zhang [5, Proposition 2.5] showed that if $t \ne 1$ and $\rho(D) = \rho(e)$, then $D \in \mathscr{D}^{**}(e)$. Let $D \in \mathscr{D}^{**}(e)$ and the vertex set V(D) = [n] be arranged to satisfy (i)-(ii) above. Since D is strongly connected, the out-degrees of 1 and n satisfy $d_1 = n - 1$ and $d_n \ge 1$. Let k be the maximum integer such that the subgraph of D induced on [k] is a clique. Then $d_i \ge k - 1$ for $i \le k$. Moreover, either k = n or at least one of D and D^t whose vertex k + 1 has out-degree $d_{k+1} \le k - 1$. The spectral radius $\rho(D)$ of the diagraph D satisfying $d_i \ge k - 1$ for $i \le k$ and

$$E(D) \cap ([n] - [k]) \times ([n] - [\ell]) = \emptyset,$$

$$(2)$$

where $\ell \leq k$ will be studied in Theorem 3.4.

3 The upper bound $\phi(k, \ell, e_1, e_2)$

For integers $1 \leq \ell \leq k < n$ and nonnegative integers d'_i with $i \in [k]$, the spectral radius of the following $n \times n$ matrix $C = (C_{ij})_{n \times n}$

$$C_{ij} = \begin{cases} 0, & \text{if } i = j \text{ or } (i,j) \in ([n] - [k]) \times ([n] - [\ell]); \\ d'_i - (n - 1 - k), & \text{if } 1 \le i \le k, j = n; \\ 1, & \text{otherwise.} \end{cases}$$
(3)

will serve as an upper bound of spectral radius in the main theorem of this section.

Remark 3.1. If $\ell < k$ then the matrix C in (3) has eigenvalue -1 with multiplicity k - 2, eigenvalue 0 with multiplicity n - k - 1 and the remaining three eigenvalues are the eigenvalues of the following matrix

$$\begin{pmatrix} \ell - 1 & k - \ell & 1 \\ \ell & k - \ell - 1 & 0 \\ \sum_{i=1}^{\ell} d'_i & \sum_{i=\ell+1}^{k} d'_i & 0 \end{pmatrix},$$
(4)

whose characteristic polynomial is

$$f(\lambda) = \lambda^3 - (k-2)\lambda^2 - (e_1 + k - 1)\lambda - \ell e_2 + e_1(k - \ell - 1),$$
(5)

where

$$e_1 = \sum_{i=1}^{\ell} d'_i, \quad e_2 = \sum_{i=\ell+1}^{k} d'_i.$$
(6)

For the case $\ell = k$, the matrix C in (3) has eigenvalue -1 with multiplicity k-1, eigenvalue 0 with multiplicity n - k - 1zp and the remaining two eigenvalues are the eigenvalues of the following matrix

$$\begin{pmatrix} k-1 & 1\\ \sum_{i=1}^{k} d'_{i} & 0 \end{pmatrix},$$
(7)

whose characteristic polynomial is

$$f(\lambda) = \lambda^2 - (k-1)\lambda - e_1.$$
(8)

Since the matrices in (4) and (7) are nonnegative with an eigenvalue at least k - 1, $\rho(C)$ is still the largest real eigenvalue of C and $\rho(C) = \rho(C + I) - 1$, despite that C is not necessarily nonnegative in general, where I is the $n \times n$ identity matrix.

Definition 3.2. Let $\phi(k, \ell, e_1, e_2)$ denote the spectral radius of the matrix C in (3), where $1 \le \ell \le k$ and $e_1, e_2 \ge 0$ are defined in (6).

Hence $\phi(k, \ell, e_1, e_2)$ is the maximum real root of the cubic polynomial in (5) if $\ell < k$, and $\phi(k, k, e_1, 0)$ is the maximum real root of the quadratic polynomial in (8). **Definition 3.3.** For real matrices $M = (M_{ij})$ and $M' = (M'_{ij})$, we write $M \leq M'$ if $M_{ij} \leq M'_{ij}$ for all i, j.

Theorem 3.4. Let D be a strongly connected digraph of order n such that there exists $1 \le \ell \le k < n$ with $E(D) \cap ([n] - [k]) \times ([n] - [\ell]) = \emptyset$. Let A = A(D) and $C = (C_{ij})$ be as in (3) with

$$d'_i := |\{j \in [n] - [k] \mid ij \in E(D)\}| \qquad (i \in [k])$$

Then $\rho(A) \leq \rho(C) = \phi(k, \ell, e_1, e_2)$. Moreover, $\rho(A) = \rho(C)$ if and only if $A_{ts} = C_{ts}$ for $1 \leq t \leq n$ and $1 \leq s \leq k$.

Proof. Let $Q = (Q_{ij})$ be the $n \times n$ matrix with

$$Q_{ij} = \begin{cases} 1, & \text{if } i = j \in [n] \text{ or } (i,j) \in ([n-1] - [k]) \times \{n\}; \\ 0, & \text{otherwise.} \end{cases}$$

Then the inverse of Q has entries

$$Q_{ij}^{-1} = \begin{cases} 1, & \text{if } i = j \in [n]; \\ -1, & \text{if } (i,j) \in ([n-1] - [k]) \times \{n\}; \\ 0, & \text{otherwise.} \end{cases}$$

Note that AQ (resp. CQ) has the same columns as A (resp. C) except that the last column of AQ (resp. CQ) is $(d'_1, d'_2, \ldots, d'_k, 0, \ldots, 0)^T$, which is the sum of the last n - k columns of A (resp. C). Hence

$$AQ \le CQ. \tag{9}$$

Note that $Q^{-1}(C+I)Q$ has the same first k rows and the same last row as (C+I)Q has. The remaining n-1-k rows of $Q^{-1}(C+I)Q$ are obtained by subtracting the last row from the corresponding row of (C+I)Q. Hence $Q^{-1}(C+I)Q$ is nonnegative. Then there exists a nonnegative and nonzero column vector $u = (u_1, u_2, \ldots, u_n)^T$ such that $Q^{-1}(C+I)Qu = \rho(C+I)u$, which implies $CQu = (\rho(C+I)-1)Qu = \rho(C)u$. By (9) and since u is nonnegative,

$$AQu \le CQu = \rho(C)Qu. \tag{10}$$

Since A is irreducible, there exists a positive row vector $v^T \neq 0$ such that $v^T A = \rho(A)v^T$. Multiplying v^T to the left of all terms in (10), we have

$$\rho(A)v^T Q u = v^T A Q u \le v^T C Q u = \rho(C)v^T Q u.$$
(11)

Since Qu is nonnegative and v^T is positive, the term $v^T Qu$ is a positive. Delete $v^T Qu$ in both sides of (11) to obtain $\rho(A) \leq \rho(C)$ and finish the proof of the first part.

Suppose $\rho(A) = \rho(C)$. Then $v^T A Q u = v^T C Q u$ in (11). Since v^T is positive, A Q u = C Q u. Solving u from $Q^{-1}(C+I)Q u = \rho(C+I)u$, we find $u_i = 0$ for $i \in [n-1] - [k]$ directly and $u_j > 0$ for $j \in [k] \cup \{n\}$ since $d'_1 > 0$. Hence $A_{ts} = (AQ)_{ts} = (CQ)_{ts} = C_{ts}$ for $(t,s) \in [n] \times [k]$.

Conversely, if $A_{ts} = C_{ts}$ for for $(t, s) \in [n] \times [k]$, then AQu = CQu, and inequality in (11) is equality, which implies $\rho(A) = \rho(C)$ as in the first part.

