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Abstract

Kotlov, Lovasz and Vempala in [1] offered a reformulation for the Colin de
Verdiére graph invariant y by introducing another graph invariant v defined via
graph labellings. These two parameters are related by the equality u(G) +v(G) =
|G| — 1 for G # K. In this paper we examine how these two invariants y and
v vary under some well-known graph operations, such as Cartesian products,
disjoint unions and graph joins.

First, we introduce “almost one-directional” labelling to derive that for the
disjoint union of graphs {G;}, maxv(G;) < v(UG;) < maxv(G;) + 1. Also we
show a sufficient condition for the first equality to hold. This nearly character-
izes the behavior of v under disjoint unions. As an application, we are able to
compute the exact value u for complete multipartite graphs. The inequality also
provides us with some necessary conditions for a disconnected graph being v-
minimal. Therefore, this also motivates us to look into how p-maximal graphs
with separating cliques could be built up by smaller ones via clique sums. Using
the characterization of y under clique sum proved by van der Holst, Lovdsz and
Schrijver in [4], we derive a criterion in judging whether a clique sum of two
p-maximal graphs is y-maximal. Lastly, we show that the growth rate of v under
Cartesian products has a linear upper bound in the number of graphs while that
of u has a exponential lower bound in the number of graphs.
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1 Introduction

Throughout the text, all graphs G = (V,E) are finite, undirected, simple and loop-
less. All the matrices considered are over real numbers.

Given a connected graph G of order 7, let A be the adjacency matrix of G. By Perron-
Frobenius Thoerem, we know the largest eigenvalue of A is of multiplicity 1. There-
fore, we are interested in the multiplicity of the second large eigenvalue of A. Indeed,
we consider the generalized adjacency matrices (with no constraints on the diagonal):

Sg:={Ac€R"™W |A;>0ifijc Eand A =0ifij ¢ E,Vi #] },

where R(") denotes the collection of all real symmetric matrices of order 1. Again
by Perron-Frobenius Theorem, for a matrix A € Sg, the multiplicity of its largest
eigenvalue is 1. Thus, we want to know how large could the multiplicity of its second
large eigenvalue A, could be, i.e. to understand the value

ltiplictiy of A»(A).
g’é%)é multiplictiy of A(A)

For a given A € Sg, if we consider the matrix M := —A + A,I, then the original
problem is turned into understanding the corank of M. That is, if we let

O = {M e R" | My <0ifije EandM; = 0if ij ¢ E, Vi # j},

then the original problem is transferred to understanding max corank(M) over all

matrices M € 0 with exactly one ‘negative eigenvalue.

In 1990, Colin de Verdiére [11] introduiced an-interesting graph invariant y, consid-
ering the maximum corank of matrices in-0¢ with exactly one negative eigenvalue,
subject to a nondegeneracy condition called the Strong Arnold Property. It turns out
that the invariant y not only nicely describes topological properties of graphs, but
also links up with geometric graph representations. Before speaking more about y,
we would like to provide its definition first. Our definition follows from the matrix
reformulation given by van der Holst, Lovasz and Schrijver in [5].

Let G be a graph, not necessarily connected. For matrices A, B of the same size, let
A o B denote their Schur product, where the (i, j)th entry of A o B is A;;B;;.

Definition 1.1. ([2]) Let M, X € R("). Then X is said to fully annihilate M if
MX=MoX=10X=0.

We say M possesses the Strong Arnold Property (SAP) if the only symmetric matrix
that fully annihilates M is the zero matrix.

Definition 1.2. A Colin de Verdiere matrix for G is a matrix M € O which satisfies the
following conditions:

(M1) M has exactly one negative eigenvalue (counting multiplicity).
(M2) M possesses SAP.



The Colin de Verdiere graph invariant u(G) is the maximum corank over all Colin de
Verdiere matrices for G. If a Colin de Verdiére matrix for G has corank u(G), then it
is called a p-optimal matrix for G.

Clearly, by (M1) for all graphs, we have u(G) is less than |G|, the order of G.

Example 1.3. Let K;,, denote the complete graph on n vertices. Observe that any
M € 0Ok, automatically satisties SAP and —], € Ok, has corank n — 1, where |, is
the n by n matrix with all entries equal to 1. Consequently, —J, is a p-optimal matrix
for K, and u(K,) = n — 1. For n > 2, SAP forces a u-optimal matrix for K, to have
exactly one zero in the diagonal and thus u(K,) = 1.

In general, SAP yields that for a non-edgeless graph G, y(G) = maxy(C;) over all
connected components C; of G. Indeed, suppose a matrix M € R can be written
as a direct sum of two matrices, say M = M; & M, both M; and M, singular. For
i = 1,2, pick a nonzero vector s; in the kernel of M;. Let s} =51 ® 0 and s, = 0 sp.
Then /s’ T + 5’25’1T e R™ is nonzero and fully annihilates M. Conversely, if M, is

invert1ble and M; has SAP, then M has SAP. Suppose X € R fully annihilates

T
M; ® M,. Write X = é i%
nonsingularity of M, forces X5 and X3 to be zero. Consequently, Xj is zero by the SAP
of M;. Thus X is zero and M has SAP. Also note that a symmetric matrix has rank 1 if
and only if it is of the form +uu’ for some vector u of appropriate size. Therefore, by
Perron-Frobenius Theorem, if a connected graph G of order n is not complete, then
all matrices in & have corank at most 7 — 2. Together with the property of u under
disjoint union and Example 1.3, we have that 4(G)-< |G| — 2 unless G is complete or
G = Ky. Moreover, one can see that for graphs othet than Kj, due to Perron-Frobenius
Theorem and (M2), the conditiont (M1)-can be replaced with

) corresponding to the order of M; and M,. The

(M1’) M has at most one negative eigenvalue'(counting multiplicity).

Colin de Verdiere proved in [11] that y'is minor-monotone, that is if G’ is a minor of G
then u(G’) < u(G). The proof is rather nontrivial, in which SAP plays an important
role. In view of Example 1.3, we have

u(G)+12>14(G) > w(G),

where w(G) is the order of a maximum clique contained in G, and the Hadwiger
number #(G) is the order of a maximum clique minor in G. On the other hand, by
Graph Minor Theorem([6]), we know that there are only finitely many forbidden mi-
nors for graphs satisfying u < k for each nonnegative integer k. Denote the collection
by #,. The amazing property of y is that it is able to interpret topological proper-
ties of graphs via linear algebraic formulations. We list some results below. For a
complete proof, we refer one to the survey [5] for an overview.

(i) u(G)=0iff G =Kj.
(i) u(G) < 1iff G is a disjoint union of paths or equivalently .7, = {Kj 3,K3}.

(G)
(iii) #(G) < 2 iff G is outplanar or equivalently .%, = {Ky3, K4 }.
(iv) u(G) < 3 iff G is planar or equivalently .#3 = {K33, K5}.
(v) u(G) < 4iff G is linkless embeddable or equivalently .%#; = Petersen family.
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In [1], Kotlov, Lovédsz and Vempala reformulated the definition of y in terms of posi-
tive semidefinite matrix.

Theorem 1.4. ([5]) For G # Ky, the maximum corank among all A € R") with properties
below is u(G) +1:

(A1) forall i # j, A;; < 1ifij € E(G), and A;; = 1ifij & E(G);
(A2) A is positive semidefinite;

(A3) A has the SAP with respect to G: if X € R such that Xij=0fori=jorij€ Eand
AX =0, then X = O.

In view of interests in large value of 1(G), they also defined a dual invariant of u(G)
via graph vector representations. Consider a matrix A satisfying (A1)-(A3). There
exists an orthogonal matrix Q such that A = QTDQ for some diagonal matrix D
with diagonal nonnegative and decreasing. Writing D = D'/2D!/2, then we have
A = UTU, where U = D'/2Q. Therefore, we can view A as a gram matrix of vectors
in dimension d = rank(A) with A;; = ul-Tu]-, where u; € RY. Thus it leads to the
following definition.

Definition 1.5. ([1]) Let v(G) be the smallest integer d such that a labelling i — u; €
R? with the following properties exists :

(Uz) for all i # j, u]u; < 1if ij ¢ E(G), and uln; =1if ij € E(G);

(U2) if X € R satisfies X;; = 0or i = j.orij ¢ E(G) and ¥_; X;u; = 0 for each i,
i ] J j it
then X = O.

