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摘 要

在本論文中，我們給出在存在封閉的條件下於數體中為真的 ∀n∃ 句型的保持

定理之證明，我們證明在特徵數零與完美希爾伯特體中的 ∃∀ 理論皆是可判定的，

我們也證明了在特徵數零中的希爾伯特體、擬代數封閉域、一般希爾伯特體及一

般擬代數封閉域中的 ∀∃ 理論皆為可判定的。

關鍵詞：可判定句型、希爾伯特體、擬代數封閉域。

i

董世平 教授

翁志文 教授



On Decidable Fragments of Theories in Field
Arithmetic

Student: Chun-Yu Lin Advisor: Shih-Ping Tung / Chih-Wen Weng

Department of Applied Mathematics

National Chiao Tung University

Abstract

In this thesis, we prove the preservation theorem of ∀n∃ sentences over number

fields under existentially closedness. We show that the ∃∀ theories of Hilbertian

fields with characteristic 0 and perfect Hilbertian fields are both decidable. We also

prove that the ∀∃ theories of Hilbertian fields with characteristic 0, Hilbertian fields,

PAC fields with characteristic 0, and PAC fields are all decidable.
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Chapter 1

Introduction

In mathematics, we often face problems take the form: find an effective procedure
by means of which it can be determined in finitely many steps for each element of
our interested set, whether or not the element satisfied the defining property. The
solution of such problem usually consists of exhibiting algorithmic-like arguments or
proofs to demonstrate that procedure. The problems of this kind are called decision
problem or decidability of theories which depends on the set we considered. To be
more precise, we give the definition of decision problem as following.

Definition 1.1. Given a mathematical theory T or a problem P, the decision
problem or theory is the about search for the existence of a decision algorithm AL
which will accomplish the following works:

1. For a sentence ϕ expressed in the language L of T , AL will determine whether
ϕ is true in T ,i.e. whether ϕ ∈ T .

2. For a instance I of a problem P, AL will produce the correct answer for this
instance I, which may be ”YES”,”NO”,an integer,etc.

Example 1.2. We give some examples about decision problems or theories.

1. Word Problems for groups and semigroups (find algorithms to decide whether
two words in the generator represent the identical element),

2. Hilbert’s Tenth Problem over commutative ring R (find algorithms to decide
whether a given polynomial f(x) ∈ R[x1, . . . , xn] of n-variables has solutions
a ∈ Rn),

3. Decidability of first order theory of R (find algorithms to decide whether a
given sentence is true in R),
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4. Decidability of first order theory of number fields (find algorithms to decide
whether a given sentence is true in all number fields).

As in Definition 1.1, if such an algorithm does exist, we shall say that the de-
cision problem of T or P is solvable, or that the theory T is decidable. If no
decision algorithm AL exists, we call the decision problem of T or P unsolvable,
or the theory T is undecidable. The AL is called a decision(or effective) procedure
for T or P. Since there are computational (or algorithmic) aspect of many math-
ematical subjects (e.g. numerical analysis[31], computational algebraic geometry[9]
and computational algebraic number theory[8], etc.), most of the decision problems
in mathematics are solvable. However, there are still some decision problems that
are unsolvable. For example, the word problem is unsolvable [5]. Hilbert’s tenth
problem over Z and N are both unsolvable [11]. For the first order theories, the
cases are different. In 1931, K. Gödel announced his famous incompleteness theo-
rem which implies that the elementary theory of ⟨N,+, ·, 0, 1⟩ and ⟨Z,+.·, 0, 1⟩ are
undecidable [17]. On the other hand, C. H. Langford proved in 1927 that the ele-
mentary theory of ⟨N,≤⟩ is decidable [22]. Also, the elementary theory of abelian
groups is decidable [37]. There are many elementary theories of various mathemat-
ical structure have been proved to be decidable or undecidable since then. We list
some theories of fields that will be discussed in this thesis and refer to [12] and [26,
Chapter 13 and 16] for exhaustive lists of decidable and undecidable theories.

Theorem 1.3. The following elementary theories in the language L are all decidable.

1. The elementary theory of R [40],

2. The elementary theory of Qp, the p-adic field [40],

3. The elementary theory of algebraically closed fields of characteristic p for some
prime number p or p=0 [1].

Theorem 1.4. The following elementary theories in the language L are all unde-
cidable.