4 A partition of $\mathscr{D}^{**}(e)$

Let e = s(s-1) + t and $0 \le t \le 2s - 1$. We want to determine $\rho(e)$. By Jin and Zhang's result [5], for the case $t \ne 1$, it suffices to consider the digraphs in the set $\mathscr{D}^{**}(e)$. For $D \in \mathscr{D}^{**}(e)$, let k = k(D) denote the largest integer c such that the subgraph of Dinduced on [c] is a clique. Recall that $d_i = d_i(D)$ is the out-degree of node i in D. Note that $k = k(D) = k(D^t)$, and either $d_{k+1} \le d_k$ or $d_{k+1} = d_k + 1 = k$ from the definition of k. Let $d_i^t := d_i(D^t)$, and we will use the notation

$$e_r = \sum_{i=k+1}^n d_i^t$$
 and $e_d = \sum_{i=k+1}^n d_i$,

where n is the number of vertices of D. We assume $t \neq 0, 1$ and partition $\mathscr{D}^{**}(e)$ into six families:

$$\begin{split} \mathscr{D}_{1} &= \{ D \in \mathscr{D}^{**}(e) \mid d_{k+1} \leq d_{k} \leq k-1, e_{r} < k-1 \text{ and } e_{d} < k-1 \}; \\ \mathscr{D}_{2} &= \{ D \in \mathscr{D}^{**}(e) \mid d_{k+1} \leq d_{k} \leq k-1, \text{ and } e_{r} \geq k-1 \text{ or } e_{d} \geq k-1 \}; \\ \mathscr{D}_{3} &= \{ D \in \mathscr{D}^{**}(e) \mid d_{k+1} = d_{k} + 1 = k, \text{ and } e_{d} \leq e_{r} \}; \\ \mathscr{D}_{4} &= \{ D \in \mathscr{D}^{**}(e) \mid d_{k+1} = d_{k} + 1 = k, \text{ and } e_{d} > e_{r} \}; \\ \mathscr{D}_{5} &= \{ D \in \mathscr{D}^{**}(e) \mid d_{k+1}^{t} = d_{k}^{t} + 1 = k, \text{ and } e_{r} \leq e_{d} \}; \\ \mathscr{D}_{6} &= \{ D \in \mathscr{D}^{**}(e) \mid d_{k+1}^{t} = d_{k}^{t} + 1 = k, \text{ and } e_{r} > e_{d} \}. \end{split}$$

The adjacency matrix of $D \in \mathscr{D}_i$ for $i \in [6]$ will be:

$$A(D) = \begin{pmatrix} 0 & 1 & \cdots & 1 & & & \\ 1 & 0 & 1 & & & \\ \vdots & \ddots & \vdots & & & \\ 1 & 1 & \cdots & 0 & & & \\ & & & 0 & 0 & \cdots & 0 \\ & & & & 0 & 0 & \cdots & 0 \\ & & & & & \vdots & \vdots & \ddots & \vdots \\ & & & & & 0 & 0 & \cdots & 0 \end{pmatrix}$$

where there are e_r and e_d 1's in A_{12} and A_{21} , respectively.

Note that the condition $d_{k+1} \leq d_k \leq k-1$ is equivalent to $a_{k,k+1} = a_{k+1,k} = 0$, where $a_{p,q}$ is the entry of the adjacency matrix of D. Hence for $i \in [2]$, $D \in \mathscr{D}_i$ implies $D^t \in \mathscr{D}_i$. The condition $d_{k+1} = d_k + 1 = k$ and $e_d \leq e_r$ (resp. $e_d > e_r$) is equivalent to $d_{k+1}^t = d_k^t + 1 = k$ and $e_r \leq e_d$ (resp. $e_r > e_d$). Hence for $i \in \{3, 4\}$, $D \in \mathscr{D}_i$ if and only if $D^t \in \mathscr{D}_{i+2}$. For each family \mathscr{D}_i and $D \in \mathscr{D}_i$, we apply Theorem 3.4 to get a suitable matrix C (in (3)) with $\rho(D) \leq \rho(C)$.

Lemma 4.1. (i) Assume $D \in \mathscr{D}_1$. Then k = s. Moreover, if V(D) = [s+1], then

 $\rho(D) = \phi(s, \ell, e_1, 0), where$

$$\ell = \max(e_d, e_r), \quad e_1 = \min(e_d, e_r).$$

(ii) Assume $D \in \mathscr{D}_2$. Then $\rho(D) \leq \phi(k, k-1, e_1, 0)$, where

 $e_1 = \min(e_d, e_r).$

Moreover, if $d_j = k - 1$ and $e_1 = e_r$ (or $d_j^t = k - 1$ and $e_1 = e_d$) for any $j \in [n] - [k]$, then $\rho(D) = \phi(k, k - 1, e_1, 0)$.

(iii) Assume $D \in \mathscr{D}_3$ (resp. $D \in \mathscr{D}_5$). Then $\rho(D) \leq \phi(k, k-1, e_1, e_2)$, where

$$e_2 = d_k^t - k + 1, e_1 = -e_2 + e_d$$
 (resp. $e_2 = d_k - k + 1, e_1 = -e_2 + e_r$).

(iv) Assume $D \in \mathscr{D}_4$ (resp. $D \in \mathscr{D}_6$). Then $\rho(D) \leq \phi(k, k, e_1, 0)$, where

$$e_1 = e_r \qquad (\text{resp. } e_1 = e_d).$$

Moreover, if $d_j = k$ and $e_1 = e_r$ (or $d_j^t = k$ and $e_1 = e_d$) for any $j \in [n] - [k]$, then $\rho(D) = \phi(k, k, e_1, 0)$.

Proof. We will use the property $\rho(D) = \rho(D^t)$ and apply Theorem 3.4 to the diagram Dif $e_r \leq e_d$, and to the diagraph D^t otherwise. We define the matrix C in (3) by setting $k = k(D) = k(D^t)$ and ℓ in case (i) as claimed, $\ell = k - 1$ in cases (ii)-(iii), and $\ell = k$ in case (iv). The last parameter d'_i is either $d_i - k + 1$ or $d^t_i - k + 1$ according to which Dor D^t is applied. The lemma follows from Theorem 3.4 by the above setting. \Box

5 The shape of $\phi(k, \ell, e_1, e_2)$

Let e = s(s-1) + t be a positive integer, where $0 \le t \le 2s - 1$ and $s \ge 1$. We want to determine the maximum value of $\phi(k, \ell, e_1, e_2)$ subject to $k(k-1) + \ell + e_1 + e_2 \le e$ and $e_1 + e_2 \le \left\lfloor \frac{e - k(k-1)}{2} \right\rfloor$. Hopefully this value is $\rho(e)$ and is when k = s, $e_2 = 0$ and $e_1 + \ell = t$. In this section we will investigate some properties of ϕ for each \mathcal{D}_i , where $i \in [6]$.

Lemma 5.1. Assume $t \ge s - 1$. Then

$$\max\left\{\phi(k,k-1,e_1,0) \mid k \in [s], 0 \le e_1 \le \left\lfloor \frac{e-k(k-1)}{2} \right\rfloor\right\} = \phi\left(s,s-1, \left\lfloor \frac{t}{2} \right\rfloor, 0\right).$$

Proof. From Definition 3.2, $\phi(k, k-1, e_1, 0)$ is the maximum root of the function $f(\lambda) = \lambda^3 - (k-2)\lambda^2 - (e_1 + k - 1)\lambda$, which appears in (5) with $\ell = k - 1$ and $e_2 = 0$. By the assumption, $e_1 \leq \left\lfloor \frac{e-k(k-1)}{2} \right\rfloor$, and with equality and when k = s, we have $e_1 = \lfloor \frac{t}{2} \rfloor$. Hence,

$$\begin{split} \phi(k,k-1,e_1,0) &= \frac{(k-2) + \sqrt{(k-2)^2 + 4(e_1 + k - 1)}}{2} \\ &= \frac{(k-2) + \sqrt{k^2 + 4e_1}}{2} \\ &\leq \frac{(k-2) + \sqrt{k^2 + 4\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor}}{2} \\ &\leq \frac{(s-2) + \sqrt{s^2 + 4\left\lfloor\frac{t}{2}\right\rfloor}}{2} \\ &= \phi\left(s,s-1,\left\lfloor\frac{t}{2}\right\rfloor,0\right), \end{split}$$

where the second inequality follows from the increasing of its previous term as a function of k when $k \leq 1 + \sqrt{e + \frac{1}{2}}$ and k = s is in this range.

