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Simple digraph analogue of Brualdi-Hoffman-conjecture
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abstract

An arc ab is single-direction if ba is not an arc in a digraph. Let e be a positive
integer. Then there is a unique pair (s,t) of integers such that e = s(s — 1) + ¢,
where s is positive and 0 < t < 2s—1. For 2s—7 <t <2s—3 and t # 0, 1, we prove
that the maximum spectral radius of a simple digraph D with e arcs and without
isolated vertices is when D is obtained from complete digraph K) by adding a new
vertex = and ¢ arcs, connecting x and L%J vertices in 2 with at most one arc being

single-direction.
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1 Introduction

The digraphs in this thesis are simple without loops and without isolated vertices.
Given a digraph D, the spectral radius of D is the spectral radius of its adjacency matrix,
denoted by p(D). Let e be a positive integer and let Z(e) be the set of all simple digraphs
with e arcs. The function p(e) is defined to be the largest spectral radius of a digraph in
P(e), that is

ple) = max{p(D) | D € 7(e)}. 1)

It is immediate from the above definitions that p(0) = 0, p(1) = 0, p(2) = 1 and
p(3) = 1. Moreover, there are three non-isomorphic diagraphs with 3 arcs and spectral
radius 1: (1) Adding a new vertex to a clique of order 2 and a single-direction arc from a
vertex in the clique to the new vertex; (2) Adding a new vertex to a clique of order 2 and
a single-direction arc from the new vertex to a vertex in the clique; (3) A directed cycle

of order 3. Indeed their adjacency matrices (after suitable reordering of the vertices) are

011 010 010
100,11 0 O0-]0 01
000 1 00 100

Brualdi-Hoffman conjectured that the maximum spectral radius of a simple undirected
graph with e edges is attained by adding a new vertex if necessary which is adjacent to the
corresponding number of vertices of a complete graph and possibly adding some isolated
vertices [2]. This conjecture was proved by Rowlinson in [6]. The following is the simple

digraphs analogue of Brualdi-Hoffman-conjecture.

Conjecture 1.1. For integer e # 3, the maximum spectral radius of a simple digraph D
with e arcs is when D is obtained from a clique by adding a new vertex if necessary and
the corresponding number of arcs between the new vertex and some vertices in the clique

with at most one arc being single-direction.



For a positive integer e, there is a unique pair (s,t) such that e = s(s — 1) + ¢, where
s is positive and 0 < t < 2s—1. In 2015, Jin and Zhang [5] proved Conjecture 1.1 for the
cases t = 0,1,25s — 2,25 — 1 and s > 4t* + 4. In this paper, we prove Conjecture 1.1 for
2s =7 <t <2s—3and t #0,1. Hence Conjecture 1.1 is solved for e < 21 and remains
open for ¢ %§t§25—8.

This thesis is organized as follows. In Section 2, we introduce notations used in this
thesis and recall some basic concepts. In Section 3, we give a theorem that will be
used in following sections. Section 4 gives some upper bounds of the spectral radius of
the digraphs which we are concerned and we investigate properties of these bounds in
Section 5. Section 6 talks about how we find p(e) and characterize the extremal digraphs.
To complementize, we also give a lower bound of the spectral radius of a digraph in

Section 7.

2 Notation and Preliminaries

Let [n] = {1,2,...,n}. Let D be a digraph with the vertex set V(D) = [n] and the
arc set E(D) = {ij | i # jandi,j € V(D)}. The dual graph D' of D is the digraph
with the vertex set V(D) and arc set E(D') = {ji | ij € E(D)}. The adjacency matriz
A(D) = (a;;) of D is defined by

1, ifij € B(D);

aij =
0, otherwise.

The spectral radius of a square matrix A is defined by
p(A) = max{|A| | A is an eigenvalue of A}.

Recall that the spectral radius of a digraph D is the spectral radius of its adjacency
matrix A(D), denoted by p(D). Note that the spectral radius p(D) is independent of the
ordering of the vertex set of D, and p(D*) = p(D). For a vertex i € V(D), the out-degree



d; of i is defined to be the size of the set {j | ij € E(D)}. A clique of order k in D is a

subgraph that contains k(k — 1) arcs.

2.1 The set 2**(e)

Let 2**(e) denote the set of all simple strongly connected digraphs with e arcs whose

vertex set [n| can be arranged such that
(i) If ij € E(D) then i¢ € E(D) for ¢ < j and ¢ # i; and
(i) NT(@)\{j} 2 NT(j) \ {i} for 1 <i < j <n, where NT(i) = {k | ik € E(D)}.

As before let e = s(s — 1) +t and 0 <t < 2s — 1. Jin and Zhang [5, Proposition 2.5]
showed that if ¢ # 1 and p(D) = p(e), then D € 2**(e). Let D € Z**(e) and the vertex
set V(D) = [n] be arranged to satisfy (i)-(ii) above. Since D is strongly connected, the
out-degrees of 1 and n satisfy d; =n—1 and d,, > 1. Let k be the maximum integer such
that the subgraph of D induced on [k] is a clique. Then d; > k — 1 for i < k. Moreover,

either k = n or at least one of D and D' whose vertex k + 1 has out-degree dp; < k — 1.

The spectral radius p(D) of the diagraph D satisfying d; > k — 1 for i < k and
E(D) N ([n] = [k]) x ([n] = [(]) = 0, (2)

where ¢ < k will be studied in Theorem 3.4.