1. The elementary theory of fields [34],

2. The elementary theory of fields of characteristic 0 [34],

3. The elementary theory of algebraic number fields [35],

4. The elementary theory of Hilbertian fields [15],

5. The elementary theory of PAC fields [7].
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Notice that even if we consider the same domain, different structures may have
different decidability of the elementary theories. The results proposed by Gödel
and Langford mentioned above are good examples. But for those structures whose
elementary theories are undecidable, we may ask the following problem:

Question 1.5. What subsets of undecidable theories are decidable or undecidable ?
We try to find the decidable fragments(i.e. dividing line) of decidability of different
theories.

Since this thesis mainly focus on decidable fragments of field theories,
we only list decidability results about rings and fields in the following
paragraphs and in other chapters. For the question 1.5, there are two different
approaches: different numbers of quantifier, different kinds of quantifier ( ∀ or ∃ ).
To discuss these two approaches, we need some definition of terminology.

Definition 1.6. Let Q deote the quantifier ∀ or ∃. We call φ a Qm
1 Q

n
2 sentence

for m,n ∈ N if and only if φ is logically equivalent to a sentence of the form
Q1x1 · · ·Q1xmQ2y1 · · ·Q2ynφ

′(x1, . . . , xm, y1, . . . , yn) where φ′ is a quantifier-free for-
mula. We call ψ a Qm

1 Q
n
2 equation if and only if ψ is of the form

Q1x1 · · ·Q1xmQ2y1 · · ·Q2ynf(x1, . . . , xm, y1, . . . , yn) = 0

where f is a polynomial.

For example, Hilbert’s Tenth Problem can be formulated in the form of question
as: Decide whether or not the set of ∃n equations for all n ≥ 0 over N and Z are
decidable. For sets of Qm

1 Q
n
2 sentences, we formulate following definition.

Remark 1.7. In this thesis, we often use the logically equivalent form of Qm
1 Q

n
2

sentences for m,n ∈ N in the proofs of theorems. Note that logically equivalence
of two sentences are not decidable in general. But this does not affect the proofs
since we only use the model-theoretic properties of Qm

1 Q
n
2 sentences rather than the

computability of logically equivalent form of Qm
1 Q

n
2 sentences in our proofs.

Definition 1.8. Let Q denote the quantifier ∀ or ∃. We call a subset of elementary
theory Th(K) (resp. Th(K)) of an mathematical structure K (resp. a class of
mathematical structure K) a Qm

1 Q
n
2 theory if it consists of Qm

1 Q
n
2 sentences which

is true in K ( resp. true in all mathematical structures in K).

Of course, we can extend the definition for Qm
1 Q

n
2 equation and theory to Qm1

1 · · ·
Qmn

n for m1, . . . ,mn ∈ N and Q1, . . . , Qn ∈ {∀,∃} like arithmetical hierarchy in
recursion theory. But the there are few results in three or more alternative quantifiers
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of Qm1
1 · · ·Qnmn theory over other algebraic structures than N and Z. So we mainly

consider Qm
1 Q

n
2 equation and theory. Notice that if we know that a Qm

1 Q
n
2 theory of

some mathematical structures (or a class of mathematical structures) is decidable,
then so is the set of Qm

1 Q
n
2 equations. But if a Qm

1 Q
n
2 theory of some mathematical

structures (or a class of mathematical structures) is undecidable, it may still happens
that the set of Qm

1 Q
n
2 equations is decidable. Since Hilbert’s tenth problem over N

and Z are unsolvable, we may ask what is the least n such that the set of ∃n equations
for all n ≥ 0 over N and Z are undecidable ? This is the first approach of our
question 1.5.

Theorem 1.9. 1. The set of ∃n equations over N is undecidable for all n ≥
9 [19].

2. The set of ∃n equations over Z is undecidable for all n ≥ 11 [39].

Note that the set of ∃ equations over N and Z are decidable as [23] indicates.
Since the decidability of ∃2 equations over N and Z are still unknown [11], we still
have no answer for 2 ≤ n ≤ 8 in the case of N and for 2 ≤ n ≤ 10 in the case of Z.
For the second approach, we can separate it into global and local directions.

Definition 1.10. The global and local approach of different quantifier of decidable
fragments are defined as following:

1. The global direction: Consider the Qm
1 Q

n
2 sentences with m or n (or both) to

be ranged over all natural numbers,

2. The local direction: Consider the Qm
1 Q

n
2 sentences with m,n to be some fixed

natural numbers.

Note that the Π0
1, Σ0

1, Π0
2, and Σ0

2 sentences in recursion theory are all special
cases of above definition.