The mapping i +— u; with property (Ui) is called a gram labelling of G. A gram
labelling with property (U2) is said to be nondegenerate.

Remark 1.6. Let U be the matrix with u; being the:ith column. Then the condition of
(U2) can be reformulated as

(U2) if X € R(™ satisfies Xjj=0fori=jorij¢ E(G)and UX = O, then X = O.

Let G denote the complement graph of G. As a consequence of Theorem 1.4, we have

Theorem 1.7. ([1]) For G # Ky, v(G) = n — u(G) —1and v(Kp) = 1.

It follows from the minor-monotonicity of y and the above identity that v is decreas-
ing under taking subgraphs. However, v is far from being minor-monotone as it was
shown in [1] that every graph G has a subdivision G’ such that v(G’) < 4. Neverthe-
less, there is an unexpected connection between p and v.

Theorem 1.8. ([1]) The inequality v(G) < u(G) + 1 holds for all planar graphs G.

They further proposed the conjecture that the inequality shall hold in general, known
as the Graph Complement Conjecture, which remains unsolved. Also, they asked
whether u = v for graphs with nice properties, such as being vertex-transitive and
twin-free. We will show that the answer is negative for v large. Indeed, we prove the
following



Proposition 1.9. Let {G;}icN be a family of non-edgeless graphs with bounded orders. Then

. .”(Dr:1Gi)
Iim —F=——~ =
o v(0]_,G))

In understanding the topological characterizations and obstructions for u, we also
consider the following graphs.

Definition 1.10. We say a graph G is y-maximal if G is a complete graph or (G +e) >
#(G) for any edge e € E(G). We say G is v-minimal if for any subgraph H of G,
v(H) <v(G)if H # G.

Clearly, K; is the only v-minimal graph for v = 1. It is also easy to verify that v-
minimal graphs for v = 2 are 3K; and P4 (path on 4 vertices). In [1], they fully
characterize graphs for v = 2. Consequently, v-minimal graphs for v = 3 are known;
the disconnected ones are Cx U Ky, k > 5, the disjoint union of a cycle on k vertices
and an edge. It seems that K; plays an important role in understanding the behavior
of v under disjoint union. This observation leads to one of our main results proved
in section 3 that describes the behaviour of v under disjoint union.

Theorem 1.11. Let G, Gy, ..., G, be graphs such that v(G) > v(G;) for each i. Then

v(G)<v(GU O G))<v(G)+ 1.
i=1

Moreover, if v(GUKy) = v(G) > 1 and for each-G; there exists a vertex v; such that
v(G; — v;) < v(G), then the first equality holds.

As a direct consequence of Theorem. 1.11, we can compute the exact value of y for all
complete multipartite graphs. It has-been shown-in [5] that for p > g,

ifp <3;

#(Kpq) = { Z+1 ifz > 3;
One shall see later in section 3 that the values of y for complete multipartite graphs
are almost only dependent on the order of a maximum coclique. Moreover, Theorem
1.11 provides some necessary conditions for disconnected graphs being v-minimal
graphs. Thus, it motivates us to analyze those y-maximal graphs that have separating
cliques, since their complements are v-minimal and connected. In section 4, we will
show that all y-maximal graphs can be built up from those with no separating cliques

via clique sum under certain criterion. In section 5, we investigate some inequalities
for y and v under Cartesian products and prove Proposition 1.9.

2 Notations and terminology

Let G = (V,E) be a graph of order n. For simplicity, sometimes G is used to denote
its vertex set if the context is clear. If vertices i,j € V are adjacent, we denote it by
i ~jorij € E. The set of neighbors of S C Vin G is

Ng(S) :={u € V — S|uv € E for some v € S}.
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For an edge subset F of E(K|G|), G+ F := (V,EUF). If F = {e}, then we simply
write G + F as G +e. A graph G’ = (V', E') is a subgraph of G, denoted by G’ < G, if
V! C V and E' C E. Moreover, we say G’ is an induced subgraph of G if for i,j € V’,
ij € E' if and only if ij € E. Equivalently, G’ may be thought of as a graph obtained
from deleting the vertex set S = V — V' in G. In this case, we write G’ as G[V'],
or simply V/ or G — S if the context is clear. If G’ is a graph obtained from G by a
series of vertex deletions, edge deletions, and edge contractions, then we say G’ is a
minor of G, denoted by G’ < G. A clique in G is a (induced) complete subgraph of
G; a coclique is an induced edgeless subgraph of G. A (connected) component of G is a
maximal connected induced subgraph of G. Throughout the context, C;, may denote
either a cycle on n vertices or a component of a graph. There shall be no confusion.
We write [, and I, for the all 1’s matrix and the identity matrix of order n respec-
tively. The boldfaced 1 is used to denote the vectors with all entries equal to 1. Zero
vectors are simply denoted by 0, and the zero matrices are written as O. Their orders
will not be specified unless needed.

Let G; and G, be graphs. Their union is G; U Gy, where V(G U G,) = V(G1) UV (Gy)
and E(G1 U Gy) = E(Gy) UE(Gy). Moreover, if V(G1) N V(G;) is empty, then we say
the union is disjoint. Their Cartesian product is G1JG,, where V(G10G;y) = V(Gy) X
V(Gy) and (i,k)(j,1) € E(GiIOGy) ifi = jand k ~ [ or i ~ jand k = I. Their Kronecker
product is G1 x Gy, where V(G1 X Gy) =V{(G1) X V(Gy) and (i,k)(j, 1) € E(Gy X Gp)
if i ~ jand k ~ [. Their strong productis G X G, := G1UG, U G; x Gy (identifying
the vertex sets). Their join is G1/V.G,, which'is obtained from their disjoint union by
adding all edges between Gy and Gs.

3 Characterizations of v under disjoint union
In this section, all unions of graphs are disjoint.

This section is devoted to proving Theorem 1.11 and deriving some of its conse-
quences. Note that in a gram labelling, for an isolated vertex, we can always label
it with the zero vector, hence we may assume that each graph has no isolated ver-
tex from now on. The idea of the proof is rather simple. We use a disjoint edge
as a detector. If the original graph can be inserted with one disjoint edge without
increasing v, then it is possible to insert arbitrarily many disjoint edges, hence those
graphs with “almost one-directional” labellings without increasing v. Now we give
the precise definition of “almost one-directional” labelling.

Definition 3.1. A graph G is said to have a central gram labelling in R? if 3u € R4
such that for each € > 0, there exists a nondegenerate gram labelling i — u; in RY
for G satisfying |u; — u| < € for all i € G. The vector u is termed the associated central
vector.

In the above definition, one can view each vector u; as a function from positive real
numbers to RY.

Example 3.2. Fix n > 3. We’ve shown that (K,) = 1. Consequently, Theorem 1.7
implies v(K,) = n —2. Let u be a unit vector in R"2 and {u,uy,...,u,} be an



orthonormal basis of R"~2. Take any nonzero real number a. Let v; be u if i < 3 and
let v; be u 4 au; if i > 3. Then i — ©v; is a nondegenerate gram labelling for K, in
R"2. Indeed, if X € R(" has zero diagonal and for each i, Z]' Xjiv; = 0. Then for

j>3,as {u,uy,..., u,} is orthonormal, we have X;; = 0 for all i. By the symmetry of
X, we have
X O
(0 06)

where X’ € R®) with zero diagonal. Now for i = 1, the condition 0 = Y Xjvj =
(X2, + X5y )u implies X, = —X},. Similarly, X{, = —X}, and X}; = —X});. Again
by symmetry of X', we have X’ = O, hence X = O. Therefore, K, has a central
gram labelling in IR”~2 with u being the associated central vector as || can be taken
arbitrarily small.

Observe that if G has a central gram labelling in R, then since G is assumed to have
no isolated vertices, hence non-edgeless, the associated central vector u must have
norm 1. If not, then for each distinct 7,j, we have

uf v —uTu| = |(u; = u)"uj+ u” (uj — u)
< [ (ui = w)[[uj| + [uf|uj — ul
< e(|n] +lu; —ul+ ul) < e(2lul+e€),

which would yield u]u; # 1 by taking e sufficiently small, hence a contradiction.

Moreover, let v be any other unit vector in R? we may choose an orthogonal matrix
Q of order d that sends u tov. Now: since Q is‘an isometry, the new labelling i — Qu;
is also a gram labelling for G in. R%  The nondegeneracy is preserved as one can
easily see via (U2") that QUX ‘&= O'if and only:if lIX = O. The associated central
vector of the new labelling is v. Consequently,-G possessing central gram labelling is
independent of the choice of unit.vectors.