3 The upper bound ¢(k,/, ey, es)

For integers 1 < ¢ < k < n and nonnegative integers d, with i € [k], the spectral

radius of the following n x n matrix C' = (Cy;)nxn

0, if i = jor (i,5) € ([n] — [K]) x ([n] = [€]);
Cij=9 d,—(n—1—k), if1<i<k,j=n; (3)
1, otherwise.

will serve as an upper bound of spectral radius in the main theorem of this section.
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Remark 3.1. If ¢/ < k then the matrix C' in (3) has eigenvalue —1 with multiplicity
k — 2, eigenvalue 0 with multiplicity n — k — 1 and the remaining three eigenvalues are

the eigenvalues of the following matrix

(-1 k-4 1

14 k—¢—-1 0], (4)
¢ k
dodi o dp 0
i=1 i=0+1
whose characteristic polynomial is
fFO) =X —(k—=2)A* — (e; +k — D)X\ —leg +ey(k— € — 1), (5)

where

14 k
€1 = Zd;, €a = Z d; (6)
i=1

i={+1

For the case ¢ = k, the matrix C'in (3) has eigenvalue —1 with multiplicity k—1, eigenvalue
0 with multiplicity n — k — 1zp and the remaining two eigenvalues are the eigenvalues of

the following matrix

E—1 1
K : (7)
> di 0
i=1
whose characteristic polynomial is
FO) = A2 = (k=)A= ey, (8)

Since the matrices in (4) and (7) are nonnegative with an eigenvalue at least k — 1, p(C')
is still the largest real eigenvalue of C' and p(C') = p(C + I) — 1, despite that C' is not

necessarily nonnegative in general, where [ is the n X n identity matrix.

Definition 3.2. Let ¢(k, ¢, e, e5) denote the spectral radius of the matrix C' in (3), where

1 <?¢<kand e, ey >0 are defined in (6).

Hence ¢(k, ¥, e1, es) is the maximum real root of the cubic polynomial in (5) if £ < k,

and ¢(k, k,eq,0) is the maximum real root of the quadratic polynomial in (8).

4



Definition 3.3. For real matrices M = (M;;) and M’ = (Mj;), we write M < M' if
M;; < Mj; for all 4, j.

Theorem 3.4. Let D be a strongly connected digraph of order n such that there exists
1 <l <Fk<nwithE(D)N([n]—[k]) x ([n] = [(]) =0. Let A= A(D) and C = (Cy;) be
as in (3) with

di:={j €] - [k |ij e E(D)}|  (i€l[k])
Then p(A) < p(C) = ¢(k,l,e1,e2). Moreover, p(A) = p(C) if and only if Ay, = Cys for

1<t<nandl <s<k.
Proof. Let @ = (Q;;) be the n x n matrix with

Qs — L ifi=j€n]or(i,5) € ([n— 1] = [k]) x {n};

0, otherwise.

Then the inverse of () has entries

1, ifi=j € n;

Q' =4 ~L i (i.J) € (-1~ [K]) x {n};

0, otherwise.
Note that AQ (resp. CQ) has the same columns as A (resp. C) except that the last
column of AQ (resp. CQ) is (d},dy,...,d,,0,...,0)T, which is the sum of the last n — k
columns of A (resp. C'). Hence

AQ < CQ. 9)

Note that Q@~'(C + I)Q has the same first k rows and the same last row as (C' + I)Q
has. The remaining n — 1 — k rows of Q7 *(C + I)Q are obtained by subtracting the last
row from the corresponding row of (C' + I)Q. Hence Q=1 (C + I)Q is nonnegative. Then
there exists a nonnegative and nonzero column vector u = (uy,us, ..., u,)T such that
QY(C + IQu = p(C + I)u, which implies CQu = (p(C + I) — 1)Qu = p(C)u. By (9)
and since u is nonnegative,

AQu < CQu = p(C)Qu. (10)

5



Since A is irreducible, there exists a positive row vector v # 0 such that v7' A = p(A)vT.

Multiplying v* to the left of all terms in (10), we have
(A Qu = v AQu < vTCQu = p(C)v" Qu. (11)

Since Qu is nonnegative and v’ is positive, the term v7Qu is a positive. Delete v Qu in

both sides of (11) to obtain p(A) < p(C') and finish the proof of the first part.

Suppose p(A) = p(C). Then vT AQu = vTCQu in (11). Since v” is positive, AQu =
CQu. Solving u from Q~'(C' + I)Qu = p(C + I)u, we find u; = 0 for i € [n — 1] — [K]
directly and u; > 0 for j € [k] U {n} since d; > 0. Hence A;; = (AQ)s = (CQ)1s = Cis
for (t,s) € [n] x [k].