Theorem 1.11. We have following results about decidability of the set of Qm
1 Q

n
2

equations and in global direction.

1. The set of ∃n equations for all n ∈ N over N and Z are both undecidable [11].
(For the decidability ∃n equations with all n ∈ N over other commutative rings,
see [29]),

2. The set of ∀n∃ equations for all n ≥ 0 over Z is decidable but the set of ∀n∃
equations for all n ≥ 0 over N is undecidable. Also, the set of ∀n∃2 equations
for all n ≥ 0 over Z is undecidable [41].
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If we consider the global direction in Qm
1 Q

n
2 theory, the results are slightly dif-

ferent.

Theorem 1.12. For all m,n ∈ N, we have following results:

1. The ∀m∃n theories of N and Z are undecidable, respectively [41],

2. The ∀m∃n theory of Q is undecidable [21],

3. The ∀m∃n theory of a number field are undecidable [28],

4. The ∀m theories of fields and integral domains are both decidable [27],

5. The ∃m theory of PAC fields is decidable [15].

Now, for the local direction, we often consider the case in ∀m∃n theories so that
the decidability of ∀m∃n equations are determined automatically.

Theorem 1.13. We have the following results about decidability of Qm
1 Q

n
2 theory in

global direction.

1. The set of ∀∃ equations over N and Z are both decidable [20],

2. The ∀∃ and ∃∀ theory of N,Z,Q and an algebraic number field K are decidable,
respectively [42, 43],

3. The ∀∃ theory of algebraic number fields, fields of characteristic 0, and fields
are decidable, respectively [43],

4. The ∀∃ theory of integral domains is decidable [44],

5. The ∀∃ theory of algebraic integer rings is decidable [45].

In this thesis, we first prove the preservation theorem for ∀n∃ sentence with
arbitrary n over an algebraic number field and discuss the possible implication for
Hilbert’s tenth problem over number fields. Then we show that the ∃∀ theories of
Hilbertian fields of characteristic 0 and perfect Hilbertian fields are both decidable.
In the last section, we prove that the ∀∃ theories of Hilbertian fields of characteristic
0, Hilbertian fields, PAC fields of characteristic 0, and PAC fields are all decidable.
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Chapter 2

Preliminaries and Notations

In this chapter, we introduce the necessary background in model theory, computabil-
ity theory and field arithmetic to understand to theorems and proofs in this thesis.

2.1 Notation
By Q, R, C we denote the field of rational numbers, the field of real numbers, and the
field of complex numbers, respectively. By N,Z we denote the set of natural numbers,
and the ring of integers, respectively. If K is a field, we denote by K̄ a fixed algebraic
closure of K, by Ks the separable closure of K in K̄, and by Gal(K)=Gal(Ks/K) the
absolute Galois group of K.

A set is countable if and only if it is countably infinite or finite. We denote ℵ0
by the first infinite cardinal number and ω by the smallest infinite ordinal number.

2.2 Model theory
The basic objects in model theory are formulas, models, and languages. A language
is a collection of symbols we use in ”everyday” mathematics like analysis, geome-
try, or algebra. A formula is a string of symbols formulated under some syntactic
rules. A structure is a set with an assignment that assign the respective rules of
three categories of symbols(function, relation, and constant symbols) under the set.
After giving intended meaning of symbols in formulas, we can find structures where
these formulas are true. Then we get models. Models are generalization of groups,
rings, ordered sets, and other objects in universal algebra. For formal definitions of
language, structure, formula, sentence, satisfaction, and proof, see [4] or [13].

In this thesis, we mainly use the language of rings is L = Lring, is a collection
of symbols which consists of logical symbols ⟨¬(not),∧(and),∨(or),→(implies),↔(if
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and only if),∀(for every), ∃(there exists),x0, x1, . . . , y, z(variables) ⟩ and ⟨+,−, ·, 0, 1⟩
as non-logical symbols. If K is an L-structure, and A is a subset of domain of K,
denote by LA = L∪{ca : a ∈ A} the language L adding a new constant symbol ca for
each element a ∈ A. It is understood that if a ̸= b, then ca, cb are different symbols.
We may then expand the L-structure K to the LA structure KA = (K, a)a∈A by
interpreting each new constant symbol ca by a ∈ A. We give the definitions of two
important objects in model theory.