Lemma 5.2. Suppose $k \le s - 1 \le t, e_1 + e_2 \le \frac{e - k(k-1)}{2}$ and $e_2 \ge 1$. Then

$$\phi(k, k-1, e_1, e_2) < \phi\left(k, k-1, \left\lfloor \frac{e-k(k-1)}{2} \right\rfloor, 0\right).$$

Moreover,

$$max\{\phi(k,k-1,e_1,e_2)\} < \phi\left(s,s-1,\left\lfloor\frac{t}{2}\right\rfloor,0\right).$$

Proof. Let

$$f(\lambda) := \lambda^{3} - (k-2)\lambda^{2} - \left(\left\lfloor \frac{e - k(k-1)}{2} \right\rfloor + k - 1\right)\lambda;$$

$$g(\lambda) := \lambda^{3} - (k-2)\lambda^{2} - (e_{1} + k - 1)\lambda - (k-1)e_{2},$$

where

$$k \ge 1, e_1 + e_2 = \left\lfloor \frac{e - k(k - 1)}{2} \right\rfloor$$
 and $e_2 \ge 1$.

Consider the following function

$$f(\lambda) - g(\lambda) = \left(e_1 - \left\lfloor \frac{e - k(k-1)}{2} \right\rfloor\right)\lambda + (k-1)e_2 = e_2(k-1-\lambda),$$

which has a root $\alpha := k - 1$. And $f(\lambda)$ has the maximum real root:

$$\beta := \frac{(k-2) + \sqrt{(k-2)^2 + 4\left(\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor + k - 1\right)}}{2}$$
$$= \frac{(k-2) + \sqrt{k^2 + 4\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor}}{2}$$
$$> \frac{(k-2) + k}{2} = k - 1 = \alpha,$$

so $-g(\beta) = f(\beta) - g(\beta) < 0$ and $g(\beta) > 0$.

Since $f(\lambda) - g(\lambda)$ is linear and $g(\beta) > 0$, the maximum real root of $f(\lambda)$ is larger than $g(\lambda)$. On the other hand, the maximum real root of a cubic equation is increasing when the linear term and the constant term decrease, so $\phi(k, k - 1, e_1, e_2)$ for $e_1 + e_2 \leq \frac{e - k(k-1)}{2}$ and $e_2 \geq 1$ has the maximum when $e_1 + e_2 = \left\lfloor \frac{e - k(k-1)}{2} \right\rfloor$. Recall that $\phi(k, k - 1, e_1, e_2)$ for $e_1 + e_2 = \left\lfloor \frac{e - k(k-1)}{2} \right\rfloor$ is the maximum real root of $g(\lambda) = 0$, and $\phi\left(k, k - 1, \left\lfloor \frac{e - k(k-1)}{2} \right\rfloor, 0\right)$ is the maximum real root of $f(\lambda) = 0$, we complete the proof of the first part. The second part immediately follows from the result of first part and Lemma 5.1

Lemma 5.3. Suppose $t \ge s$. Then

$$\max\left\{\phi(k,k,e_1,0) \mid k \in [s], 0 \le e_1 \le \left\lfloor \frac{e-k(k-1)}{2} \right\rfloor\right\} = \phi\left(s,s, \left\lfloor \frac{t}{2} \right\rfloor, 0\right)$$

Proof. From Definition 3.2, $\phi(k, k, e_1, 0)$ is the maximum real root of the function $f(\lambda) = \lambda^2 - (k-1)\lambda - e_1$, which appears in (8). By the assumption, $e_1 \leq \left\lfloor \frac{e-k(k-1)}{2} \right\rfloor$, and with

equality and when k = s - 1, we have $e_1 = \lfloor \frac{t+2s-2}{2} \rfloor$. Hence

 ϕ

$$\begin{aligned} (k,k,e_1,0) &= \frac{(k-1) + \sqrt{(k-1)^2 + 4e_1}}{2} \\ &\leq \frac{(k-1) + \sqrt{(k-1)^2 + 4\left\lfloor\frac{e-k(k-1)}{2}\right\rfloor}}{2} \\ &\leq \frac{(s-2) + \sqrt{(s-2)^2 + 4\left\lfloor\frac{e-(s-1)(s-2)}{2}\right\rfloor}}{2} \\ &= \frac{(s-2) + \sqrt{(s-2)^2 + 4\left\lfloor\frac{t+2s-2}{2}\right\rfloor}}{2} \\ &= \frac{\varphi\left(s-1,s-1,\left\lfloor\frac{t+2s-2}{2}\right\rfloor,0\right), \end{aligned}$$

where the second inequality follows from the increasing of its previous term as a function of k when $k \leq \sqrt{e + \frac{1}{2}}$ and k = s - 1 is in this range.

On the other hand, for k = s - 1 and k = s, define

$$\begin{aligned} \alpha := \phi \left(s - 1, s - 1, \left\lfloor \frac{t + 2s - 2}{2} \right\rfloor, 0 \right) &= \frac{(s - 2) + \sqrt{(s - 2)^2 + 4 \left\lfloor \frac{t + 2s - 2}{2} \right\rfloor}}{2}; \\ \beta := \phi \left(s, s, \left\lfloor \frac{t}{2} \right\rfloor, 0 \right) &= \frac{(s - 1) + \sqrt{(s - 1)^2 + 4 \left\lfloor \frac{t}{2} \right\rfloor}}{2}. \end{aligned}$$

Since

$$2(\beta - \alpha)(\beta + \alpha - s + 2) = \sqrt{(s - 1)^2 + 4\left\lfloor \frac{t}{2} \right\rfloor} - s + 1 > 0$$

and

$$\beta + \alpha = \frac{(s-1) + \sqrt{(s-1)^2 + 4\left\lfloor\frac{t}{2}\right\rfloor}}{2} + \frac{(s-2) + \sqrt{s^2 + 4\left\lfloor\frac{t}{2}\right\rfloor}}{2} > s - 2$$

so $\beta > \alpha$ and hence $\phi(k, k, e_1, 0)$ reaches the maximum when k = s and $e_1 = \lfloor \frac{t}{2} \rfloor$ \Box

Lemma 5.4. We have

$$\max\left\{\phi(s,\ell,e_1,0) \mid 1 \le e_1 \le \ell \le s, \ell+e_1 = t\right\} = \phi\left(s, \left\lceil \frac{t}{2} \right\rceil, \left\lfloor \frac{t}{2} \right\rfloor, 0\right).$$

Proof. For $\ell \leq s - 1$, recall that $\phi(s, \ell, e_1, 0)$ is the maximum real root of the following function

$$\lambda^{3} - (s-2)\lambda^{2} - (e_{1} + s - 1)\lambda + e_{1}(s - \ell - 1),$$

and the maximum real root of a cubic polynomial with positive leading coefficient is increasing when the constant term decreases. Consider the constant term of this equation,

$$e_1(s - \ell - 1) = (e - s(s - 1) - \ell)(s - \ell - 1)$$

= $\ell^2 + ((s - 1)^2 - e)\ell + (s - 1)t$,

which is a quadratic polynomial of ℓ and has the minimum value when $\ell = \frac{e-(s-1)^2}{2}$, so we can narrow down the range of ℓ to $\ell \in [\frac{e-s(s-1)}{2}, \frac{e-(s-1)^2}{2}]$.