Conversely, if A;; = Cys for for (¢, s) € [n] x [k], then AQu = CQu, and inequality in

(11) is equality, which implies p(A) = p(C) as in the first part. O

4 A partition of 2**(e)

Let e = s(s—1)+tand 0 <t < 2s—1. We want to determine p(e). By Jin and
Zhang’s result [5], for the case t # 1, it suffices to consider the digraphs in the set 2**(e).
For D € 2**(e), let k = k(D) denote the largest integer ¢ such that the subgraph of D
induced on [¢] is a clique. Recall that d; = d;(D) is the out-degree of node 7 in D. Note
that k = k(D) = k(D"), and either dyy; < dj or dpyq = dp + 1 = k from the definition of
k. Let d! := d;(D"), and we will use the notation

e = ndt.ande: nd»
T Z’ d Zz;

i=k+1 i=k+1



where n is the number of vertices of D. We assume t # 0,1 and partition 2**(e) into six

families:

D = {DeP*()|dps1 <dp,<k—1le, <k—1lande; <k—1};
Dy = {DeP*(e)|dpr1 <dy<k—1 ande, >k —1ore; >k—1};
D5 = {DeP*e)|dps1=dr+1=k, and ey < e,.};

9, = {DeP*e)|dp1=dr+1=k, and eg > e, };

Ps = {DeP™e)|d,,=d,+1=k, and e, < eq};

PDs = {De2%(e)|d,,=d,+1=k, and e, > e4}.

The adjacency matrix of D € Z; for i € [6] will be:

01 - 1
10 1 4
12
11 0
A(D): )
00 - 0
00 - 0
An
00 - 0

where there are e, and e4 1’s in A5 and Asq, respectively.

Note that the condition dyy1 < dp < k — 1 is equivalent to a1 = apy1 = 0,
where a,, is the entry of the adjacency matrix of D. Hence for i € 2], D € Z; implies
D' € 9;. The condition dy,1 = d, + 1 =k and ¢4 < e, (resp. eq > e,) is equivalent to
di, =d,+1=kFkand e, <eq (resp. e, > e4). Hence for i € {3,4}, D € 2, if and only
if D' € 9;.5. For each family %; and D € %;, we apply Theorem 3.4 to get a suitable
matrix C (in (3)) with p(D) < p(C).

Lemma 4.1. (i) Assume D € 2y. Then k = s. Moreover, if V(D) = [s + 1], then



p(D) = ¢<S7€7 617()); where

¢ =max(eq,€,), e; =min(ey,e,).

(i) Assume D € Dy. Then p(D) < ¢(k,k —1,e1,0), where
e; = min(ey, €,).

Moreover, ifdj = k—1 and ey = e, (ord; =k—1 ande; = eg) for any j € [n] —[k],
then p(D) = ¢(k,k — 1,e1,0).

(iii) Assume D € D5 (resp. D € D). Then p(D) < ¢(k,k —1,ey,e2), where

eo=d, —k+1l,e,=—exsteg (resp.ea=d,—k+1e =—ey+e,).

(iv) Assume D € Dy (resp. D € D). Then p(D) < ¢(k, k,e1,0), where
e = e, (resp. e1 = eg).

Moreover, if dj = k and e; = e, (or d: =k and e; = eq) for any j € [n] — [k], then
p(D) = ¢(k7 k?,€170)-

Proof. We will use the property p(D) = p(D") and apply Theorem 3.4 to the diagram D
if e, < eg, and to the diagraph D' otherwise. We define the matrix C' in (3) by setting
k = k(D) = k(D") and ¢ in case (i) as claimed, £ = k — 1 in cases (ii)-(iii), and ¢ = k in
case (iv). The last parameter d; is either d; — k + 1 or d! — k + 1 according to which D

or D' is applied. The lemma follows from Theorem 3.4 by the above setting. [

5 The shape of ¢(k,?, e, es)

Let e = s(s— 1)+t be a positive integer, where 0 <t < 2s—1 and s > 1. We want to
determine the maximum value of ¢(k, ¢, e1, e5) subject to k(k — 1) + £+ ey + e3 < e and
e1+ey < {%J . Hopefully this value is p(e) and is when k = s, e = 0 and e; + ¢ = ¢.

In this section we will investigate some properties of ¢ for each Z;, where i € [6].
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Lemma 5.1. Assumet > s— 1. Then

max{gb(k,k:—l,el,O) I kels],0<e < {%J} :gb(s,s—l, EJ ,0).

Proof. From Definition 3.2, ¢(k, k — 1, e1,0) is the maximum root of the function f(\) =
A — (k—2)A\? — (e; + k — 1))\, which appears in (5) with £ = £ — 1 and e; = 0. By
the assumption, e; < L%":_I)J, and with equality and when k = s, we have e; = L%J

Hence,

¢(k?,k—1,el,()):(k_2)+\/(k—2)2+4(61+k_1)

2
(B =2) + VE + 4e
2
e—k(k—1

(k —2) + \/k:2+4 {%J
<
- 2

(s—2)+4/s2+4|L]
= 2

i)

where the second inequality follows from the increasing of its previous term as a function

of £k when k <1+ e+%andk:sisinthisrange. O

Lemma 5.2. Suppose k < s—1<t e;+ey < # and es > 1. Then

¢(k7k_1761,62) <¢<k7k_17 \‘#J 7O> .

Moreover,

max{p(k,k —1,e1,e9)} < ¢ (s, s—1, EJ ,O) )

Proof. Let

FO) =X — (k= 2)\% — Q—e - k(zk - 1>J +k— 1) A;

g\) =X — (K =2)N — (e + k — DA — (k — 1)eq,



where
e—k(k—1)

k21,€1+62={ 9

J and ey, > 1.