Definition 2.1. An L-theory (or simply, a theory), is a set of sentences of the
language L. A model of a theory T is an L-structure M which satisfies all sentences
in T , denoted by M |= T . A sentence φ is a consequence of a theory T if every
model of T is a model of φ, denoted by T |= φ.

For example, a ring and a field are models of the set of ring or field axioms
commonly described in algebra text, respectively. If K is a class of L-structures, then
Th(K) denotes the set of all sentences true in all L-structures of K, and Th({K})
is denoted by Th(K). Usually, we called Th(K) the (elementary) theory of K.

A class K of L-structures is said to be an elementary class if there exists a
theory T in L such that K is exactly the class of all models of T . The class of
commutative rings and fields are examples of elementary class.

A theory T is inconsistent if every formula of L can be deduced from T ,i.e.
there is a proof for every formula of L from T . Otherwise T is consistent. If T is
consistent and no set of sentences of L properly containing T is consistent, we say
T is maximal consistent.

Definition 2.2. An L-theory T is complete if the set of consequences of T is
maximal consistent. In other words, given an L-sentence φ, either T |= φ or T |=
¬φ.

If K is an L-structure, then Th(K) is complete. But ifK is a class of L-structures,
then Th(K) is not necessarily complete. The theory of class of all fields is not com-
plete. The theory of class of algebraic closed fields of characteristic 0 is complete [10,
Example 3.4.3].

Definition 2.3. An L-theory T is axiomatizable if there exists a decidable set of
L-sentence S such that S and T have the same consequences. We call S a set of
axioms of T .

The theory of class of all fields is axiomatizable by axioms of fields. However, the
theory of class of algebraic number fields is not axiomatizable [35]. Like in abstract
algebra, we are also interested in the relation between two structures.
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Definition 2.4. LetA and B be L-structures. A map s : A → B is an L-morphism
if for all relation symbols R ∈ L, function symbols f ∈ L, and all tuples ā, b̄ ∈ A,
we have: if ā ∈ RA, then s(ā) ∈ RB; s(fA(b̄)) = fB(s(b̄)).

If the morphism s : A → B is injective and further satisfy the condition that
for all relation symbols R ∈ L and all tuple ā ∈ A, ā ∈ RA ⇐⇒ s(ā) ∈ RB,
we say s is an embedding. An isomorphism between two L-structures A and
B is a bijective morphism, whose inverse is also a morphism. Also, the concept of
embedding in algebra can be generalized to the following concept.

Definition 2.5. Let A and B be L-structures. We say that A is isomorphically
embedded in B if there is a substructure D of B such that A is isomorphic to D.

Definition 2.6. Let A and B be L-structures. A and B are elementary equiva-
lent if every sentence that is true in A is true in B, and vice versa.

The structure ⟨Q̄, 0, 1,+,−, ·⟩ is elementary equivalent to ⟨C, 0, 1,+,−, ·⟩ [10,
P.139]. If the L-structure A ⊆ B, then we can give following definition.

Definition 2.7. Let A and B be L-structures. We say B is an elementary exten-
sion of A if

1. A ⊆ B (i.e. A is a substructure of B)

2. For any L-formula φ(x̄) and tuples of elements ā of domain of A, A |=
φ(ā) ⇐⇒ B |= φ(ā).

Note that even two L-structures A,B are elementary equivalent and A is a
substructure of B, then B is not necessarily elementary extension of A (Take ⟨ω \
{0},≤⟩ and ⟨ω,≤⟩ for example). A consistent theory whose maps between all models
are elementary is exceptionally nice theory.

Definition 2.8. A consistent theory T is said to be model complete if for all
models A, B of T , if A ⊂ B then B is an elementary extension of A.

For example, the theory of algebraically closed fields and real closed fields are
both model complete [10, Example 3.5.2]. The concept of prime field in field theory
can be generalized to the following concept.

Definition 2.9. A model A of an L-theory is said to be algebraically prime if A
is isomorphically embeddable in every model of T .

For example, Q and Fp are algebraically prime model of theory of fields of char-
acteristic 0 and p, respectively. With this concept, we can characterize the complete
theory through model complete theory.
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Proposition 2.10. [10, Proposition 3.5.11] Let T be a model complete theory. If
T has an algebraically prime model then T is complete.

For examples about how to use this proposition, see P.197 in [10]. Then we define
the model theoretic concept that generalizes the concept of algebraically closed in
field theory. This concept will be frequently used in this thesis.

Definition 2.11. Let A and B be L-structures. Then A is existentially closed
in B if each existential sentence φ of LA which is true in B is also true in A.