We break the proof of Theorem 1.11 into three lemmas.

Lemma 3.3. For every graph, G and G V Ky have central gram labellings in RY(C)+1,

Proof. By vertex deletion, it suffices to show for GV Kj. Let i — u; be a nondegenerate
gram labelling for G in RY(®). Let M = max;cc |u;|. Now given € > 0, take a €
(0, t/2) such that both (1 — cosa)? + (Msina)? and (1 — sec«)? are smaller than €.
Let s denote the added vertex. Then label each i € G with v; = cosa @ (sina)u; and
s with vs = seca @ 0. For i # j in G, we have

T

v/ vj = cos?a+ (sin® w)uj uj = 1+ (sin’ ) (uu; — 1),

which is equal to 1 if i ~ j and is less than 1 otherwise. Since sina > 0 and i > u; is
nondegenerate, by the choice of v;, it is easy to check that i — v; is a nondegenerate
gram labelling for G V Kj. Indeed, let U and V be the matrices corresponding to the
labellings i — u; and i — v; respectively with s indexed 1. Suppose that there exists
X violating (U2’) for V. Then X takes the form

(0 Yy
X_(y X’)’

6



where y € R/¢l and X’ € RUCD satisfying Xjj=0fori=jorij¢E(G). Then
0—vx~ [ secx cosa - 17 0 y'\ [ cosa-1Ty seca -y’ +cosa-17X’
B N O sina-U y X' )\ sina-Uy sina - UX'

Then nondegeneracy of i — u; implies that X’ = O and therefore y = 0. Thus X = O.
Moreover, for i # s,

1®0— 0> = (1 —cosa)?+ (|u;] sina)? < (1 —cosa)? + (Msina)? < €2,

and |1 ® 0 —vs]? = (1 —seca)? < €2, that is 1 @ 0 is the associated central vector. W

Lemma 3.4. For d > 1, if Gy and Gy have central gram labellings in R, then so does their
union.

Proof. Given € > 0, take 0 < § < €2/2 and pick two unit vectors u,v € R? such that
u™v =1 —6 and thus |u — v| = v/26. Choose €1,€; > 0 such that e + e, + €16, < &
and e; < € — /26. Leti + u; and k ~— v; be nondegenerate gram labellings of G; and
G, in R? with associated central vectors u and v respectively such that |u; — u| < €1,
|vp — v| < € for each i, k. Then for each i,k we have

lul v — uTol=1(w; —u)Tor +u’ (v, — )|
<ot — 1l o] £ fulloe — o
<lep(l +€2)F€x1<9,

and consequently u] vy < ulv + 6= 1. Moreover, for each k, |voy — u| < | — 0| + [v —
u| < ex ++/20 < e. Note that the hondegenéracy only needs to be checked on each
component. Thus the union of i 3 uj/and ki vy'is-a nondegenerate gram labelling
for G; U G, with the associated central vector 1. [ |

Lemma 3.5. Let Gy be a graph such that v(Gy; U Kyp) = d. If a nonedgeless graph Gy has a
central gram labelling in RY, then v(G; U G,) = d.

Proof. Let i — u; be a nondegenerate gram labelling for G; UK, in RY. Let s and s’
denote the vertices of Kj. Since uluy = 1, we may assume |us| > 1. Take v = ug/ |us|.
Let § = min;eg, (1 — u]v) and M = max;cg, |u;]- By assumption we have § > 0, and
take € = /M. Let k — vy be a nondegenerate gram labelling for G, in R? with the
associated central vector v such that |vy — v| < e. Consequently for i € Gy, k € Gy,
we have

|u1TUk—u1TU| < |uj||v —vg| < Me =6,

hence u] vy < ulv+ 6 < 1. Therefore the union of i(€ G;) + u; and k — v; is a
nondegenerate gram labelling for G; U G,. |

Proof. (of Theorem 1.11) We may assume v(G) > 1. By Lemma 3.3, each graph has
a central gram labelling in RV(®)*1, Thus the inequality holds by Lemma 3.4. Now
suppose V(G UK3) = v(G) > 1 and for each G; there exists a vertex v; such that
v(Gi —v;) < v(G). Let G/ = (G; —v;) V Ky, which has a central gram labelling in



R"(6) by Lemma 3.3. By Lemma 3.4 and 3.5, v(G U U}_; G!) = v(G). Since G; < G/,
the result then follows from the monotonicity of v under taking subgraphs. u

The following proposition with H = G; and n = v(G) helps us to find the first
equality in Theorem 1.11.

Proposition 3.6. For a positive integer n > 1, if |H| < n + 3 and its complement H is not
a subgraph of cycle Cy, 13, then H has a vertex v such that v(H — v) < n.

Proof. By monotonicity of v under taking subgraphs, it suffices to show for H with
order n + 3 and whose complement aside from isolated vertices is a claw or a cycle
on less than 1 + 3 vertices. Let v be an isolated vertex in H. Then H = H’' V {v},
where v(H') = n — 1 by Theorem 1.7 and characterization of u = 2. |

It is shown that for a graph G and a vertex v € G, we have

Theorem 3.7. ([5]) 4(G) < u(G —v) + 1. Moreover, if v is connected to all other vertices
and G — v is not K, or empty, then the equality holds.

Consequently, 1#(G) +2 > u(GV K;) > u(G) + 1 and the second equality holds if G
is complete; together with Theorem 1.7 and 1.11, we can describe the behavior of u
under graph join.

Corollary 3.8. Let G, Gy, ..., G be graphs distinct from Ky such that |G| — u(G) > |G| —
1(G;) for each i. Then

u(G)+ Y |G| = (G V. G\ -+ N.Gr)-> u(G) + ) |Gi| — 1.
i=1 i=1

Moreover, if u(GV Ky) = u(G)+ 2:and |G| u(G). > 3 and for each G; there exists a
vertex v; such that |G| — u(G) > |G; = v;| = u(G; = v;), then the first equality holds. W

As |G| > u(G) + 2 iff G # K, and is not complete, the corollary would imply the for-
mer result that for Gy, Gy # Ky, #(G1 V Go) > u(Gy) + u(Gz) + 1. Also we can fully
characterize the value of j1(G) for complete multipartite graphs, which is an immedi-
ate corollary of Lemma 3.4 and Example 3.2. For the convenience of descriptions, let
te Nandny >ny>...ny >1=mn11 =...=n, beintegers and set n = Y| _; n;.

Corollary 3.9. If ny > 4, then v(Ui_ Ky;) = 11 — 2. [ |

Since v-minimal graphs for v = 2 are 3K, and P, we have that for complete multi-
partite graphs with ny < 3, v(U;_; Ky,) equals 1if t < 2 and equals 2 if t > 2. As a
direct consequence of Theorem 1.7, we have

Corollary 3.10.

n—3, ifny =2andt>2;
n—nq, otherwise.

n—ny+1, ifng >4,0rifny =3andt <2;
.”(Kmfﬂzl-wﬂr) =



Let K, — Kj;, denote the graph of order n obtained from K, by deleting edges induced
on one of its subgraph K;,, where 1 < n; < n. Consequently, for any graph G with
Ki’ll,i’lz,...,i’lr S G S Ki/l - Kﬂll

{n—mny+1}, ifny>4,0rifny=3andt <2;

mG) € { {n—2,n—3}, otherwise (can be explicitly known via v(G)).
Theorem 1.11 and Proposition 3.6 also give some basic characterizations for discon-
nected v-minimal graphs. Note that Ci;, V K3 is a maximal planar graph on k + 4
vertices for all k > 2, or equivalently, it is a y-maximal graph for y = 3 by characteri-
zations for y. Thus Cy,;, U Kj is a v-minimal graph for v = k by Theorem 1.7.

Corollary 3.11. If a v-minimal graph for v = k is disconnected and distinct from Cyp, UKy
then it takes one of the two forms: Ulr;l G; or Ky UUi_q G;, where each G; is connected,
v(G;) = k — 1 and for every vertex v € G;, v(G; — v) = k — 1. In particular, |G;| > k+ 3.1

We do not know at most how many components does a v-minimal graph have in
general. It would be informative to find another family of disconnected v-minimal
graphs aside from Cy,, UK and Cy,3 UKy, k > 2, or to prove some necessary condi-
tions. Indeed, we would like to ask whether K, is the only detector, that is

Conjecture 3.12. Fori=1,2, ifv(G;)=v(G;UKp) =k, is v(G1 U Gy) = k?