Consider the following function

FO) —g(\) = (61 - LWD At (k—1es = ea(k — 1 — N),

which has a root a:= k — 1. And f(\) has the maximum real root:

(k—2)+\/(k—2)2+4([#J +k:—1>

B = 5
e—k(k—1)
(k—2)+\/k2+4{TJ
N 2
-2
>w:k_1:a7

so —g(8) = f(B) —g(B) <0 and g(5) > 0.
Since f(A) —g(\) is linear and g(5) > 0, the maximum real root of f(\) is larger than

g(A\). On the other hand, the maximum real root of a cubic equation is increasing when
e—k(k—1)

the linear term and the constant term decrease, so ¢(k,k—1,eq1,ey) for e; + ey < 5
and ey > 1 has the maximum when e; + ey = {#J . Recall that ¢(k,k—1, e, eq) for
e1+es = L%J is the maximum real root of g(\) = 0, and ¢ (k:, k—1, {%J ,0)

is the maximum real root of f(\) = 0, we complete the proof of the first part. The second

part immediately follows from the result of first part and Lemma 5.1

Lemma 5.3. Suppose t > s. Then

max{<;§(k,k,el,0) | ke[s],0<e < {#J} - (3,3, EJ ,o) .

Proof. From Definition 3.2, ¢(k, k, ey, 0) is the maximum real root of the function f(\) =

A2 — (k — 1)\ — e1, which appears in (8). By the assumption, ¢; < {#J, and with

10



equality and when £ = s — 1, we have e; = L%J Hence

(k- 1)+ /(k - 1)? + e,
2

(k—1)+ \/(k: —1)2 414 {e—k(Qk—l)J
2

(s —2) + \/ (s —2)2+4 {—e—@—;ﬂs—ﬂ

o(k, k,eq1,0) =

<

<

2
5=+ /(s -2+ |22
B 2

t+2s—2
:¢(S_178_17 \‘—FTSJ?O)>

where the second inequality follows from the increasing of its previous term as a function

of k£ when k < e—i—% and k£ = s — 1 is in this range.
On the other hand, for £k = s — 1 and k = s, define

a::qs(s_l,s_l, {ww):<s—2>+¢<s—2>2+4t%$

2 2 ’
- 1)+ —1)2+4]|1L
5¢:¢<8787H»0)=(8 )\/(8 ) bJ‘
2 2
Since
2(5—a)(5+a—s+2):\/(5—1)2+4H—s+1>o
and
—-1)+ —1)2+4|L —2)+4/s2+4]L
PO R R T N AR T
so 8 > a and hence ¢(k, k, e1,0) reaches the maximum when k = s and 61:L%J ]

Lemma 5.4. We have

t

max {§(s,f,e1,0) | 1 < ey << 5,04 e =t} =¢(87 H ’ EJ ’0).

Proof. For ¢ < s — 1, recall that ¢(s,¢,e;,0) is the maximum real root of the following

function

NM—(s=2)A —(e1+s—DA+e(s— 1),

11



and the maximum real root of a cubic polynomial with positive leading coefficient is
increasing when the constant term decreases. Consider the constant term of this equation,
eif(s—0—1) =(e—s(s—1)=0)(s—(—1)
=0+ ((s—1)—e)l+(s— 1,

e—(s—1)2
2 )

which is a quadratic polynomial of ¢ and has the minimum value when ¢ = SO

e—s(s—1) e—(s—1)2
(-1) e—ls=1)?)

we can narrow down the range of £ to £ € [—5—, =3

Let (e1,¢;) and (e, f3) be two pairs which satisfy the condition of e; and ¢ above
and assume e; > ep (and hence 1 < ey < e < {1 < 5 < s —1). Then we have two

polynomials:
FO) =X = (s=2)A = (es +s— DA +ei(s — 0 — 1),
g\) =N — (s —=2)A* — (ea + 5 — D)A +ea(s — by — 1),
and
FO) = g(\) = (e — en)A + (e1 — e)(s — 1) + ealy — €10y

Let Ag be the root of f(\) — g(A), then
(e1 —e2)(s — 1) + ealy — 1ty

(e1 —e9)
(e1 —ea)(s — 1)+ (er —ea)(es — lo)
(e1 — e2)

Ao =

=s—1+e —¥3>0.
and then
Fo) =X —(s=2)A —(e1+s— Ao +er(s— 0 —1)
= Xo’(e1 — £y) + Xoler — £y) —er(er — Ly + £1)
= Ao’(e1 — £y) + Xoler — £y) —ejes < 0.

Since f(Ag) < 0, the maximum real root « of f(A) is larger than Ag. Then f(a)—g(a) <0

and g(a) > 0, hence the maximum real root of g(\) is less than f(\). And we have

s zo(s[1].]2] 9

12



for ¢ <s—1.
Moreover, if ¢ > s, then ¢(s,s,t — s,0) < ¢(s,4,e1,0) and the equality holds when

t=2s—1,0=s= [t ande; =s—1=|L]. So we conclude that for 1 <e; < ¢ <s

and e; + ¢ =t, ¢(s,/,e1,0) has the maximum when e; = L%J and ( = (%-‘ O
Lemma 5.5. Lete =s(s—1)+1t,2s—7<t<2s—4. Then
(i) o(k,k—1,e1,0) < (s, (%-‘ , L%J ,0) for1<k<s—1ande; < L%J,
(ii) o(k,k,e1,0) < é(s, %1 , L%J ,0) for1<k<s—2ande; < L%J
Proof. Let 8 := ¢ (s —1,s =2, LWJ ,0), which is the maximum real root of
FO) = X — (s—8)A2 — (H +23—3) A

Then

s—3+\/3— 24+4(5] +25-3)

Note that ¢(s, [£], L%J ,0) is the maximum real root of

g(/\):>\3—(s—2))\2—(EJ Fs— A+ EJ (s — H _).