If A is existentially closed in B, then we have following two important properties
which guarantee the existence of structure which is elementary extension of A.

Proposition 2.12. [30, Lemma 6.27] Let A ⊆ B be L-structures. Then A is
existentially closed in B if and only if B can be embedded in a structure A∗ for L
which is elementary extension of A.

Proposition 2.13. [30, Lemma 6.28] Let A ⊆ B be L-structures. Suppose that A
is existentially closed in B and A∗ is elementarily equivalent to A. Then there exists
an existentially closed embedding of A∗ into an L-structure B∗ which is elementarily
equivalent to B.

In the following paragraphs, we investigate the relation of two models under
some relations of two theories.

Definition 2.14. Let T and U be two theories. If the universal consequences
(consequences that are universal sentences) of T and U are identical, then we said
T and U are cotheories.

For example, the theory of algebraically closed fields, fields, and integral domains
are cotheories of each other. If T and U are cotheories, we have following property
about models lying above.

Proposition 2.15. [10, Remark 3.5.6] T and U are cotheories if and only if every
model of T can be extended to a model of U , and vice versa.

If one of the theory T is model complete, we get following definition.

Definition 2.16. Let T and U be two theories. We said T is a model companion
of U if T is a cotheory of U and T is model complete.

For example, the theory of algebraically closed fields and real closed fields are
model companions of the theory of fields and ordered fields, respectively. In the last
part, we introduce preservation theorem that will be frequently used in this thesis.
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Definition 2.17. Let A be an L-structures. A theory T is preserved under sub-
models (resp. extension) if any submodels (resp. extension) of A is a models of
T .

Proposition 2.18. [10, Corollary 3.2.5] Let A and B be L-structures. An L-
sentence is preserved under (a) substructures, (b)extensions if and only if it is
logically equivalent to a sentence which is (a) universal, (b) existential, respectively.

2.3 Computability theory
As in the introduction, we have given the informal definition of decision problem in
Definition 1.1. However, there is a significant methodological difference between the
study of decidability and the study of undecidability of a theory T . The decision
problem of a theory T can be solved by demonstrating a decision algorithm AL
which is directly recognized and accepted by mathematician as being an effective
computational procedure. On the other hand, to establish the undecidability of a
theory T , we need formal or precise mathematical meaning of decidability so that
we can show that the theory T is undecidable. With this motivation in mind, the
assignment of a rigorous mathematical meaning on decidability involves the notion
of recursive function. Let Fn be the class of all functions from Nn to N. Denote
F as

∪∞
n=1Fn. Among the functions of F , those that suit recursive operation of

”elementary” mathematics are called primitive recursive functions. If we include
less ”computable” functions, then we get recursive functions.

Definition 2.19. The set of primitive recursive functions is the smallest subset
of F which contain the following functions (called initial function):

1. The identical zero function: f(x) = 0.

2. The successor function: S(x) = x+ 1.

3. The projection function: Un
i (x1, . . . , xn) = xi, for n ∈ N and 1 ≤ i ≤ n.

and closed under the following operations:

1. Composition: If g ∈ Fm and h1, . . . , hm ∈ Fn are primitive recursive functions,
then the function

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn))

is also primitive recursive.
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2. Primitive recursion: If f0 ∈ Fn and g ∈ Fn+2 are primitive recursive functions,
then the function f ∈ Fn+1, which is defined by the following induction,

f(x1, . . . , xn, 0) = f0(x1, . . . , xn)

f(x1, . . . , xn, y + 1) = g(x1, . . . , xn, y, f(x1, . . . , xn, y))

is also primitive recursive.

Remark 2.20. A function is primitive recursive if there is a derivation, namely
a sequence f1, f2, . . . , fk = f such that each fi, i ≤ k, is either an initial function,
or fi is obtained from {fj : j < i}, by an application of Composition or Primitive
recursion.

For example, the constant function, additive function, multiplicative function,
and exponential function are all primitive recursive functions. The minimum oper-
ator separate recursive and primitive recursive function apart.

Definition 2.21. Let R(x, y) be an (n+1)-ary relation on N such that for each x
there exists y for which R(x, y) is true. Then the minimum operator (µy)R(x, y)
is the smallest y for which R(x, y) is true.

Definition 2.22. The family of recursive functions is the smallest subset of F
which contains all primitive recursive functions and is closed under composition,
primitive recursion, and minimum operator.