In classical extremal graph theory, it is asked whether for each graph G, e(G) :=
E(G)| < (n(G) —1)|G| — (;7(2(;))’ which is known: to be true only for #(G) < 6 and
fail for #(G) > 6. For more on Hadwiger numbers, we refer one to the survey [7]
written by Seymour. McCarty in-{8] proved that if one replaces 1(G) with u(G) + 1,
then the inequality holds for (G} < 7 and she used this to show that the inequality

also holds for u(G) > n — 6. Note that ¢(G) = (|§|) —¢(G) and

(|<23|> _w(G)[C] + (V(G§+1) R i(S) —21)(|G| —G))

Consequently by Theorem 1.7, the problem can be reformulated as

Conjecture 3.13. ¢(G) > (U(Gz)ﬂ)for all graphs G.

As just mentioned, the conjecture is proved for v(G) < 5 and |G| — 8 < v(G). Here
we provide a much simpler proof for v(G) < 5. Note that if G is a minimal counter
example to Conjecture 3.13, then |G| > v(G) + 9. Also, by Corollary 3.11, G must ei-
ther be connected or G = G’ UK; for some connected graph G'. Thus e(G) > v(G) +8
if G is connected and ¢(G’) > v(G) + 6 if G = G’ UK;. This shows that the conjecture
holds for v < 4. Now assume v(G) = 5. By assumption of G, ¢(G) < 14. Then in
both cases, G is planar and thus by Theorem 1.8, v(G) < 4, a contradiction.

We close this section by a minor result on the realizability question of u-optimal
matrices for complete multipartite graphs.

Corollary 3.14. Each complete multipartite graph has a p-optimal matrix with coefficients
in Q, hence in Z.



Proof. We remark that the proof of Theorem 1.4 for u(G) > 2 is constructive. To be

more precise, given a matrix A satisfying (A1)-(A3) for G with corank u(G) + 1, Kot-

lov, Lovasz and Vempala shows that A — | is a y-optimal matrix for G. By Corollary

3.10, complete multipartite graphs have y > 2 except for K; and Kj 5. Clearly, K, and
T

_01 _5 )). Thus we

restrict ourselves to complete multipartite graphs with p(G) > 2. Since ] is a matrix

Kj» have u-optimal matrices over Z (for K;,, take M =

over Z, it suffices to construct a gram labelling in Q"(®) for G. The case v(G) = 1 is
easy. For n; < 3and v(G) = 2, one can obtain a desired gram labelling by either using
Lemma 3.3 or doing vertex deletions from larger graphs. We show the construction
for those with n; > 4. Recall the central gram labellings constructed for complete
graphs in Example 3.2. For each clique component C; in G, if |C;| = 1, we label it
with the zero vector; otherwise, we associate each with a distinct unit vector being
the associated central vector and an extended orthonormal basis in Q'(¢). Then we
choose 0 < &; € Q sufficiently small such that for any two components, their union

of labellings satisfies (U1). Then the union of these labellings is the desired one. ®

4 Decomposing y-maximal graphs with separating cliques

For a graph G = (V,E), a proper subset-S < V-separates G if G — S is disconnected.
Moreover, if S induces a clique in G, then it-is.called a separating clique of G. To
put it another way, we say G = (V,E) is a:(pure).clique sum of G; = (V3,E;) and
Gy = (V,, Ey) along the clique S if V=14 UV, with V4NV, = S inducing cliques in
both G; and Gy, and E = E; U Ej: Thatis, G.is obtained from patching G; and G
together by identifying the set'S (a bijection in between S in V; and V). The clique S
is always assumed to be a proper subset of both Vi and V5.

Definition 4.1. For a graph G, we say-G.is decomposable if G has a separating clique;
otherwise, G is indecomposable.

The goal of this section is to show that each decomposable y-maximal graph can be
successively built up by the indecomposable ones via clique sums along cliques of
order not larger than p with certain criterion. We need a crucial theorem that fully
describes the behavior of u under clique sum. This criterion was discovered by van
der Holst, Lovasz and Schrijver in [4] by the observation that K;;3 — K3 is a clique
sum of 3 pieces of Ky along K; and that (K43 — K3) = t + 1. This can be obtained
by Theorem 3.7 together with 4(K3) = 1 and K;;3 — K3 = K3 V K.

Theorem 4.2. ([4]) Let G be a clique sum of Gy and Gy along the clique S and t =
max{u(Gy), u(Gz)}. If u(G) > t, then u(G) = t+ 1 and we can contract two or three
components of G — S so that the contracted vertices together with S form K;3 — K3 (remov-
ing a triangle in Ky 3).

To be more precise, the case u(G) = t + 1 occurs if and only if s := |S| > t = u(Gy) =
#(Gz) and one of the following occurs:

(i) s =tand G — S has at least three components C such that Ng(C) = S. In this
case, G; and G; both contain at least one and at most two such components;

10



(i) s = t+ 1 and G — S has (exactly) two components C, C’ in such that Ng(C) =
Ng(C') is of cardinality t. In this case, G; and G, both contain exactly one of
such components;

We first prove a basic fact for p-maximal graphs.
Proposition 4.3. A y-maximal graph is connected.

Proof. Suppose G is a disconnected p-maximal graph. Clearly, G is non-edgeless
by characterizations for 4 = 1. Let G; be a non-edgeless component of G and
Gy = G—Gy. Fori = 1,2, we add a pendant vertex w; to a vertex v; of G; (if G;
is a union of path, then v; needs to be chosen of degree less than 2). Then let G’
be the clique sum of these two graphs by identifying w; and wp and contracting
w1 to v1. By minor-monotonicity of y, Theorem 4.2 and characterizations of y =1,
1(G") < u(G) and G’ properly contains G, a contradiction. ]

We recall that Theorem 3.7 and minor-monotonicity of y together say that adding
an edge or joining a vertex to a graph increase y by at most 1. In the following

discussions, by adding an edge e to G, we are assuming e € E(G).

Proposition 4.4. Suppose G is a clique sum of Gy and Gy along the clique S, and assume
that G is y-maximal. Then u(G) = max{u(Gy),u(Gy)} and the following holds:

(i) If |S| < u(G), then Gy and Gy are themselves y-maximal. In particular, if u(G;) <
1(G), then G; is a complete graph.

(ii) If |S| > u(G), then there exist'subgraphs Gy, Gb-of G-and a cliqgue S' C S of order not
larger than u(G), such that G-is a-elique sum of Gy and G} along the clique S'.

Proof. Let s = |S| and t = max{u(Gy),1#(G2)}. Suppose on the contrary that u(G) >
t. Then u(G1) = u(Gy) and s € {t,++1}\1f s'="t+ 1, then both G; and G, are not
complete; if s = t, then one of Gy, G, is not complete. Since if both are complete,
then G = K;1» — Ky, contradicting the assumption that (G) = t + 1. Say G; is not
complete. Add any edge ¢ to G;. Then u(G; +e¢) < t+1 and by y-maximality of
G, we have u(G +e) = t+2, but this would imply u(Gi +e) = u(Gy) =t+1, a
contradiction. Thus u(G) = t.

Case s < t: Suppose there exists an edge e such that #(G; +e) < t. By y-maximality
of G, (G +e) = t+1implies s > ¢, a contradiction. The proof is the same for Gy.
Case s = t: If G; and G are both y-maximal, then we are done. Suppose say G; is not
p-maximal. Let e be any edge such that u(G; +e¢) = u(Gy1). By p-maximality of G,
we have y(G +e) =t + 1. By Theorem 4.2, u(Gy) =t = u(Gy +e) = u(Gy) and there
must exist a component C in G; — S such that |[Ng, (C)| =t — 1 (so that after adding
e, there are three components, including C, whose neighbors are S). Let G| be the
graph induced by C U Ng, (C) in G and let G} = G — C. Then G is the clique sum of
G| and G} along Ng, (C). By the previous case, G| and G} are y-maximal, done.