Consider the following equation:

which has the maximum real root

s=2+ /(s =22 +4(|L] (s - [§] - 1))
> .

Since 25 — 7 < t < 2s —_4 then
AB+a—(s=3))(F—-a)
= (28— (s—3))" = (2a — (s = 3))°
Bl R R (A ARD)

> 0.
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Note that f+a > (s—3) and (B+a—(s—3))(f—«) > 0,s0 8 > a. Since f(A)—g(A) >0

for A > «, we have

hence ¢g(5) < 0 and the maximum real root of g(\) is larger than which of f(A). On the
other hand,

¢(3_1’$_27 Le—(s—;)(s—%yo) :¢(3_273_2’ r—(s—;)(s—iﬁ)J’O)

Then by Lemma 5.1 and 5.3,

max{gb(k:,k—l,el,()) 11<k<s—1e < {WJ} Sgb(s, [ﬂ , EJ ,0),

and

max{qﬁ(k’,k,el,O) 11<k<s—2e < {WH §¢(s, Ew , EJ ,0),

for 2s — 7 <t <2s—4. O

6 p(D)for2s—7<t<2s—3,t#0,1

For D € 2**(e), Lemma 4.1 showed that ¢ is an upper bound of p(D), and we have
investigated some properties for ¢ in Section 5: Lemma 5.1 and 5.3 showed that ¢ is
increasing as a function of k£ when D is in %, and %y U %, respectively; Lemma 5.2
showed that ¢ of D € 235U %5 is less than which of D € %,; Lemma 5.4 showed that
¢ has the maximum when ¢ — e; < 1 for k(D) = s. Now we use these upper bounds to
prove Conjecture 1.1 for e = s(s — 1) + ¢, where 2s — 7 <t <2s—3,t #0, 1.

Fix e = s(s — 1)+t for 2 <t < 2s — 1, define D* to be the digraph which is obtained
from a clique of order s by adding a new vertex and t arcs from the new vertex to the

clique with at most one arc being single-direction which is pointing to the clique.

Lemma 6.1. Let e = s(s — 1) +t be a positive integer with 2 < t < 2s — 1. Then for
any digraph D in 2**(e) with k(D) = s , we have p(D) < p(D*) and equality holds if and
only if D € {D* D*'}.
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Proof. Let ¢’ (resp. €}) denote the number of arcs in D which are from {s+1} to [s] (resp.
from [s] to {s + 1}). And we might assume ¢’ > €} by considering D" if necessary. Let £
(resp. e1) denote the number of arcs from V(D) — [s] to [s] (resp. from [s] to V(D) — [s]).
Note that ¢/ </, ¢}, <e; and { 4 e; =t since k(D) = s. Then by Lemma 5.4,

p(D) < ¢(8’€/’6170) < QS(S?E’ 6170) < p(D*)

Note that ¢ = ¢ if and only if D = D* since the diagraphs are strongly connected. [

Theorem 6.2. Let e = s(s — 1) +t be a positive integer with t = 2s — 3 and t # 1.
Then p(e) = (S_QH”;SJFQ)LH. Moreover, for D € Y(e), p(D) = p(e) if and only if
D e {D*, D*}.

Proof. Since e = s(s — 1)+ 2s—3 and s # 2, 2; = (). For a digraph in %, the maximum
upper bound ¢ (s, s—1, Le s(s=1) J ) can be attained by D* since s —1 = [£]. And by
Lemma 5.2, p(D) < ¢ (s s—1, {6 828 UJ O) = p(D*) for D € 23U Z5. On the other

hand, for the digraph in 24 U % with clique number £ = s — 1, the maximum upper
bound ¢ (s —1,s -1, {%J ,O) is equal to ¢ <s,3 -1, L%J ,O) = p(D*)
(notice that this upper bound can’t be attained by the digraph in 2, U %s). Then by
Lemma 5.3 and 6.1, p(D) < p(D*) for D € 2, U P.

Hence p(D) < p(D*) = (s=2)F ;SH)LH for D with e arcs, where e = s(s—1)+2s—3,

t # 0,1. That is, p(e) = (=2)ty (S+2)2_12. Moreover, by Theorem 3.4, p(D) = p(e) =
S AR VACA o H TP only if D € {D*, D*'}.

2

]

Let e =s(s— 1)+t for 2s — 7 <t <2s—4,1+#0,1. Then by Lemmas 5.2, 5.5 and
6.1, we only need to consider D* and the digraphs D € 2, U %, with k(D) = s — 1 for
this problem. On the other hand, according to the proof of [5, Lemma 3.2], they showed
that when k(D) = s, we may assume that | V(D) |= s + 1, and we can also prove the
same result for k(D) = s — 1 by a similar proof. So for the following four theorems, we

only consider the digraphs with s + 1 vertices.
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Theorem 6.3. Let e = s(s — 1)+t be a positive integer witht = 2s —4 and t # 0. Then

ple) =o¢(s,s —2,5s —2,0), i.e. p(e) is equal to the mazimum real root of
N (5= 2)A7 — (25 —=3)A + (s — 2).
Moreover for D € 9(e), p(D) = p(e) if and only if D € {D*, D*'}.