Let (e_1, ℓ_1) and (e_2, ℓ_2) be two pairs which satisfy the condition of e_1 and ℓ above and assume $e_1 > e_2$ (and hence $1 \le e_2 < e_1 \le \ell_1 < \ell_2 \le s - 1$). Then we have two polynomials:

$$f(\lambda) = \lambda^3 - (s-2)\lambda^2 - (e_1 + s - 1)\lambda + e_1(s - \ell_1 - 1),$$

$$g(\lambda) = \lambda^3 - (s-2)\lambda^2 - (e_2 + s - 1)\lambda + e_2(s - \ell_2 - 1),$$

and

$$f(\lambda) - g(\lambda) = (e_2 - e_1)\lambda + (e_1 - e_2)(s - 1) + e_2\ell_2 - e_1\ell_1.$$

Let λ_0 be the root of $f(\lambda) - g(\lambda)$, then

$$\lambda_0 = \frac{(e_1 - e_2)(s - 1) + e_2\ell_2 - e_1\ell_1}{(e_1 - e_2)}$$
$$= \frac{(e_1 - e_2)(s - 1) + (e_1 - e_2)(e_1 - \ell_2)}{(e_1 - e_2)}$$
$$= s - 1 + e_1 - \ell_2 > 0.$$

and then

$$f(\lambda_0) = \lambda_0^3 - (s-2)\lambda_0^2 - (e_1 + s - 1)\lambda_0 + e_1(s - \ell_1 - 1)$$

= $\lambda_0^2(e_1 - \ell_2) + \lambda_0(e_1 - \ell_2) - e_1(e_1 - \ell_2 + \ell_1)$
= $\lambda_0^2(e_1 - \ell_2) + \lambda_0(e_1 - \ell_2) - e_1e_2 < 0.$

Since $f(\lambda_0) < 0$, the maximum real root α of $f(\lambda)$ is larger than λ_0 . Then $f(\alpha) - g(\alpha) < 0$ and $g(\alpha) > 0$, hence the maximum real root of $g(\lambda)$ is less than $f(\lambda)$. And we have

$$\phi(s, \ell, e_1, 0) \le \phi\left(s, \left\lceil \frac{t}{2} \right\rceil, \left\lfloor \frac{t}{2} \right\rfloor, 0\right)$$

for $\ell \leq s - 1$.

Moreover, if $t \ge s$, then $\phi(s, s, t - s, 0) \le \phi(s, \ell, e_1, 0)$ and the equality holds when t = 2s - 1, $\ell = s = \lfloor \frac{t}{2} \rfloor$ and $e_1 = s - 1 = \lfloor \frac{t}{2} \rfloor$. So we conclude that for $1 \le e_1 \le \ell \le s$ and $e_1 + \ell = t$, $\phi(s, \ell, e_1, 0)$ has the maximum when $e_1 = \lfloor \frac{t}{2} \rfloor$ and $\ell = \lfloor \frac{t}{2} \rfloor$.

Lemma 5.5. Let e = s(s-1) + t, $2s - 7 \le t \le 2s - 4$. Then

(i)
$$\phi(k, k-1, e_1, 0) \le \phi(s, \left\lceil \frac{t}{2} \right\rceil, \left\lfloor \frac{t}{2} \right\rfloor, 0) \text{ for } 1 \le k \le s-1 \text{ and } e_1 \le \left\lfloor \frac{e-k(k-1)}{2} \right\rfloor;$$

(ii) $\phi(k, k, e_1, 0) \le \phi(s, \left\lceil \frac{t}{2} \right\rceil, \left\lfloor \frac{t}{2} \right\rfloor, 0) \text{ for } 1 \le k \le s-2 \text{ and } e_1 \le \left\lfloor \frac{e-k(k-1)}{2} \right\rfloor.$

Proof. Let $\beta := \phi\left(s-1, s-2, \left\lfloor \frac{e-(s-1)(s-2)}{2} \right\rfloor, 0\right)$, which is the maximum real root of

$$f(\lambda) = \lambda^3 - (s-3)\lambda^2 - \left(\left\lfloor \frac{t}{2} \right\rfloor + 2s - 3\right)\lambda$$

Then

$$\beta = \frac{s - 3 + \sqrt{(s - 3)^2 + 4(\left\lfloor \frac{t}{2} \right\rfloor + 2s - 3)}}{2}.$$

Note that $\phi(s, \left\lceil \frac{t}{2} \right\rceil, \left\lfloor \frac{t}{2} \right\rfloor, 0)$ is the maximum real root of

$$g(\lambda) = \lambda^3 - (s-2)\lambda^2 - \left(\left\lfloor \frac{t}{2} \right\rfloor + s - 1\right)\lambda + \left\lfloor \frac{t}{2} \right\rfloor \left(s - \left\lceil \frac{t}{2} \right\rceil - 1\right).$$

Consider the following equation:

$$f(\lambda) - g(\lambda) = \lambda^2 - (s-2)\lambda - \left\lfloor \frac{t}{2} \right\rfloor (s - \left\lceil \frac{t}{2} \right\rceil - 1)$$

which has the maximum real root

$$\alpha := \frac{s - 2 + \sqrt{(s - 2)^2 + 4\left(\left\lfloor \frac{t}{2} \right\rfloor \left(s - \left\lceil \frac{t}{2} \right\rceil - 1\right)\right)}}{2}$$

Since $2s - 7 \le t \le 2s - 4$, then

$$4(\beta + \alpha - (s - 3))(\beta - \alpha)$$

$$= (2\beta - (s - 3))^2 - (2\alpha - (s - 3))^2$$

$$= 6s - 8 - 4 \left\lfloor \frac{t}{2} \right\rfloor \left(s - \left\lceil \frac{t}{2} \right\rceil - 2 \right) - 2\sqrt{(s - 2)^2 + 4 \left(\left\lfloor \frac{t}{2} \right\rfloor \left(s - \left\lceil \frac{t}{2} \right\rceil - 1 \right) \right)}$$

$$> 0.$$

Note that $\beta + \alpha > (s-3)$ and $(\beta + \alpha - (s-3))(\beta - \alpha) > 0$, so $\beta > \alpha$. Since $f(\lambda) - g(\lambda) > 0$ for $\lambda > \alpha$, we have

$$-g(\beta) = f(\beta) - g(\beta) > 0,$$

hence $g(\beta) < 0$ and the maximum real root of $g(\lambda)$ is larger than which of $f(\lambda)$. On the other hand,

$$\phi\left(s-1, s-2, \left\lfloor \frac{e-(s-1)(s-2)}{2} \right\rfloor, 0\right) = \phi\left(s-2, s-2, \left\lfloor \frac{e-(s-2)(s-3)}{2} \right\rfloor, 0\right).$$

Then by Lemma 5.1 and 5.3,

$$\max\left\{\phi(k,k-1,e_1,0) \mid 1 \le k \le s-1, e_1 \le \left\lfloor \frac{e-k(k-1)}{2} \right\rfloor\right\} \le \phi\left(s, \left\lceil \frac{t}{2} \right\rceil, \left\lfloor \frac{t}{2} \right\rfloor, 0\right),$$

and

$$\max\left\{\phi(k,k,e_1,0) \mid 1 \le k \le s-2, e_1 \le \left\lfloor \frac{e-k(k-1)}{2} \right\rfloor\right\} \le \phi\left(s, \left\lceil \frac{t}{2} \right\rceil, \left\lfloor \frac{t}{2} \right\rfloor, 0\right),$$
for $2s-7 \le t \le 2s-4$.