Case s = t + 1: Let C be any component of G — S. Then |[Ng(C)| < t. Let Hy be the
graph induced by C U Ng(C). Let Hy = G — C. Then G is the clique sum of H; and
H, along Ng(C) and the result follows from previous cases. |

The following consequence, directly derived from the proof of Proposition 4.4, will
be frequently used in the rest of the section.
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Corollary 4.5. Suppose G is a clique sum of Gy and Gy along the clique S, and assume that
G is y-maximal. For a component C of G — S, the graph C U Ng(C) is p-maximal. |

Also, by Proposition 4.4, we see that to construct y-maximal graphs via clique sum,
we can only patch against cliques of order at most . Now we prove the converse
to Proposition 4.4, that is, the criterion in judging whether the clique sum of two
p-maximal graphs is still y-maximal. We need an easy lemma.

Lemma 4.6. Let G be a py-maximal graph and S be a clique in G of order not larger than
#(G) —1. Forv € G—S, let C be the component of G — S that contains v. If Ng(C) C
Ng(v), then S = Ng(C).

Proof. Let S’ = Ng(C). Suppose on the contrary that S — S’ is nonempty and take
w € 5—S'. Let H be the clique sum of CU S’ and K|g/|;, with V(K|g/|4,) = S'U {o, w}
along S’ U {v}. Note that by Theorem 4.2, u(H) € {u(CUS’),|S'| +1,|S’| + 2}, which
is not larger than y(G) as by assumption |S’| < p(G) — 2. We patch H with S along
S"U{w} and patch the obtained graph with G — C along S, forming the graph G + vw
with (G + vw) < u(G), which contradicts the y-maximality of G. u

For the convenience of stating our result, we introduce the following definition.

Definition 4.7. A pair (G,S) consists of a y-maximal graph G and a clique S in G of
order u(G) — 1. We say a pair (G, S) has property.(P) if S is not maximal in G and for
any vertex u € G with S C Ng(u), G =(SU {u}) have two components C, C' such
that Ng(C) = Ng(C') = SU{u}.

Proposition 4.8. Let Gy and Gy be yi-maximal graphs-and G be a clique sum of Gy and Gy
along the clique S. Let t = max{(Gy);#(G2)}. Ifs:= |S| < t, then G is y-maximal if and
only if one of the following is satisfied.

(i) S is a maximal clique in Gy or Gy,
(i) s =t —1and (Gy,S) or (Gy, S) has property (P).
Moreover, in both cases if u(G;) < t, then G; is complete.

Proof. We first prove the necessity. The last assertion follows from (i) of Proposition
4.4. We show the proof only for the case s < t — 1 as the proof for the case s =t — 1
is exactly the same. Now suppose s < t —1 and S is not maximal in either G; or G;.
For i = 1,2, let v; be a vertex in G; with S C Ng,(v;), and let G! be the clique sum of
G; and Ko with V(Kgy2) = SU{v;, w} along S U {v;}, where w is an added vertex.
We have y(G}) < tsince [SU{v;}| < t fori =1,2. Let G’ be the clique sum of G]
and G} along the clique SU {w} (as the same way G is patched). Let G’ be the graph
obtained from G’ by contracting w to v; via the edge v1w. Then G” = G 4 v1v; and we
have, by minor-monotonicty of u, t > u(G’') > u(G"”) > u(G) = t, contradicting the
pu-maximality of G. For sufficiency;, it suffices to show that for any vertices u € G; — S
and v € Gy — S, we have u(G + uv) > t. Suppose condition (i) is satisfied. Say
S is maximal in G;. Thus G is not complete and hence y(G;) = t. Let C be the
component of G, — S that contains v. By maximality of S, T := Ng,(u)NS C S. If
§":= Ng,(C) = S, takew € S—T = S —T. Contract C to w in G; UC + uv and
form the new graph Gj, which properly contains G;. Then we have (G + uv) >
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#(G}) > u(Gy) = t. Otherwise, suppose S’ C S. Then G; is not complete and thus
#(Gy) = t. Consequently, by Lemma 4.6, S’ ¢ Ng,(v). Note that G, can be viewed as
the clique-sum of CU S’ and G, — C along S’. By Corollary 4.5, CU S’ is y-maximal.
As S ¢ Ng,(v), CUS' is not complete and therefore y(CUS’) = t. Let C’ be the
component of u in Gy —S'. Let T" := Ng,(v)NS € §. If 8" := Ng, (C') = &
then similarly we have u(G + uv) > u(CUS’) = t. Otherwise, suppose S’ C S
Continue this process which will ultimately terminate as |S| is finite, and we are
done. Suppose condition (ii) is satified. Say (Gi,S) has property (P). Let C be the
component of G, — S that contains v. Suppose S’ := Ng,(C) = S. If S ¢ Ng(u), then
as argued above, u(G + uv) > u(Gy) = t and we are done. If S C Ng(u), then by
assumption of Gj, G + uv can be contracted to K; 3 — K3, done. Otherwise, suppose
S’ C S. Then the rest of the argument is exactly the same as the case (i). |

Proposition 4.9. Let Gy and G, be u-maximal graphs and G be a clique sum of G1 and G,
along the clique S. Suppose u(G1) =t = u(Gy). If s := |S| = t, then G is y-maximal if and
only if G — S has at most two components C, C' such that Ng(C) = Ng(C') = S.

Proof. The necessity follows from Theorem 4.2 and proposition 4.4. Conversely,
assume G — S has at most two such components. We first consider the case that
Ng,(C) € S for every component C of G; —S. Let C be a component of G; — S
and S’ := Ng,(C). Since |S'| < t, by Proposition 4.4, H := CUS’ and G; — C are
p-maximal. By assumption, if S-C Gy—=Cis complete, then G; — C = S. It follows
by (i) of proposition 4.8 that #(Gj —C)-="t unless G; — C = S (if this is the case,
then we’ve finished decomposing G1). Moreover, since S’ C S, by Proposition 4.8 and
assumption of Gy, S’ is either maximal:in H or [S'|'=t— 1 and (H, S’) has property
(P). As C is arbitrary, by successively decompeosing and patching up, we have that G
is y-maximal by proposition 4.8, -Now suppose G3.+ S has exactly one component C;
such that Ng, (C;) = S. Theorem 4.2 and assumption of G; implies that Hy := G; — C;
is p-maximal. Indeed, if H; ismot y‘maximal, then there exists an edge e such that
u(Hy +e) = u(Hy) < t. Since Gj + ¢ is the elique sum of C; US and Hj + ¢ along S.
Then by Theorem 4.2, 4(G1 +e) = max{u(C1US), u(H1 +e)} < u(Gy), contradicting
pu-maximality of G;. Also, by Corollary 4.5, C; U S is y-maximal. By Theorem 4.2 and
assumption of Gy, u(Hy) = t unless H; = S. We show that C; U G, is y-maximal.
The assertion then follows by the previous case. For u € C; and v € G, — S, let C; be
the component in G, — S containing v. If Ng,(Cz) C S, then pick w € S — Ng,(Cy).
Contracting C; to w in C; U Gy 4 uv, we obtain Gy + vw which properly contains G,
whence (Cq UGy 4+ uv) > u(Gy) = t. If Ng,(Cp) = S, then C; U G, + uv can be
contracted into Ky, hence u(C; UGy + uv) =t + 1. [ |

Lemma 4.10. Let G be a y-maximal graph with a clique S such that |S| = u(G) + 1. Suppose
for each component C of G — S, C U Ng(C) is complete. Then |Ng(C)| = u(G), whence
|C| = 1 for each component C. Consequently, for each v € S, there is at most one vertex
0 € G — S such that Ng(0) = S — {v}. Conversely, if a graph satisfies the assertion, it is
u-maximal.