Proof. The digraph D € 2,U %P with k(D) = s—1 and | V(D) |= s+ 1 is unique, which
has the spectral radius p(D) = ¢(s — 1,5 — 1,25 — 4,0). Recall that p(D) is the maximum
real root of

FO) =X~ (5~ 2)A — (25— ),
and ¢ (s, [L],|%],0) = ¢(s,s — 2, s — 2,0) is the maximum real root of
gA\) =X — (s = 2)A* — (25 = 3)A + (s — 2).

Consider the following function

AfA) =g(A) = A= (s —2)

which has the root s — 2. Since s > 1, s —2 < p(D). Then —g(p(D)) = p(D)f(p(D)) —
g(p(D)) > 0 and g(p(D)) < 0, hence ¢(s,s —2,s —2,0) > p(D). We conclude that for
D e 9(e), p(D) < ¢(s,s —2,s —2,0). Moreover, by Theorem 3.4 p(D) = ¢(s,s — 2,5 —
2,0) = p(e) if and only if D € {D*, D*'}. O

Definition 6.4. Let A® denote an (s — 1)-dimensional column vector with the first i
entries be 1, and 0 otherwise. Let A(;) denote an (s — 1)-dimensional row vector with the

first j entries be 1, and 0 otherwise.

Theorem 6.5. Let e = s(s — 1)+t be a positive integer witht =2s —5 and t # 1. Then

ple) = ¢(s,s — 2,58 —3,0), i.e. p(e) is the mazimum real root of
N~ (5= 2)A\ — (25 —4)A + (s — 3).
Moreover for D € 9(e), p(D) = p(e) if and only if D € {D*, D*'}.
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Proof. There are two non-isomorphic digraphs Dy, Dy in 2,U%g with k(Dy),k(D3) = s—1
and | V(D) |=| V(Ds) |= s + 1, where

Js—l _ -[s—l A(sf2) A(sfS) Js—l _ ]5—1 A(sz) A(sz)
ADr) = | An 0 0 |, AD2)=] A,y 0 0
Ay 0 0 A(s—2) 0 0

Moreover,
p(Dy) =¢(s — 1,5 — 1,25 — 5,0)
p(D2) :gb(S - 178 - 2728 - 47 1)7

Compare p(D*), p(D1) and p(D3). Recall that p(D*), p(D;) and p(Ds) are the maximum
real roots of f(A), g(\) and h(\), respectively, where

F) =X — (s = 2)A% — (25 — A + (s — 3);
g(A\) =X = (5 = 2)A — (25 — 5);
h(X) =A% — (s —3)A* — (35 — 6)\ — (s — 2).
For p(D*) and p(D;), consider the following equation
) =Ag(A) = A+ (s =3) =0,

which has a root s —3 and p(D;) > s — 3. Then f(p(D1)) — p(D1)g(p(D;1)) < 0 and
f(p(Dr)) < 0. Hence p(D*) > p(Dy).

For p(D*) and p(D3), consider the following function
FO) —h(N) ==X+ (s —2)A + (25 — 5),

which has the same maximum real root as g(\), i.e. such a maximum real root is equal to
p(D1). So f(A)=h(A) <0 for A > p(Dy). Since p(D*) > p(D1), f(p(D*)) —h(p(D*)) <0
and h(p(D*)) > 0. Hence the maximum real root p(Ds) of h()) is less than p(D*).
We conclude that for D € Z(e), p(D) < p(D*) = ¢(s,s —2,s — 3,0). Moreover, by
Theorem 3.4 p(D) = ¢(s,s — 2,5 — 3,0) = p(e) if and only if D € {D*, D*'}. O

17



Theorem 6.6. Let e = s(s — 1)+t be a positive integer witht =2s —6 and t # 0. Then

ple) = o(s,s — 3,5 —3,0), i.e. p(e) is the maximum real root of the following function
N — (5= 3)A\% — (25 —4)\ + 2(5 — 3).
Moreover, for D € 9(e), p(D) = p(e) if and only if D € {D*, D*'}.

Proof. Assume that all of the digraphs have s + 1 vertices, then there are three non-

isomorphic digraphs Dy, Dy and D3 in 9, U % with k(D1), k(D3), k(D3) = s — 1, where

Js—l _ ]s—l A(S—Q) A(s—4) Js—l _ Is—l A(S—B) A(S—B)
A(Dl) - A(s—l) 0 0 ) A(D2> - A(s—l) O O )
A1 0 0 Agen) 0 0

Jo1— T4 1 A(sf2) A(sf3)
A(DS) = A(s—l) 0 0 )
Afs_2) 0 0

and

_ —
p(D1) = p(D2) = 9(s = 1,5 = 1,25 = 6,0) = = 2+¢<;+2>—24’

Compare p(D*) and p(D;), and recall that p(D*) = ¢(s,s — 3,s — 3,0) and p(Dy) =

¢(s—1,5s—1,25 —6,0) are the maximum real roots of f(A) and g(\), respectively, where
FO) =X — (s = 2)A% — (25 — )\ + 2(5 — 3);
g(A) =X — (5 — 2)A — (25 — 6).
Consider the following function
FA) = Ag(A) = =21+ (2s — 6) =0,

which has the root s — 3 and for A > s — 3, f(\) — Ag(\) < 0. Since p(D;) > s — 3,
f(p(D1)) < 0 and hence p(D;) is less than the maximum real root of f(\) = 0, i.e.
p(D1) < p(D7).
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Next, we compare p(D*) and p(D3). The adjacency matrix of D* is