6 $\rho(D)$ for $2s - 7 \le t \le 2s - 3, t \ne 0, 1$

For $D \in \mathscr{D}^{**}(e)$, Lemma 4.1 showed that ϕ is an upper bound of $\rho(D)$, and we have investigated some properties for ϕ in Section 5: Lemma 5.1 and 5.3 showed that ϕ is increasing as a function of k when D is in \mathscr{D}_2 and $\mathscr{D}_4 \cup \mathscr{D}_6$, respectively; Lemma 5.2 showed that ϕ of $D \in \mathscr{D}_3 \cup \mathscr{D}_5$ is less than which of $D \in \mathscr{D}_2$; Lemma 5.4 showed that ϕ has the maximum when $\ell - e_1 \leq 1$ for k(D) = s. Now we use these upper bounds to prove Conjecture 1.1 for e = s(s-1) + t, where $2s - 7 \leq t \leq 2s - 3$, $t \neq 0, 1$.

Fix e = s(s-1) + t for $2 \le t \le 2s - 1$, define D^* to be the digraph which is obtained from a clique of order s by adding a new vertex and t arcs from the new vertex to the clique with at most one arc being single-direction which is pointing to the clique.

Lemma 6.1. Let e = s(s - 1) + t be a positive integer with $2 \le t \le 2s - 1$. Then for any digraph D in $\mathscr{D}^{**}(e)$ with k(D) = s, we have $\rho(D) \le \rho(D^*)$ and equality holds if and only if $D \in \{D^*, D^{*t}\}$. Proof. Let ℓ' (resp. e'_1) denote the number of arcs in D which are from $\{s+1\}$ to [s] (resp. from [s] to $\{s+1\}$). And we might assume $\ell' \ge e'_1$ by considering D^t if necessary. Let ℓ (resp. e_1) denote the number of arcs from V(D) - [s] to [s] (resp. from [s] to V(D) - [s]). Note that $\ell' \le \ell$, $e'_1 \le e_1$ and $\ell + e_1 = t$ since k(D) = s. Then by Lemma 5.4,

$$\rho(D) \le \phi(s, \ell', e_1, 0) \le \phi(s, \ell, e_1, 0) \le \rho(D^*).$$

Note that $\ell = \ell'$ if and only if $D = D^*$ since the diagraphs are strongly connected. \Box

Theorem 6.2. Let e = s(s-1) + t be a positive integer with t = 2s - 3 and $t \neq 1$. Then $\rho(e) = \frac{(s-2) + \sqrt{(s+2)^2 - 12}}{2}$. Moreover, for $D \in \mathscr{D}(e)$, $\rho(D) = \rho(e)$ if and only if $D \in \{D^*, D^{*t}\}$.

Proof. Since e = s(s-1) + 2s - 3 and $s \neq 2$, $\mathscr{D}_1 = \emptyset$. For a digraph in \mathscr{D}_2 , the maximum upper bound $\phi\left(s, s-1, \left\lfloor \frac{e-s(s-1)}{2} \right\rfloor, 0\right)$ can be attained by D^* since $s-1 = \left\lceil \frac{t}{2} \right\rceil$. And by Lemma 5.2, $\rho(D) < \phi\left(s, s-1, \left\lfloor \frac{e-s(s-1)}{2} \right\rfloor, 0\right) = \rho(D^*)$ for $D \in \mathscr{D}_3 \cup \mathscr{D}_5$. On the other hand, for the digraph in $\mathscr{D}_4 \cup \mathscr{D}_6$ with clique number k = s - 1, the maximum upper bound $\phi\left(s-1, s-1, \left\lfloor \frac{e-(s-1)(s-2)}{2} \right\rfloor, 0\right)$ is equal to $\phi\left(s, s-1, \left\lfloor \frac{e-s(s-1)}{2} \right\rfloor, 0\right) = \rho(D^*)$ (notice that this upper bound can't be attained by the digraph in $\mathscr{D}_4 \cup \mathscr{D}_6$). Then by Lemma 5.3 and 6.1, $\rho(D) < \rho(D^*)$ for $D \in \mathscr{D}_4 \cup \mathscr{D}_6$.

Hence $\rho(D) \le \rho(D^*) = \frac{(s-2)+\sqrt{(s+2)^2-12}}{2}$ for D with e arcs, where e = s(s-1)+2s-3, $t \ne 0, 1$. That is, $\rho(e) = \frac{(s-2)+\sqrt{(s+2)^2-12}}{2}$. Moreover, by Theorem 3.4, $\rho(D) = \rho(e) = \frac{(s-2)+\sqrt{(s+2)^2-12}}{2}$ if and only if $D \in \{D^*, D^{*t}\}$.

Let e = s(s-1) + t, for $2s - 7 \le t \le 2s - 4$, $t \ne 0, 1$. Then by Lemmas 5.2, 5.5 and 6.1, we only need to consider D^* and the digraphs $D \in \mathscr{D}_4 \cup \mathscr{D}_6$, with k(D) = s - 1 for this problem. On the other hand, according to the proof of [5, Lemma 3.2], they showed that when k(D) = s, we may assume that |V(D)| = s + 1, and we can also prove the same result for k(D) = s - 1 by a similar proof. So for the following four theorems, we only consider the digraphs with s + 1 vertices. **Theorem 6.3.** Let e = s(s-1) + t be a positive integer with t = 2s - 4 and $t \neq 0$. Then $\rho(e) = \phi(s, s-2, s-2, 0)$, i.e. $\rho(e)$ is equal to the maximum real root of

$$\lambda^{3} - (s-2)\lambda^{2} - (2s-3)\lambda + (s-2).$$

Moreover for $D \in \mathscr{D}(e)$, $\rho(D) = \rho(e)$ if and only if $D \in \{D^*, D^{*t}\}$.

Proof. The digraph $D \in \mathscr{D}_4 \cup \mathscr{D}_6$ with k(D) = s - 1 and |V(D)| = s + 1 is unique, which has the spectral radius $\rho(D) = \phi(s - 1, s - 1, 2s - 4, 0)$. Recall that $\rho(D)$ is the maximum real root of

$$f(\lambda) = \lambda^2 - (s-2)\lambda - (2s-4),$$

and $\phi\left(s, \left\lceil \frac{t}{2} \right\rceil, \left\lfloor \frac{t}{2} \right\rfloor, 0\right) = \phi(s, s-2, s-2, 0)$ is the maximum real root of

$$g(\lambda) = \lambda^3 - (s-2)\lambda^2 - (2s-3)\lambda + (s-2).$$

Consider the following function

$$\lambda f(\lambda) - g(\lambda) = \lambda - (s - 2)$$

which has the root s - 2. Since s > 1, $s - 2 \le \rho(D)$. Then $-g(\rho(D)) = \rho(D)f(\rho(D)) - g(\rho(D)) > 0$ and $g(\rho(D)) < 0$, hence $\phi(s, s - 2, s - 2, 0) > \rho(D)$. We conclude that for $D \in \mathscr{D}(e), \ \rho(D) \le \phi(s, s - 2, s - 2, 0)$. Moreover, by Theorem 3.4 $\rho(D) = \phi(s, s - 2, s - 2, 0) = \rho(e)$ if and only if $D \in \{D^*, D^{*t}\}$.

Definition 6.4. Let $A^{(i)}$ denote an (s-1)-dimensional column vector with the first *i* entries be 1, and 0 otherwise. Let $A_{(j)}$ denote an (s-1)-dimensional row vector with the first *j* entries be 1, and 0 otherwise.

Theorem 6.5. Let e = s(s-1) + t be a positive integer with t = 2s - 5 and $t \neq 1$. Then $\rho(e) = \phi(s, s - 2, s - 3, 0)$, i.e. $\rho(e)$ is the maximum real root of

$$\lambda^{3} - (s-2)\lambda^{2} - (2s-4)\lambda + (s-3).$$

Moreover for $D \in \mathscr{D}(e)$, $\rho(D) = \rho(e)$ if and only if $D \in \{D^*, D^{*t}\}$.