Proof. Let C be a component of G — S, S’ := Ng(C) and set G¢ := CU S’, which is
by assumption complete. Let t = |S| = u(G) +1, m = |Gc| < t and s = |S'|. We
have to show s = t — 1. Suppose s < t —2. Take a vertex u € S—S5'. If |C| =1,
then m < t —2 and G is a proper subgraph of the clique sum of G — C and K, 1
with V(K1) = Gc U {u} along S’ U {u}, whose y by Theorem 4.2 is not larger than
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#(G) since |S" U {u}| <t — 2, contradicting y-maximality of G. Thus |C| > 2 and pick
w € C. Consider the clique sum G’ of G — C and K, with V(K,) = Gc U {u} — {w}
along S’ U{u}. Again by Theorem 4.2, since |S'U{u}| < t—2, we have u(G’) <t —1.
Then consider the clique sum G” of G’ and G¢ along G¢c — {w}. Since |C| > 1, among
vertices in G/, only u shares the same neighbor set with {w}. Therefore by Theorem
4.2, 4(G") <t—1andas |C| > 1, G” properly contains G, a contradiction. Now sup-
poses =t —2. Let S—S" = {uy, up}. By y-maximality of G together with Theorem
4.2, Proposition 4.9 and the assumption of G, we may assume there exists a unique
vertex v; € G — S such that Ng(v;) = S’ U {u;} fori =1,2. Let G; = S’ U {u;,v;} for
i=1,2. Take w € C and let G = Gy U G, U G¢ + wv,. We show that u(G"') =t — 1.
Then by Theorem 4.2, the clique sum G"”” of G”" and G — C — {v1,v,} along S has
u(G"") = t —1 since no vertices in G — S — C — {v1,vp} share the same neighbor
set with either v; or v;. Now as G" properly contains G, we obtain a contradic-
tion. To show u(G"”) = t —1, observe that G" is the clique sum of {v;} US and
G2 U Ge + wovy along S — {uq}. Note that (G U Ge +wvp) = p(GoUGe) =t —1
(by computing the v value of their complements) and p({v1}US) = t — 1. Since
Gy UGce +wovy — (S —{u1}) = CU{vp} + wo, is connected, by Theorem 4.2, u(G"') =
t — 1. This proves the assertion. The rest of the statement then follows from Theorem
4.2 and Proposition 4.9. |

Figure. An example of graphs in' Lemma 4.10, where S is the black K4 and for each
v € S, there exists a unique grey vertex 9 with Ng(9) = S — {v}. Removing
any number of grey vertices also leads to a graph in Lemma 4.10.

Let G; and G, be y-maximal graphs and G be a clique sum of G; and G, along the
clique S. Now the only undealt case is |S| = t = u(Gy) and u(G,) =t — 1. Suppose
G is y-maximal. Let C be a component of G, —S. Then Ng,(C) C S. Therefore,
by (i) of Proposition 4.4, we have C U Ng, (C) is complete. Thus by Lemma 4.10, for
each v € S, there exists at most one vertex 9 € G, — S such that Ng,(9) = S — {v}.
Then by proposition 4.8, G is maximal if and only if for each v € S such that 9 exists,

(G1,S — {v}) has property (P).
The following proposition provides an insight into pairs (G, S) with property (P).

Proposition 4.11. Let (G, S) be a pair with property (P). Then there exists an indecomposable
u-maximal subgraph H of G such that (H,S) form a pair with a unique vertex v € H such
that S C Ny (v).

Proof. For u € G such that S C Ng(u) and a component C of G — (SU {u}) with
Ng(C) = SU{u}, define m(, ¢y := [{v € C|S C Ng(v)}|. Let m = min{m,c)},
where the minimum is taken over all such (1, C). Choose ug, Cp such that m

1,Co)

14



m. Suppose m > 0. Let C{ be the other component of G — (S U {up}) with Ng(Cj)) =
SU{up}. Since m > 0, there exists u; € C| such that S C Ng(u1). Let C; be
the component of G — (S U {u1}) containing uy. Since u; ¢ Cp is connected and
Ng(Co) = Ng(Cy) = SU{ug}, we have Cy C C; and Ng(Cq) = SU {uy}. Suppose
for each 1 < i < k, we've obtained a vertex u; with S C Ng(u;) in G, all distinct,
and a connected component C; of G — (S U {u;}) containing u; 1 with Ng(C;) =
S U {u;}. Moreover, C;_1 C C; for each 1 < i < k. Let C; be the other component of
G — (SU {ux}) with Ng(C;) = SU {ug}. Since m > 0, C; has a vertex uj1 such that
S C Ng(ugy1). Let Cryq be the component of G — (S U {u,1}) containing uy. Since
g1 ¢ Ci is connected and Ng(Cx) = Ng(Cp) = SU {ur} we have C; C Cyyq and
Ng(Cry1) = SU{ug 1} Ultimately, we would obtain an infinite sequence of distinct
vertices in G, contradicting the finiteness of G. Thus m = 0, that is, there is no vertex
other than 1y which is the common neighbor of S in H := Cyo U S U {up}. Note that
by Corollary 4.5, H is y-maximal with pu(H) = u(G). If there exists a separating
clique S’ of H, then clearly by the choice of H, S’ ¢ SU{up} and SU{up} ¢ S'. Let
C’ be the component of H — S’ containing SU {up} — S’ and let H' := C' U Ny (C').
Since Cy is connected and Ng(Co) = SU{up}, C) := H — SU {up} is connected and
Nu(Cy) = SU{up}. Again, by Corollary 4.5, H' is y-maximal with u(H') = u(G).
Continue the process until there is no separating cliques and we would obtain the
desired graph. u

Corollary g4.12. The existence of pairs(G, S) with property (P) is equivalent to the existence
of pairs (H,S), where H is indecomposable with a unigue vertex v € H satisfying S C

NH(U).

Proof. By Proposition 4.11, it remains to show the eonverse. Suppose such pair (H, S)
exists. Let G be a clique sum of two pieces of H along SU {v}. By Proposition 4.9, G is
p-maximal with p(G) = u(H). Then since H is:indécomposable, C := H — (SU {v})
is connected with neighbor set'S U {v}:|Thus (G,S) is a pair with property (P). ®

By characterizations of y, for y = 2, each vertex in a p-maximal graph is of degree
at least 2. For y = 3, every edge in a y-maximal graph is contained in two distinct
Kj3(faces). Consequently, by Corollary 4.12, there exist no pairs (G, S) with property
(P) for u < 3. For u > 4, the existence of such a pair (G, S) is unknown. We suggest
that such pairs do not exist. Moreover, we would like to ask the following question.
If it is true, it would serve as a generalization of topological properties of graphs.

Question 4.13. Let S be a clique in an indecomposable p-maximal graph G. Suppose
S is not maximal. Is it true that if |S| < (G), then there are at least two vertices u, v
such that S is contained in both Ng(u) and Ng(v)?

Now we prove a basic property of indecomposable y-maximal graphs, which is an
easy consequence of the behavior of y under AY transformations. The AY transfor-
mation works as follows: for a given graph, select a triangle of it, and add a new
vertex adjacent to all vertices of the triangle, and delete the edges of triangles. The
YA transformation is the inverse action. That is, for a given graph, select a vertex v of
degree 3, and make its neighbors pairwise adjacent, and delete v.

Theorem 4.14. ([5]) Let G be a graph and if G’ arise from G by applying a AY transformation
to a triangle. Then u(G) < u(G') and the equality holds if u(G) > 4.
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To put it another way, Theorem 4.14 says that u is decreasing under YA transfor-
mations on vertices of degree 3. Note that by the characterizations of y, the only
indecomposable p-maximal graphs for y < 2 are complete graphs.

Proposition 4.15. Let G be an indecomposable y-maximal graph, not complete. If S is a
minimal separating set of G and |S| < u(G), then G — S has at most |S| — 2 component.

Proof. Let Cj,...,C, denote the connected components of G —S. Note that since
S is minimal, Ng(C;) = S for all i. We show that if |S| < 2 or r > |S| — 2, then
S must induce a clique in G contradicting the assumption of indecomposability of
G. Suppose |S| > 3 and r > |S| —2. For each component C;, we will construct
a graph C/ that contains C; U S as a subgraph, in which S induces a clique, and
#(Cl) < u(G). Patch up these C/ along S as C; U S are patched and form the new
graph G’. Then we have, by Theorem 4.2, #(G) > u(G’) and the p-maximality of
G implies G’ = G, which proves the assertion. Now we show the construction for
i=1. For 3 <m < |S| — 1, contract components C,, to any |S| — 3 distinct vertices in
S. By deleting edges if necessary, we may assume the other three vertices x,y,z in S
induces a coclique. Then contract C; into a vertex w and, deleting edges if necessary,
we may assume w is adjacent to x,y,z only. Do a YA operation to the claw, and
delete other components C,, for m > |S| — 1. We form the desired graph C]. The case
|S| = 1 is trivial and the case |S| = 2 is similarly proved, without the need of using
YA transformations. |

Corollary 4.16. Let G be an indecomposable y-maximal graph, not complete. Then G is
4-connected.