For an n-ary relation R(x1, . . . , xn), if the characteristic function of R is primitive
recursive (resp. recursive), then we say this relation is primitive recursive (resp.
recursive). The definition for a set to be primitive recursive is identical.

Remark 2.23. If we can decide for each (x, y) whether or not R(x, y) is true, then
we can also compute (µy)R(x, y) through checking the validity of R(x, 0), R(x, 0),. . .
in order. We can find the smallest y for which R(x, y) is true in finite steps.
However, there is no bound for the steps in terms of R and x.

Since our definitions of recursive and primitive recursive function are only valid
in N, we need a way to label other symbols with natural numbers so that we can also
utilize the concepts to other algorithms. Gödel numbering gives such a numbering.
The numbering is an injective map ν from the set of all terms and formulas in a
given language L to N.

Definition 2.24. For an L-theory T , if ν(T ) is recursive (resp. primitive recursive)
set, then we said T is recursive (resp. primitive recursive).

11



We also give the corresponding definition of recursive and primitive recursive
functions for computable algebra which will be used in this thesis. Consider a
sequence (ξ1, ξ2, . . .) of symbols. We define polynomial words inductively: Each
elements of Z and each ξi is a polynomial word. If t1 and t2 are polynomial words
and n ∈ Z, then n · t1,(t1+ t2), and (t1 · t2) are polynomial words. We denote the set
of formal quotients of polynomial words by Ξ. For example ((3 · ξ1)+ (ξ2 · ξ2))/(ξ2+
(−2 · ξ2)) is an element of Ξ. Writing each n ∈ N in its decimal form and xii as ξ[i],
we can view Ξ as a subset of the set Ξ′ of all finite strings in the following alphabet

⟨ζ1, ζ2, . . . , ζ19⟩ = ⟨0, 1, . . . , 9, ξ, /,+, ·,−, (, ), [, ]⟩.

Then the Gödel numbering on Ξ′ is given by the injective map ν : Ξ′ → N defined
by

ν(ζm(1)ζm(2) · · · ζm(i)) = p
m(1)
1 p

m(2)
2 · · · pm(i)

i ,

where 2 < p1 < p2 < · · · is the sequence of prime numbers. Restrict ν to Ξ and
denote as v, we have v(Ξ) is a primitive recursive subset of N. For each n ∈ N,
let v(n) : Ξn → Nn be the coordinate function which is n-th power of v. To each
function ρ : Ξn → Ξ there corresponds a unique function ρ′ : Nn → N such that
ρ′ ◦ v(n) = v ◦ ρ and ρ′ is identically to 1 on Nn \ v(n)(Ξn). We call ρ a primitive
recursive function if the corresponding ρ′ is primitive recursive function. Similarly,
a subset ∆ of Ξn is primitive recursive if v(n)(∆) is primitive recursive. For example,
the set N, Z, all sets {ξi : i ∈ S} with S a primitive recursive subset of N, and the
set Θ of all polynomial words are all primitive recursive (see [15, P.402]).

Definition 2.25. A field K is said to be presented if there exists an injective map
: µ : K → Ξ such that µ(K) is a primitive recursive subset of Ξ and the following
functions over K are all primitive recursive (via µ):

1. additive operation,

2. multiplicative operation,

3. inverse function on K×,

4. characteristic of K.

For example, Q and Fp are presented. Now, let S = K[X1, X2, . . .] with presented
field K and Γ be the set of all polynomial words in X1, X2, X3, . . . with coefficients in
Ξ. We can define primitive recursive functions on Γ as above. Since K is presented,
we can extend µ : K → Ξ to an embedding of S into Γ by mapping each polynomial
in S to its canonical form in Γ.

12



Definition 2.26. An effective algorithm over a presented field K is a primitive
recursive map λ : A → B where A and B are explicitly given primitive recursive
subset of Sn and Sm, respectively.

Definition 2.27. A presented field K is said to have the splitting algorithm if
K has an effective algorithm for factoring each elements of K[X] into a product of
irreducible factors.

Proposition 2.28. [15, Lemma 19.1.3] The following algorithms are effective:

1. Factoring an element of Q[x] into a product of irreducible polynomials,

2. Factoring an element of K[x1, . . . , xn] in to a product of irreducible factors
with K a presented field with a splitting algorithm.

A presented field K is said to have an elimination theory if every finitely gener-
ated presented extension F of K has a splitting algorithm. The following proposition
tell us which field has elimination theory.