Js—l _ ]s—l A(sfl) A(sf?))
Afs_s) 0 0

Since A(D*) and A(Ds) are nonnegative and irreducible, by Perron-Frobenius theorem,
there exist a positive column vector u = (uy,us,...,us 1) and a positive row vector

vl = (v1,v,...,v41) such that A(D3)u = p(Ds)u and vT A(D*) = p(D*)vT. Then

(p(D*) = p(Ds))v" u =v" (A(D") — A(Ds))u

0 A(sfl) _ A(872) 0
=0’ 0 0 0w
A(s—3) A(s—2) 0 0

=UsVs—1 — Us—2Vs41
:us(vs—l - Us+1) > 07
so p(D*)—p(D3) > 0, and hence p(D*) > p(D3). We conclude that for D € Z(e), p(D) <

p(D*) = ¢(s,s—3,5—3,0). Moreover, by Theorem 3.4, p(D) = ¢(s,s—3,5—3,0) = p(e)
if and only if D € {D*, D*'}.

]

Theorem 6.7. Let e = s(s — 1)+t be a positive integer witht =2s —7 and t # 1. Then

ple) = ¢ (s,s — 3,5 —4,0), i.e. p(e) is the mazimum real root of the following function
N — (5= 2)A% — (25 — H)A + 2(s — 4).
Moreover, for D € 9(e), p(D) = p(e) if and only if D € {D*, D*'}.

Proof. Assume that all of the digraphs have s + 1 vertices, then there are five non-

isomorphic digraphs Dy, Do, D3, Dy and D5 in Z5U%g with k(D1 ), k(Ds), k(D3), k(Dy), k(Ds) =
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s — 1, where

Joo1 —I_y A2 AG=9) Joo1 — Iy A3 A=Y
AD) =1 Au 0 0 |, AD2)=1] A, 0 0 |
Aps—1 0 0 Aps—1) 0 0
Joq1— I,y A2 ALY Jo1— I AB=3) AG—3)
AWDs) = [ A, 0 0 |, ADd) =] A,y 0 0o |
Ags_a) 0 0 Ags_2) 0 0

Jo1— 1T A(sf2) A(sf3)
A(DB) = A(Sfl) 0 0 )
Afss) 0 0

and

p(D1) = p(Ds) = (s — 1,5 — 1,25 — 7,0) = 8—2+¢<§+2>—2—28‘

Compare p(D*) and p(D;), and recall that p(D*) = ¢(s,s — 3,5 —4,0) and p(Dy) =
d(s—1,8—1,25—7,0) are the maximum real roots of f(A) and g(\), respectively, where
FO) =X — (s —=2)A% — (25 — 5)A + 2(s — 4);

g\) =27 — (s —2)A — (25 = 7).
Consider the following function
f) —Ag(A) = =2\ + (25 — 8),

which has the root s —4 and for A > s —4, f(A\) — Ag(A) < 0. Since p(D;y) > s — 4,
f(p(D1)) < 0 and hence p(D;) is less than the maximum real root of f(\) = 0, i.e.
p(D1) < p(D7).

Next, we compare p(Dy) with p(Ds). Since A(D,) and A(Dj;) are nonnegative and
irreducible, there exist a positive column vectors y and a positive row vector 7 such that

A(Dy)y = p(Dy)y, A(Ds)x = 27 p(Ds). Then
(p(Ds) — p(Ds))a"y = a™ (A(Ds) — A(Ds))y > 0
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and hence p(Ds) > p(Dy).
Finally, we discuss p(D3), p(Ds) and p(D*). The adjacency matrix of D* is
Jo— I, AG=D A6
ADY = | Auy 0 0
Afs—3) 0 0
Since A(D3), A(Ds) and A(D*) are nonnegative and irreducible, by Perron-Frobenius
theorem, there exist two positive column vectors u, w and two positive row vectors v7,
2T such that A(Ds)u = p(D3)u, A(Ds)w = p(Ds)w and v A(D*) = p(D*)vT. Then
(p(D") = (D))" =7 (A(D*) — A(Dy))u > 0;
(0(D*) — p(Ds))uw =7 (A(D*) — A(Ds))w > 0,
so p(D*) — p(D3) > 0 and p(D*) — p(Ds) > 0, and hence p(D*) > p(D3) and p(D*) >
p(Ds). We conclude that for D € Z(e), p(D) < p(D*) = ¢(s,s — 3,s — 4,0). Moreover,
by Theorem 3.4 p(D) = ¢(s,s — 3,5 — 4,0) = p(e) if and only if D € {D*, D*"}. O

7 A lower bound of the spectral radius of the digraph
in 7 (e)

Definition 7.1. Let B be an n x n matrix and let IT = {my, 7, ..., 7} be a partition of
[n]. Let B, be the |m,| x |m,| submatrix of B formed by the rows in 7, and the columns
in m,, where 1 < a,b < k. The k x k matrix II(B) := (7,), where 7, is the average row

sum of By, is called the quotient matrix of B with respect to II.
With the notation in Definition 7.1, we can write II(B) as
I(B) = (STS)'STBS,
where S' = (s;5) is an n x k matrix with
1, itiemny;

Sij
0, otherwise.
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It is known that p(II(A)) < p(A) for any symmetric matrix A. For particular types of

partition IT and non-symmetric matrix A, we have the following similar result.