Proof. If G is planar and S is a minimaliseparating set of cardinality 3, then G — S
have at most 2 components, since if not, then G would have a K33 minor. Similarly
argued as in proposition 4.15, we:would obtain that'S is a clique, a contradiction.
Then the assertion follows from proposition 4.15. |

We would like to ask whether indecomposable ji-maximal graphs, not complete, are
#(G)-connected or even weakly, do such graphs have minimum degree 5(G) > u(G).
Note that indecomposability is required for connectivity. Consider the graph G
whose complement is C, UKy, k > 7. As mentioned in section 1, since Cy U Kj is
v-minimal for v = 3 and has maximum coclique of order |k/2] + 1, G is p-maximal
with y(G) = k—2 and w(G) = |k/2] +1 < k—2. It follows by proposition 4.8
that for any clique sum of two pieces of G along any maximum clique is y-maximal.
However, such graphs have vertex-connectivity at most |k/2] + 1.

It would be interesting to find methods (in terms of y or v) in deriving an indecom-
posable p-maximal graph from one another. Note that the most trivial case is that if
G is indecomposable y-maximal, then so is G V Kj (In terms of v and G, an isolated
vertex is added.) Another question is to find how small could a maximal clique be
for (indecomposable) y-maximal graphs with given y = k.

5 u and v under Cartesian products

In [3], Goldberg proved that u(GOK,,) > u(G) + u(Ky,) for all connected graphs G
and positive integers m by explicit constructions of Colin de Verdiere matrices for

16



GLIK;, with specific corank. He further asked whether K;;, could be replaced with
any other connected graphs. By using both graph theoretic approaches and explicit
constructions, we prove that the statement holds for complete bipartite graphs and
graphs with u <5.

Proposition 5.1. Let G, Gy, Gy be connected graphs. The following holds
(i) u(GiO(GyVKy)) > u(GiOGy) +1;
(i) u(GOKy,) > u(G)+m—1;

(iii) if Gy can be obtained from G by doing several AY operations on triangles, then u(G10G,) >

u(G1UG).

Proof. (i) Let v denote the added vertex to G,. By contracting v’s copy of G; in
G10(Gz V Kj) into a vertex, we obtain (G1JGy) V Kj. Then the result follows by
minor-monotonicity of 4 and Theorem 3.7. (ii) Since GLIK; = G and K;;, = K;;,—1 V Ky,
the result follows by repeatedly applying (i). (iii) By doing the same series of AY
transformations on triangles in each copy of G in G;LIG, we obtain a subgraph of
G1UG,. The result follows by minor-monotonicity of y and Theorem 4.14. u

For two matrices A, B, we denote their tensor product by A ® B, where the (i,j)th
block of A ® B is a;;B.

Proposition 5.2. 11(GOK33) > u(G)'+ 4 for a-connected graph G.

Proof. Let A be a p-optimal matrix for'G with the negative eigenvalue A;(A) = —3.
By Perron-Frobenius theorem, we may. choose a corresponding eigenvector ¢ > 0.
Let B denote the adjacency matrix of Kzs: Let#.= |G|. Then M = [ ® A—B® I, +
3l ® Iy € Ogpks, has corank(M) =u(G)+4 and' A (M) = —3. We show that M has
SAP and the result follows.

We first partition M into 6 x 6 blocks: M = [M,-]-], 1<1i,j <6. Also we view {1,2,3}
and {4,5,6} as two cocliques of order 3 in K33. By the definition of M, we have:

A+3l, ifi=j

—I, ifinj (1)

On ifinvj
Suppose X fully annihilates M. We have to show X = O. Similarly, we partition X
into 6 x 6 blocks: X = [Xi]-], 1 <i,j <6. For any i, 7, let [i, j] denote the (i, j)th block
of MX. Since MX = O, (j,I)th column of X can be expressed as 1s ® uj; + v ® §
where u;; € ker(A) and v;; € ker(B). Then Ith column of Yo, Xij is 6u;;. Hence
A 2?:1 Xij = O. Also, by (1) we have

=[i,j] = 2 M Xyj = (A+31,)Xj; — Y Xy (2)
k= k~i

Let p, q,r be three vertices in K33 that form a coclique. By (2), we have

=[pl+lail+rjl=(A+30) ), X;—3) Xy (3)
i=par kep
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Using AY.? ; X;j = O and (3),

O=A(A+3]) ¥ X;j—-3AY. Xy=(A"+6A) ¥ Xj=A Y X; ()
i=p,q,r k~p i=pq,r =p.q,r

since A + 61 is nonsigular. Again by (2), we have

=[p,jl —lg,j] = (A+3I) (ij - qu) (5)
(4) and (5) together yield:
O=AQ[p,jl—Ilq.j—1Irj]) = (A+31)(2AX,; — AX;j — AX,j) = 3(A +3I)AX,;

As a consequence, AX,; = cijCT for some constant c;;. For each i, since A o X;; = O
and I, o X;; = O, we have AXj; is zero in diagonal. Then c; = 0 and thus X;; = O by
SAP of A. It follows that u;; is a constant multiple of ¢ and hence u;; = 0 for each j, L.
As Mo X = O, we have X;; = O for i ~ j. For i » j, by (5), O = (A +3I)(X;; — Xj;) =

(A + 3I)X;;, implying that X;; is a constant multiple of Z&T. Thatis, X = C ® ¢¢7 for

some C € R(®), with BoC = I 0 C = O. On the other hand, O = MX = —BC ® &&T
implies that BC = O. Since —B is a p-optimal matrix for K33, by SAP we have C = O
and thus X = O. |

Theorem 5.3. If 11(Gy) < 5 or Gy is complete bipartite, then u(G10G,) > 1(G1) + u(Gp)
for connected graphs Gy, Go.

Proof. Note that if G <X Gy, then G1lUG =< .G{L1G,. Therefore by minor-monotonicity
of u, it suffices to show for the set-of forbidden minors. Also, graphs in {Ky} U
Ui_; F, except for K33 and Kszy, can be obtained from complete graphs by per-
forming a series of AY transformation on triangles. For G, = Ky, with p > g > 3,
K35V K;3 = Kygg < Ky The restiltithen follows by Proposition 5.1, 5.2 and the
characterizations of u for y < 4. |

Pendavingh[9] proved that for a connected graph G, ¢(G) > (¥ (GZ) 1) unless G = K33,
offering an optimal bound of y in terms of the number of edges, which provides a
necessary condition to determine whether a graph is a forbidden minor for p < k.
For u > 5, by Pendavingh’s bound and Theorem 4.14, any graph that can be obtained
from complete graphs by performing a series of AY operations and YA operations are
forbidden minors. Therefore by (iii) of Proposition 5.1, #(G10G,) > u(G1) + u(Gp)
holds for a large number of graphs with y > 6. However, there are forbidden minors
that can’t be obtained by AY transformations on triangles, such as the complement
of icosahedron [9]. Note that the inequality in Theorem 5.3 could be worse for sparse
graphs. To show this, we need the following theorem, which is an easy consequence
of minor-monotonicity of y and Theorem 4.2.

Theorem 5.4. ([5]) Let G be a graph with u(G) > 3. If G’ arise from G by subdividing an
edge, then u(G) = u(G’).

Forn > m > 3, u(Ky,) = u(Ky,y) = 2. Let G = Ky ,0K;,,. Note that G can be
obtained from Kj ;; V K; by subdividing each edge in K, ;. By Theorem 5.4, we have
#(G) = u(Knm) +1 = m+2. As a consequence, we have the following results. Let
A(G) denote the maximum degree of G.
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Proposition 5.5. For i = 1,2, let G; be a graph with A(G;) > 3 and let m; = Iax A(G).

Then u(G10Gy) > min{my, my} + 2. u

We say a subset S C V(G) is a connected dominating set if S induces a connected
graph in G and all vertices in G — S have a neighbor in S. Using Proposition 5.5, a
lower bound of y under Cartesian products in terms of connected dominating set is
provided.