Proposition 2.29. [15, Corollary 19.2.10] Every presented perfect field K with a
splitting algorithm has an elimination theory.

Given an L-theory T , if we know the characteristic function χν(T ) with given
Gödel numbering is primitive recursive, then there must exists a derivation of χν(T )

by Remark 2.20. From this, we obtain a finite set of instructions through translate
back each function in the derivation. This set of instructions can decide whether a
given sentence θ belongs to T or not. This is what we call a decision procedure
(or a decision algorithm AL as in Definition 1.1 ), recursive or primitive as T is
recursive or primitive recursive. This definition also holds for recursive relation or
primitive recursive subset δ of Ξn as above. The distinction of recursive and primitive
recursive procedures lies in the use of minimum operator. Procedures that use only
minimum operator which y is bounded by two numbers is primitive recursive.

To decide whether an L-sentence θ belongs to L-theory T or not, we usually ap-
ply a set of instructions for L to θ to help us. These instructions arise from certain
operations by compositions, primitive recursions, and minimizations. The Gödel
numbering can translate these operations into recursive operations on N. Theo-
retically, we inspect these operations on N to prove the recursiveness of functions,
theories or sets. In practice, as P.160 in [15] indicates, we often avoid details steps
that show our procedures to be recursive or primitive recursive. Therefore, we rely
on a direct analysis of the origin set of instructions on given language L in this
thesis through informal description of decision algorithms AL. This is the approach
we use to prove primitive recursiveness in this thesis.
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2.4 Hilbertian Fields
For basic field theory, we refer to [25]. The polynomial x4 + 1 ∈ Z[X] is irreducible
over Q, but it’s reducible over Fp. A polynomial f ∈ K[X1, . . . , Xn] over a field K
is called absolutely irreducible if f is irreducible over K̄. Absolute irreducible
polynomials behave differently, as the following proposition shows.

Proposition 2.30. [15, Proposition 9.4.3] Let R be an integral domain and f ∈
R[X1, . . . , Xn] be an absolutely irreducible polynomial. Then for almost all (in the
sense of Zariski topology) prime ideals p ∈ Spec(R) the following holds where κ(p) =
Frac(R/p) denote the quotient field of R/p: The polynomial f (mod p) is absolutely
irreducible in κ(p)[X1, . . . , Xn].

The Proposition above tell us that the reduction of coefficients conserve absolute
irreducibility. However, this is in general no more true for specializing coefficient
in the field : An absolutely irreducible polynomial f ∈ C[X,Y ], monic in Y with
degY (f) > 1 become reducible polynomial f(X, η) ∈ C[X] for all η ∈ C. There are
fields where this phenomenon does not appear. This is the Hilbertian field named
after Hilbert for his work on irreducibility theorem in 1892.

Definition 2.31. Let K be a field. Consider irreducible polynomials f1, . . . , fm ∈
K(T1, . . . , Tr)[X1, . . . , Xn] and 0 ≠ g ∈ K[T1, . . . , Tr]. Define a Hilbert subset of Kr

as

HK(f1, . . . , fm; g) = {a ∈ Kr : fi(a) is defined and irreducible in K[X] for i = 1, . . . ,m, and g(a) ̸= 0}.

K is Hilbertian if all its Hilbert subsets are nonempty.

This is modern definition of Hilbertian fields. The reason why we need g(a) ̸=
0 is that we will use this property in the proof of 4.14. People who do research in
inverse Galois theory usually use the classical definition which is the three equivalent
conditions in the following Theorem. These two definitions are actually equivalent.

Theorem 2.32. [47, Corollary 1.8] The following conditions on K are equivalent:

1. For each irreducible polynomial f(X,Y ) in two variables over K, of degree
≥ 1 in Y, there are infinitely many b ∈ K such that the specialized polynomial
f(b, Y )(in one variable) is irreducible.

2. Given a finite extension F of K, and h1(X,Y ), . . . , hm(X,Y ) ∈ F [X][Y ] that
are irreducible as polynomials in Y over the field F (X), there are infinitely
many b ∈ K such that the specialized polynomials h1(b, Y ), . . . , hm(b, Y ) are
irreducible in F (Y ).

14



3. For any p1(X,Y ), . . . , pt(X,Y ) ∈ K[X][Y ] that are irreducible and of degree
> 1 when viewed as polynomial in Y over K(X), there are infinitely many
b ∈ K such that none of the specialized polynomials p1(b, Y ), . . . , pt(b, Y ) has
a root in K.