Theorem 7.2. Let D € 2**(e) with the adjacency matriz A and let 11 = {{1},{2},..., {k}, {k+
L,...,n}} be a partition of [n], where k is the clique number of D. Then p(I1(A)) < p(A),

where 11(A) is the quotient matriz of A with respect to 11.

Proof. Since II(A) is the quotient matrix of A with respect to II, II(A) isa (k+1) x (k+1)
matrix and

II(A) = (STS)" ST AS, (12)
where S = (s;5) is an n X (k + 1) matrix with

1, ifi=jor (i € ([n]—[k]) and j =k +1);

Sij =
0, otherwise,

Since A is nonnegative and irreducible, by Perron-Frobenius theorem, there exists a posi-
tive vector u = (uy, Uy, ..., u,)T such that p(A)u = Au, then (p(A) + 1)u = (A+ I)u. By
the computation of (p(A) + 1)u = (A + I)u, we have

Upq1 + -+ Up < Ukt + o U (d—k+1)

1
n—=k - di—k+1 ’ (13)
where d; is the out-degree of vertex i. Let w' = (uy,us,. .., ug, %)T, multiplying
v’ to the right of both terms in (12):
(A = (ST9)tSTASY. (14)
By (13), ASu' < Au and then (14) will be
(A = (ST9)1STASY < (STS)'ST Au = p(A)(STS) ST w. (15)

Since II(A) is nonnegative and irreducible, by Perron-Frobenius theorem again, there ex-
ists a positive vector y* = (y1, 92, ..., yrr1) such that p(II(A))y” = y*TI(A). Multiplying
y” to the left of all terms in (15), then

p(T(A))y" v’ =y TI(A) <y (S75) 715" Au = p(A)y" (57 5) 'S u. (16)
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Note that yTu' = yT(STS)"1STu and it is positive. Deleting this term in both sides of
(16) leads to p(II(A)) < p(A) and the proof is completed. O

Corollary 7.3. Let A be the adjacency matriz of D, where D € 2**(e). Let Il =
{142}, .. kL {k+1,...,n}} and T = {{1,2,...,k},{k + 1}} be partitions of [n]
and [k + 1], respectively, where k is the clique number of D. Then p(II'(TI(A)T)) < p(A),
where I (TI(A)T) s the quotient matriz of TI(A)T with respect to 1T

Proof. Since IT'(TI(A)T) is the quotient matrix of IT(A)” with respect to IT', II'(TI(A)7) is
a 2 X 2 matrix and

I'(I1(A)") = (ST9)tSTI(A)T S, (17)
where S = (s;5) is a (k + 1) x 2 matrix with

L if (i,7) € [k] x {1} or (i =k + 1 and j = 2);

Sij
0, otherwise,

Since II(A)T is nonnegative and irreducible, by Perron-Frobenius theorem, there exist

a positive vector u = (uy,us,...,upr1)? such that I(A)Tu = p(II(A)T)u. Let o/ =

k
PIRT
(5= wrs1)". It is easy to see that II(A)"Su’ < II(A)"u. Multiplying u' to the right of

both terms in (17), we have

I (I(A) ) = (ST9) " LSTII(A) T Su' < (STS) P STH(A) u = p(II(A)T)(STS) ST u.
(18)
Since IT'(TI(A)T) is nonnegative and irreducible, by Perron-Frobenius theorem again, there
exist a positive y such that p(II'(IT(A)T))yT = y?TI'(TI(A)T). Multiplying y” to the left
of all terms in (18), then
p(IT(TI(A)))y" ' =y T (IL(A) ")’ < p(TI(A)")y" (ST 8) 'S u. (19)
Note that yTu' = yT(STS)"1STu and it is positive. Deleting this term in both sides of
(18) leads to p(I'(I1(A)T)) < p(TI(A)T), then by Theorem 7.2, we have

p(IT(II(A)")) < p(II(A)") = p(TI(A)) < p(A),
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and finish the proof is completed. [

Remark 7.4. The matrix II'(II(4)") in Corollary 7.3 is

n

i(di—k—l—l) 0o |

=1

which has the characteristic polynomial

where

k n
aq :Z(dz—k}—l—l), [ Z dz
i=1

i=k+1

Corollary 7.5. Let D € 2™ be a digraph with n vertices and k(D) = k, then

k—1+ \/(k —1)2 + 47,

p(D) >

2 Y
k n
where a; = Y (d; —k+1),a0 = > d;.
i=1 i=k+1
Proof. This is proved immediately by Corollary 7.3 and Remark 7.4. O

8 Conclusion

In this thesis, we give some upper bounds for the digraphs with e arcs, where e € N,
and compare these bounds to prove that the maximum spectral radius of a simple digraph
D with e arcs and without isolated vertices occurs when D € {D*, D*'} for e = s(s—1)+t,
2s —7<t<2s—3and t #0,1. But for % <t < 2s — 8, it remains open. In the
last section, we also give a lower bound of the spectral radius of a digraph through the
concept of quotient matrix.

In our research, we obtain a weaker restriction of e; in Lemma 5.1 and Lemma 5.3, and

get larger upper bounds to solve the problem, so there are a few cases for ¢ can be solved.
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If we narrow down the range of e;, we believe that the conjecture can be solved by using
Lemma 5.1 and Lemma 5.4 only, but the problem of the increasing of ¢(k,k — 1,e1,0)

should be considered carefully.
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