Corollary 5.6. Let Gy and Gy be connected graphs with maximum degree at least 3. Let S;
be a connected dominating set of G;, i = 1,2. Then u(G10G;) > min{|G1| — |S1|, |G2| —
1S2|} + 2. |

Example 5.7. For d > 3, [10] has provided a connected dominating set for the hy-
percube Q, := [09K; of order 2972 4 2. Using Corollary 5.6, 11(Qsy) = u(Qs0Q,) >
24 —24-2 — 3.20-2 1In general, u(Q,) > 3-204/21-2,

Since G1JG;, is a subgraph of Gy X Gy, u(G10G,) < (G X G,). However, the bound
in Proposition 5.5 is also tight for the strong product of graphs. Let n > m > 3,
and G = Ky, X Kj,. Let G’ be the graph obtained from K, ,, by subdividing each
edge, adding a pendant vertex to the new vertex, doing a YA transformation to the
claw. Since y(Ky,n) = m+1 > 4, by Theorem 4.2, 4.14 and 5.4, u(G’) = m + 1. Since
G = G’ V Ky, by Theorem 3.7, we have u(G) = m+ 2.

Proposition 5.8. 1i(Ky, x Ky,) > (m'=1)(n —1).

Proof. Assume n > m. If m = 1, the inequality clearly holds. Since K; x K, = 2Kj, the
inequality holds. We may assume!n > 3,m >-2. Let M = —(J;u — L) ® (Ju — L) +
Iy ® I,. Clearly, M is a discreterschridinger operator for K, x K, with spectrum
{1—(m—1)(n—1)D,0lm=Dn=1) 3501-1) 5p(m=1)1 We show that M has SAP and
the result follows. We first partition M into "< i blocks: M = [Mij], 1<i,j<m. By
the definition of M, we have:

(1 ifi—
Mif_{—]an i ©6)

Suppose X fully annihilates M. We have to show X = O. Similarly, we partition X
into m x m blocks: X = [Xl-j], 1 <i,j < m. Since X fully annihilates M, X;; is zero
in diagonal for all i, and X;; is diagonal for all i # j. For any i,j, let [i, j] denote the
(1, j)th block of MX. As MX = O, we have

m

O = [i,jl = ) MyXy 7)
k=1
Using (6), (7) is equivalent to
m
Y X =Tn ) Xy (8)
k=1 k#i

Summing (8) over i, then we obtain
m m
mY Xgj=(m—1)] Y Xy
k=1 k=1
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Let X' =Y}", Xkj- Dividing m — 1 on both sides, we have

) . m /
JnX' = m—1 X
Since n > 3, 5 is not an eigenvalue of [,. Thus, X" = O which implies that Xjj = 0.
Now for i # j,
O = [i,j] = [j,j] = InXij — JnXjj = JnXij
Since X;; is diagonal, X;; = 0 and therefore X = O. |
Corollary 5.9. u(G; X G) > (w(G1) — 1)(w(Gy) — 1)

Proof. Since K,,(g,) X Ky (g,) is a subgraph of G1 X Gy, the result follows from minor-
monotonicity of u and Proposition 5.8. |

Corollary 5.10. Assume Gy, Gy non-edgeless. Then v(G11G;) < |Gy| + |G| —2

Proof. By Theorem 1.7 and Proposition 5.8, we have
V(G1DG2) < V(K|G1‘DK|G2‘) = |G1||G2‘ - ]/I(K|G1‘ X K|G2\) —1 < ’G1| + ‘G2| — 2.

u
Indeed, we can obtain a nondegenerate gram labelling for G;LJG; naively as con-
structed below.

Lemma 5.11. Let n = |G|. Given any real numbers {c;}! , larger than 1, there exists a
full-rank (hence nondegenerate) gram labelling i+ u; in R" for G such that |u;| = c; for
each i.

Proof. It suffices to construct a gram ‘matrix of rank n for G satisfying (A1) with
respect to G with (c3,¢c3,...,c2)-in the diagonal: Let A be the adjacency matrix of G
and take m > 1 such that A + mI is positive definite. Note that the sum of positive
definite matrices is still positive definite. Let D be a diagonal matrix with positive
diagonal. Set B = A + D. Then write B = VIV for some full-rank square matrix V
of order n and let v; be the ith column of V. For « € (0,71/2), consider the labelling

i+ u; = cosa ® (sina)v;. As shown in Lemma 3.3, this is a gram labelling for G; in

R"*! with each u; of norm \/ 1+ (B;—1) sin . Choose &« and D such that the norm
of u; is c;. Then its gram matrix is the desired one. [ |

Proposition 5.12. Let Gy, Gy be graphs. If i — u; is a nondegenerate gram labelling of Gy
in RY such that |u;| = ¢ > 1 for all i, then v(G10G,) < d + |Ga|.

Proof. Let n = |G;|. By Lemma 5.11, there exists a gram labelling k — vy of G, in R"
such that {v; } spans R" and |v;| = ¢ for all k. Consider the labelling (i, k) — w(;) ==

(2 +1)"12(u; ® v)). We show that it is a nondegenerate gram labelling for G;JG,.
For each (i, k), (j, 1),

202 . . .
=3 if (k)= (1)
- 21 !
wlwiy = (@ +1) 7wl uj+ofo) { — 1 ifi=jk~lori~j k=1
<1 otherwise
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Suppose there exist X € R{1/%20) such that X is zero in the diagonal and X Gx G =0
for (i,k)(j,1) ¢ E(G1OG,), satisfying that for each (i, k),

Y X0 in T 1 Xaninwen = 0.
i k1

As vy is not in the span of other v}, we have that X;;;x) = 0 for each I. Therefore
the equation is independent of k and the nondegeneracy of i — u; forces X = 0 and
we are done. u

Observe that in the proof, each vector in the labelling for G;LJG; is of same norm
larger than 1. Therefore, we can repeatedly apply the procedure above, hence we
have

Corollary 5.13. v(0% ,G;) < Y4 1Gil. [

Now we can derive Proposition 1.9 as an easy consequence.

Proof. (of Theorem 1.9) Suppose {G;}icn are non-edgeless graphs with orders less
than N. By Example 5.7, #(Q4) > C -2%/2 for some positive constant C. Then for
d large, u(G10---0Gy) > u(Qq) > C-2%2 > dN > v(G;O---0G,), whence the
assertion follows. |

Now we can provide a family of examples:for-nice graphs with y much larger than
v using the previously obtained inequality.. We first recall some definitions. Let
G = (V,E) be a connected graph: Two distinet vertices u, v € V are said to be twins
if Ng(u) — {v} = Ng(v) —{u}—~We say G is twin-free, if G has no twins. We say
G is vertex-transitive (resp. -edge-transitive) if.the automorphism group Aut(G) acts
transitively on V (resp. on E). The examples are constructed by the following fact.

Proposition 5.14. Let G be a connected vertex-transitive graph with |G| > 1. For d > 2,
[9G is vertex-transitive. Moreover, (?G is edge-transitive if G is. Also, O%G is twin-free
unless G = Ky and d = 2.

Proof. For u € [9G, write u = (uy,up,...,uy). Given vertices u,v € 4G, there exists
@; €Aut(G) such that @;(u;) = v; for each i. Then since @1 X @2 X - - - X @y €Aut(?G)
and maps u to v, [9G is vertex-transitive. Moreover, assume G is edge-transitive. For
uv,u'v’ € E(0G), we have by definition that u; ~ v; and u;- ~ v;. for some i,j and
that u, = vy, u; = v} for k # i, j # 1. By commutativity of Cartesian product and
previous discussion, we may assume i = j by permuting coordinates and all other
coordinates are equal. By edge-transitivity of G, there exists ¢ €Aut(G) that maps
u;v; to uv). As ¢ can be viewed as an automorphism acting only on ith coordinate
of 09G, and thus 4G is edge-transitive. Given vertices u,v € 4G, by permuting,
we may assume 1 < k < d is the largest integer such that uy # vr. If k < d, then
choose w € Ng(ugy1) and we have (uy, ..., ux, W, Ugio,. .., Ug) € Noag(u) — Ngag (0);
suppose k = d and some vertex in {u;,v;}% | is of degree at least 2 in G. Again by
permuting and symmetry, we may assume |Ng(u1)| > 2. Take w € Ng(u1) — {v1}.
Then (w, uy,...,u;) € Noag (1) — N (v). Suppose k = d and each u;,v; is of degree
1in G. If G # Ky, then u;v; ¢ E(G) for each i. Take w to be the neighbor of 1
in G and we have (w,uy,...,u;) € Noug(#) — Noug(v). If G = Ky and d > 3, then
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(v1,u2,u3,...,u;) € Noag(u) — Noag (v). This shows that u, v are not twins. [

Finally, we propose the following question, which is analogue to that of u.

Question 5.15. Is v(G10G;) < v(G1) + v(Gy) + 2 for all graphs Gy, G»?
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