Proof. There are two non-isomorphic digraphs D_1, D_2 in $\mathscr{D}_4 \cup \mathscr{D}_6$ with $k(D_1), k(D_2) = s-1$ and $|V(D_1)| = |V(D_2)| = s+1$, where

$$A(D_1) = \begin{pmatrix} J_{s-1} - I_{s-1} & A^{(s-2)} & A^{(s-3)} \\ A_{(s-1)} & 0 & 0 \\ A_{(s-1)} & 0 & 0 \end{pmatrix}, \quad A(D_2) = \begin{pmatrix} J_{s-1} - I_{s-1} & A^{(s-2)} & A^{(s-2)} \\ A_{(s-1)} & 0 & 0 \\ A_{(s-2)} & 0 & 0 \end{pmatrix}.$$

Moreover,

$$\rho(D_1) = \phi(s - 1, s - 1, 2s - 5, 0)$$

$$\rho(D_2) = \phi(s - 1, s - 2, 2s - 4, 1),$$

Compare $\rho(D^*)$, $\rho(D_1)$ and $\rho(D_2)$. Recall that $\rho(D^*)$, $\rho(D_1)$ and $\rho(D_2)$ are the maximum real roots of $f(\lambda)$, $g(\lambda)$ and $h(\lambda)$, respectively, where

$$f(\lambda) = \lambda^{3} - (s - 2)\lambda^{2} - (2s - 4)\lambda + (s - 3);$$

$$g(\lambda) = \lambda^{2} - (s - 2)\lambda - (2s - 5);$$

$$h(\lambda) = \lambda^{3} - (s - 3)\lambda^{2} - (3s - 6)\lambda - (s - 2).$$

For $\rho(D^*)$ and $\rho(D_1)$, consider the following equation

$$f(\lambda) - \lambda g(\lambda) = -\lambda + (s - 3) = 0,$$

which has a root s - 3 and $\rho(D_1) > s - 3$. Then $f(\rho(D_1)) - \rho(D_1)g(\rho(D_1)) < 0$ and $f(\rho(D_1)) < 0$. Hence $\rho(D^*) > \rho(D_1)$.

For $\rho(D^*)$ and $\rho(D_2)$, consider the following function

$$f(\lambda) - h(\lambda) = -\lambda^2 + (s-2)\lambda + (2s-5),$$

which has the same maximum real root as $g(\lambda)$, i.e. such a maximum real root is equal to $\rho(D_1)$. So $f(\lambda) - h(\lambda) < 0$ for $\lambda > \rho(D_1)$. Since $\rho(D^*) > \rho(D_1)$, $f(\rho(D^*)) - h(\rho(D^*)) < 0$ and $h(\rho(D^*)) > 0$. Hence the maximum real root $\rho(D_2)$ of $h(\lambda)$ is less than $\rho(D^*)$. We conclude that for $D \in \mathscr{D}(e)$, $\rho(D) \leq \rho(D^*) = \phi(s, s - 2, s - 3, 0)$. Moreover, by Theorem 3.4 $\rho(D) = \phi(s, s - 2, s - 3, 0) = \rho(e)$ if and only if $D \in \{D^*, D^{*t}\}$. **Theorem 6.6.** Let e = s(s-1) + t be a positive integer with t = 2s - 6 and $t \neq 0$. Then $\rho(e) = \phi(s, s - 3, s - 3, 0)$, i.e. $\rho(e)$ is the maximum real root of the following function

$$\lambda^3 - (s-3)\lambda^2 - (2s-4)\lambda + 2(s-3).$$

Moreover, for $D \in \mathscr{D}(e)$, $\rho(D) = \rho(e)$ if and only if $D \in \{D^*, D^{*t}\}$.

Proof. Assume that all of the digraphs have s + 1 vertices, then there are three nonisomorphic digraphs D_1, D_2 and D_3 in $\mathscr{D}_4 \cup \mathscr{D}_6$ with $k(D_1), k(D_2), k(D_3) = s - 1$, where

$$A(D_{1}) = \begin{pmatrix} J_{s-1} - I_{s-1} & A^{(s-2)} & A^{(s-4)} \\ A_{(s-1)} & 0 & 0 \\ A_{(s-1)} & 0 & 0 \end{pmatrix}, \quad A(D_{2}) = \begin{pmatrix} J_{s-1} - I_{s-1} & A^{(s-3)} & A^{(s-3)} \\ A_{(s-1)} & 0 & 0 \\ A_{(s-1)} & 0 & 0 \end{pmatrix},$$
$$A(D_{3}) = \begin{pmatrix} J_{s-1} - I_{s-1} & A^{(s-2)} & A^{(s-3)} \\ A_{(s-1)} & 0 & 0 \\ A_{(s-2)} & 0 & 0 \end{pmatrix},$$
nd

and

$$\rho(D_1) = \rho(D_2) = \phi(s - 1, s - 1, 2s - 6, 0) = \frac{s - 2 + \sqrt{(s + 2)^2 - 24}}{2}$$

Compare $\rho(D^*)$ and $\rho(D_1)$, and recall that $\rho(D^*) = \phi(s, s - 3, s - 3, 0)$ and $\rho(D_1) = \phi(s - 1, s - 1, 2s - 6, 0)$ are the maximum real roots of $f(\lambda)$ and $g(\lambda)$, respectively, where

$$f(\lambda) = \lambda^3 - (s-2)\lambda^2 - (2s-4)\lambda + 2(s-3);$$

$$g(\lambda) = \lambda^2 - (s-2)\lambda - (2s-6).$$

Consider the following function

$$f(\lambda) - \lambda g(\lambda) = -2\lambda + (2s - 6) = 0,$$

which has the root s - 3 and for $\lambda > s - 3$, $f(\lambda) - \lambda g(\lambda) < 0$. Since $\rho(D_1) > s - 3$, $f(\rho(D_1)) < 0$ and hence $\rho(D_1)$ is less than the maximum real root of $f(\lambda) = 0$, i.e. $\rho(D_1) < \rho(D^*)$.

Next, we compare $\rho(D^*)$ and $\rho(D_3)$. The adjacency matrix of D^* is

$$A(D^*) = \begin{pmatrix} J_{s-1} - I_{s-1} & A^{(s-1)} & A^{(s-3)} \\ A_{(s-1)} & 0 & 0 \\ A_{(s-3)} & 0 & 0 \end{pmatrix}.$$

Since $A(D^*)$ and $A(D_3)$ are nonnegative and irreducible, by Perron-Frobenius theorem, there exist a positive column vector $u = (u_1, u_2, \ldots, u_{s+1})^T$ and a positive row vector $v^T = (v_1, v_2, \ldots, v_{s+1})$ such that $A(D_3)u = \rho(D_3)u$ and $v^T A(D^*) = \rho(D^*)v^T$. Then

$$\begin{aligned} (\rho(D^*) - \rho(D_3))v^T u &= v^T (A(D^*) - A(D_3))u \\ &= v^T \begin{pmatrix} 0 & A^{(s-1)} - A^{(s-2)} & 0 \\ 0 & 0 & 0 \\ A^{(s-3)} - A^{(s-2)} & 0 & 0 \end{pmatrix} u \\ &= u_s v_{s-1} - u_{s-2} v_{s+1} \\ &= u_s (v_{s-1} - v_{s+1}) > 0, \end{aligned}$$

so $\rho(D^*) - \rho(D_3) > 0$, and hence $\rho(D^*) > \rho(D_3)$. We conclude that for $D \in \mathscr{D}(e), \rho(D) \le \rho(D^*) = \phi(s, s-3, s-3, 0)$. Moreover, by Theorem 3.4, $\rho(D) = \phi(s, s-3, s-3, 0) = \rho(e)$ if and only if $D \in \{D^*, D^{*t}\}$.

Theorem 6.7. Let e = s(s-1) + t be a positive integer with t = 2s - 7 and $t \neq 1$. Then $\rho(e) = \phi(s, s - 3, s - 4, 0)$, i.e. $\rho(e)$ is the maximum real root of the following function

$$\lambda^3 - (s-2)\lambda^2 - (2s-5)\lambda + 2(s-4).$$

Moreover, for $D \in \mathscr{D}(e)$, $\rho(D) = \rho(e)$ if and only if $D \in \{D^*, D^{*t}\}$.

Proof. Assume that all of the digraphs have s + 1 vertices, then there are five nonisomorphic digraphs D_1, D_2, D_3, D_4 and D_5 in $\mathscr{D}_5 \cup \mathscr{D}_6$ with $k(D_1), k(D_2), k(D_3), k(D_4), k(D_5) =$ s-1, where

$$\begin{split} A(D_1) &= \begin{pmatrix} J_{s-1} - I_{s-1} & A^{(s-2)} & A^{(s-5)} \\ A_{(s-1)} & 0 & 0 \\ A_{(s-1)} & 0 & 0 \end{pmatrix}, \quad A(D_2) = \begin{pmatrix} J_{s-1} - I_{s-1} & A^{(s-3)} & A^{(s-4)} \\ A_{(s-1)} & 0 & 0 \\ A_{(s-1)} & 0 & 0 \\ A_{(s-2)} & 0 & 0 \end{pmatrix}, \quad A(D_4) = \begin{pmatrix} J_{s-1} - I_{s-1} & A^{(s-3)} & A^{(s-3)} \\ A_{(s-1)} & 0 & 0 \\ A_{(s-2)} & 0 & 0 \end{pmatrix}, \\ A(D_5) &= \begin{pmatrix} J_{s-1} - I_{s-1} & A^{(s-2)} & A^{(s-3)} \\ A_{(s-1)} & 0 & 0 \\ A_{(s-3)} & 0 & 0 \end{pmatrix}, \end{split}$$

and

$$\rho(D_1) = \rho(D_2) = \phi(s-1, s-1, 2s-7, 0) = \frac{s-2 + \sqrt{(s+2)^2 - 28}}{2}.$$

Compare $\rho(D^*)$ and $\rho(D_1)$, and recall that $\rho(D^*) = \phi(s, s - 3, s - 4, 0)$ and $\rho(D_1) = \phi(s - 1, s - 1, 2s - 7, 0)$ are the maximum real roots of $f(\lambda)$ and $g(\lambda)$, respectively, where

$$f(\lambda) = \lambda^3 - (s-2)\lambda^2 - (2s-5)\lambda + 2(s-4);$$

$$g(\lambda) = \lambda^2 - (s-2)\lambda - (2s-7).$$

Consider the following function

$$f(\lambda) - \lambda g(\lambda) = -2\lambda + (2s - 8),$$

which has the root s - 4 and for $\lambda > s - 4$, $f(\lambda) - \lambda g(\lambda) < 0$. Since $\rho(D_1) > s - 4$, $f(\rho(D_1)) < 0$ and hence $\rho(D_1)$ is less than the maximum real root of $f(\lambda) = 0$, i.e. $\rho(D_1) < \rho(D^*)$.

Next, we compare $\rho(D_4)$ with $\rho(D_5)$. Since $A(D_4)$ and $A(D_5)$ are nonnegative and irreducible, there exist a positive column vectors y and a positive row vector x^T such that $A(D_4)y = \rho(D_4)y$, $A(D_5)x = x^T\rho(D_5)$. Then

$$(\rho(D_5) - \rho(D_4))x^T y = x^T (A(D_5) - A(D_4))y > 0$$

and hence $\rho(D_5) > \rho(D_4)$.

Finally, we discuss $\rho(D_3)$, $\rho(D_5)$ and $\rho(D^*)$. The adjacency matrix of D^* is

$$A(D^*) = \begin{pmatrix} J_{s-1} - I_{s-1} & A^{(s-1)} & A^{(s-4)} \\ A_{(s-1)} & 0 & 0 \\ A_{(s-3)} & 0 & 0 \end{pmatrix}.$$

Since $A(D_3)$, $A(D_5)$ and $A(D^*)$ are nonnegative and irreducible, by Perron-Frobenius theorem, there exist two positive column vectors u, w and two positive row vectors v^T , z^T such that $A(D_3)u = \rho(D_3)u$, $A(D_5)w = \rho(D_5)w$ and $v^T A(D^*) = \rho(D^*)v^T$. Then

$$(\rho(D^*) - \rho(D_3))v^T u = v^T (A(D^*) - A(D_3))u > 0;$$

$$(\rho(D^*) - \rho(D_5))v^T w = v^T (A(D^*) - A(D_5))w > 0,$$

so $\rho(D^*) - \rho(D_3) > 0$ and $\rho(D^*) - \rho(D_5) > 0$, and hence $\rho(D^*) > \rho(D_3)$ and $\rho(D^*) > \rho(D_5)$. We conclude that for $D \in \mathscr{D}(e)$, $\rho(D) \le \rho(D^*) = \phi(s, s - 3, s - 4, 0)$. Moreover, by Theorem 3.4 $\rho(D) = \phi(s, s - 3, s - 4, 0) = \rho(e)$ if and only if $D \in \{D^*, D^{*t}\}$. \Box

7 A lower bound of the spectral radius of the digraph in $\mathscr{D}^{**}(e)$

Definition 7.1. Let *B* be an $n \times n$ matrix and let $\Pi = \{\pi_1, \pi_1, \ldots, \pi_k\}$ be a partition of [n]. Let $B_{a,b}$ be the $|\pi_a| \times |\pi_b|$ submatrix of *B* formed by the rows in π_a and the columns in π_b , where $1 \leq a, b \leq k$. The $k \times k$ matrix $\Pi(B) := (\pi_{ab})$, where π_{ab} is the average row sum of $B_{a,b}$, is called the *quotient* matrix of *B* with respect to Π .

With the notation in Definition 7.1, we can write $\Pi(B)$ as

$$\Pi(B) = (S^T S)^{-1} S^T B S,$$

where $S = (s_{ij})$ is an $n \times k$ matrix with

$$s_{ij} = \begin{cases} 1, & \text{if } i \in \pi_j; \\ 0, & \text{otherwise.} \end{cases}$$

It is known that $\rho(\Pi(A)) \leq \rho(A)$ for any symmetric matrix A. For particular types of partition Π and non-symmetric matrix A, we have the following similar result.

Theorem 7.2. Let $D \in \mathscr{D}^{**}(e)$ with the adjacency matrix A and let $\Pi = \{\{1\}, \{2\}, \ldots, \{k\}, \{k+1, \ldots, n\}\}$ be a partition of [n], where k is the clique number of D. Then $\rho(\Pi(A)) \leq \rho(A)$, where $\Pi(A)$ is the quotient matrix of A with respect to Π .

Proof. Since $\Pi(A)$ is the quotient matrix of A with respect to Π , $\Pi(A)$ is a $(k+1) \times (k+1)$ matrix and

$$\Pi(A) = (S^T S)^{-1} S^T A S, \tag{12}$$

where $S = (s_{ij})$ is an $n \times (k+1)$ matrix with

$$s_{ij} = \begin{cases} 1, & \text{if } i = j \text{ or } (i \in ([n] - [k]) \text{ and } j = k+1); \\ 0, & \text{otherwise,} \end{cases}$$

Since A is nonnegative and irreducible, by Perron-Frobenius theorem, there exists a positive vector $u = (u_1, u_2, ..., u_n)^T$ such that $\rho(A)u = Au$, then $(\rho(A) + 1)u = (A + I)u$. By the computation of $(\rho(A) + 1)u = (A + I)u$, we have

$$\frac{u_{k+1} + \dots + u_n}{n-k} \le \frac{u_{k+1} + \dots + u_{k+(d_i-k+1)}}{d_i - k + 1},\tag{13}$$

where d_i is the out-degree of vertex *i*. Let $u' = (u_1, u_2, \ldots, u_k, \frac{u_{k+1} + \cdots + u_n}{n-k})^T$, multiplying u' to the right of both terms in (12):

$$\Pi(A)u' = (S^T S)^{-1} S^T A S u'.$$
(14)

By (13), $ASu' \leq Au$ and then (14) will be

$$\Pi(A)u' = (S^T S)^{-1} S^T A S u' \le (S^T S)^{-1} S^T A u = \rho(A) (S^T S)^{-1} S^T u.$$
(15)

Since $\Pi(A)$ is nonnegative and irreducible, by Perron-Frobenius theorem again, there exists a positive vector $y^T = (y_1, y_2, \dots, y_{k+1})$ such that $\rho(\Pi(A))y^T = y^T \Pi(A)$. Multiplying y^T to the left of all terms in (15), then

$$\rho(\Pi(A))y^{T}u' = y^{T}\Pi(A)u' \le y^{T}(S^{T}S)^{-1}S^{T}Au = \rho(A)y^{T}(S^{T}S)^{-1}S^{T}u.$$
 (16)

Note that $y^T u' = y^T (S^T S)^{-1} S^T u$ and it is positive. Deleting this term in both sides of (16) leads to $\rho(\Pi(A)) \le \rho(A)$ and the proof is completed. \Box

Corollary 7.3. Let A be the adjacency matrix of D, where $D \in \mathscr{D}^{**}(e)$. Let $\Pi = \{\{1\}, \{2\}, \ldots, \{k\}, \{k+1, \ldots, n\}\}$ and $\Pi' = \{\{1, 2, \ldots, k\}, \{k+1\}\}$ be partitions of [n]and [k+1], respectively, where k is the clique number of D. Then $\rho(\Pi'(\Pi(A)^T)) \leq \rho(A)$, where $\Pi'(\Pi(A)^T)$ is the quotient matrix of $\Pi(A)^T$ with respect to Π' .

Proof. Since $\Pi'(\Pi(A)^T)$ is the quotient matrix of $\Pi(A)^T$ with respect to $\Pi', \Pi'(\Pi(A)^T)$ is a 2 × 2 matrix and

$$\Pi'(\Pi(A)^T) = (S^T S)^{-1} S^T \Pi(A)^T S,$$
(17)

where $S = (s_{ij})$ is a $(k+1) \times 2$ matrix with

$$s_{ij} = \begin{cases} 1, & \text{if } (i,j) \in [k] \times \{1\} \text{ or } (i = k+1 \text{ and } j = 2); \\ 0, & \text{otherwise,} \end{cases}$$

Since $\Pi(A)^T$ is nonnegative and irreducible, by Perron-Frobenius theorem, there exist a positive vector $u = (u_1, u_2, \ldots, u_{k+1})^T$ such that $\Pi(A)^T u = \rho(\Pi(A)^T)u$. Let $u' = (\frac{\sum_{i=1}^k u_i}{k}, u_{k+1})^T$. It is easy to see that $\Pi(A)^T Su' \leq \Pi(A)^T u$. Multiplying u' to the right of both terms in (17), we have

$$\Pi'(\Pi(A)^T)u' = (S^T S)^{-1} S^T \Pi(A)^T Su' \le (S^T S)^{-1} S^T \Pi(A)^T u = \rho(\Pi(A)^T) (S^T S)^{-1} S^T u.$$
(18)

Since $\Pi'(\Pi(A)^T)$ is nonnegative and irreducible, by Perron-Frobenius theorem again, there exist a positive y^T such that $\rho(\Pi'(\Pi(A)^T))y^T = y^T\Pi'(\Pi(A)^T)$. Multiplying y^T to the left of all terms in (18), then

$$\rho(\Pi'(\Pi(A)^T))y^T u' = y^T \Pi'(\Pi(A)^T)u' \le \rho(\Pi(A)^T)y^T (S^T S)^{-1} S^T u.$$
(19)

Note that $y^T u' = y^T (S^T S)^{-1} S^T u$ and it is positive. Deleting this term in both sides of (18) leads to $\rho(\Pi'(\Pi(A)^T)) \leq \rho(\Pi(A)^T)$, then by Theorem 7.2, we have

$$\rho(\Pi'(\Pi(A)^T)) \le \rho(\Pi(A)^T) = \rho(\Pi(A)) \le \rho(A),$$

and finish the proof is completed.

Remark 7.4. The matrix $\Pi'(\Pi(A)^T)$ in Corollary 7.3 is

$$\begin{pmatrix} & & \sum_{i=k+1}^{n} d_i \\ k-1 & & \frac{i=k+1}{(n-k)k} \\ \sum_{i=1}^{k} (d_i - k + 1) & 0 \end{pmatrix},$$

which has the characteristic polynomial

$$f(\lambda) = \lambda^2 - (k-1)\lambda - \frac{a_1a_2}{(n-k)k},$$

where

$$a_1 = \sum_{i=1}^{k} (d_i - k + 1), \quad a_2 = \sum_{i=k+1}^{n} d_i.$$

Corollary 7.5. Let $D \in \mathscr{D}^{**}$ be a digraph with n vertices and k(D) = k, then

$$\rho(D) \ge \frac{k - 1 + \sqrt{(k - 1)^2 + 4\frac{a_1 a_2}{(n - k)k}}}{2}$$

where $a_1 = \sum_{i=1}^{k} (d_i - k + 1), a_2 = \sum_{i=k+1}^{n} d_i.$

Proof. This is proved immediately by Corollary 7.3 and Remark 7.4.

8 Conclusion

In this thesis, we give some upper bounds for the digraphs with e arcs, where $e \in \mathbb{N}$, and compare these bounds to prove that the maximum spectral radius of a simple digraph D with e arcs and without isolated vertices occurs when $D \in \{D^*, D^{*t}\}$ for e = s(s-1)+t, $2s - 7 \le t \le 2s - 3$ and $t \ne 0, 1$. But for $\sqrt[4]{\frac{s-4}{4}} \le t \le 2s - 8$, it remains open. In the last section, we also give a lower bound of the spectral radius of a digraph through the concept of quotient matrix.

In our research, we obtain a weaker restriction of e_1 in Lemma 5.1 and Lemma 5.3, and get larger upper bounds to solve the problem, so there are a few cases for t can be solved.

If we narrow down the range of e_1 , we believe that the conjecture can be solved by using Lemma 5.1 and Lemma 5.4 only, but the problem of the increasing of $\phi(k, k - 1, e_1, 0)$ should be considered carefully.

References

- [1] A.-E. Brouwer, W.-H. Haemers, Spectra of Graphs. Springer, 2012
- [2] R.-A. Brualdi, A.-J. Hoffman, On the spectral radius of (0, 1)-matrices. *Linear Algebra Appl.*, 65 (1985) pp.133–146.
- [3] Y.-J. Cheng, C.-W. Weng, A matrix realization of spectral bounds of the spectral radius of a nonnegative matrix. arXiv:1711.03274, preprint
- [4] S. Friedland, The maximal eigenvalue of 0-1 matrices with prescribed number of ones, *Linear Algebra Appl.*, 69 (1985) 33-69.
- [5] Y.-L. Jin, X.-D. Zhang, On the spectral radius of simple digraphs with prescribed number of arcs. *Discrete Math.*, 338 (2015), pp.1555-1564
- [6] P. Rowlinson, On the maximal index of graphs with a prescribed number of edges, *Linear Algebra Appl.*, 110 (1988) 43-53.