The Hilbertian fields have following properties

Proposition 2.33. [47, Lemma 1.10] Suppose K is Hilbertian, and f(X1, . . . , Xs)

is an irreducible polynomial in s ≥ 2 variables over K, of degree ≥ 1 in Xs.

1. Then there are infinitely many b ∈ K such that the polynomial f(b,X2, . . . , Xs)

(in s-1 variables) is irreducible over K.

2. For any nonzero p ∈ K[X1, . . . , Xs−1] there are b1, . . . , bs−1 ∈ K such that
p(b1, . . . , bs−1) ̸= 0 and f(b1, . . . , bs−1, Xs) is irreducible (as polynomial in one
variable) in Xs.

The Hilbert irreducibility theorem gives some examples of Hilbertian fields.

Theorem 2.34. [47, Theorem 1.23] The rational number field Q is Hilbertian.

The following crucial theorem tells us how to construct Hilbertian field from any
given fields.

Theorem 2.35. [15, Theorem 13.4.2] Suppose K is a global field or finitely generated
transcendental extension of an arbitrary field. Then K is Hilbertian.

Therefore, number fields and function fields Fp(t) are all Hilbertian. With the
following Proposition, we can also characterize some non-Hilbertian fields.

Proposition 2.36. [15, Lemma 16.11.5] Let K be a Hilbertian field. Then Gal(K)

is not finitely generated.

Since Gal(C) is trivial, we know that C is not Hilbertian. Gal(R) is a cyclic
group of two elements and hence R is not Hilbertian. Also, Gal(Fp) where p is a
prime power is the Prüfer group Ẑ. Note that Ẑ is generated by 1. Thus, none of
the finite fields is Hilbertian.

2.5 PAC Fields
In field arithmetic, there are two main fields that are under research-Hilbertian
fields and PAC fields. In last section, we have introduced Hilbertian fields. Then
we will introduce the remaining one. The concept of pseudo algebraically closed
field (PAC) field was seen by J. Ax in 1967 (see [2]). This concept generalize the
property of algebraically closed field that every polynomial has a solution over it.
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Definition 2.37. A field F is pseudo algebraically closed field (PAC) if every
(absolutely irreducible) variety V defined over F has an F-rational point, i.e., a point
with all coordinates in F.

For example, separably closed fields, algebraically closed fields are PAC fields [15,
Corollay 11.2.4]. We give the following examples of PAC fields constructed from
finite fields which is not algebraically closed.

Proposition 2.38. [14] Infinite algebraic extension of finite fields are PAC fields

Example 2.39. Let E =
∪∞

n=1 F33n . From P.29 in [6], E is an infinite algebraic
extension of F3 and a splitting field of {f(x) ∈ F3[x] : deg(f) divides 33n with n ∈ N
and p is irreducible over F3 }. x2 + 1 is irreducible over F3 by Gauss Lemma. If
X2+1 has solutions i on E, i must falls in some finite fields K such that [K : F3] = 2.
But K must be F9 and there’s no such finite subfield in E. Thus, E ⊂ F̄3 and E is a
PAC field from above Proposition.

Example 2.40. Every nonprincipal ultraproduct of distinct finite fields is a PAC
field [3].

Also every algebraic extension of PAC fields are also PAC [15, Corollary 11.2.5].
To characterize PAC field (also Hilbertian field), we need to analysis the corre-
sponding absolute Galois group. For the definitions of inverse system and related
topology, see [15, Chapter 1].

Definition 2.41. Consider an inverse system of finite groups (Gi, πji)i,j∈I for some
directed partially ordered set I, each equipped with the discrete topology and maps
πji : Gj → Gi are continuous homomorphism for all i, j ∈ I. We call the inverse
limit G = lim←−Gi a profinite group with projection πi : G → Gi to be continuous
homomorphism.

Usually, the Galois groups of infinite Galois extensions are profinite groups as
following.

Proposition 2.42. [15, Corollary 1.3.4] Every profinite group is isomorphic to a
Galois group of some Galois extensions.

Definition 2.43. Let A,B be finite groups and G is a group(not necessarily finite).
If for each epimorphisms ρ : G → A and τ : B → A there exists a homomorphism
γ : G→ B such that ρ = τ ◦ γ, then we say G is projective.

The projective profinite groups are used in the proofs of this thesis. The following
theorem gives an example of projective group

16



Theorem 2.44. [15, Theorem 11.6.2] The absolute Galois group Gal(K) of a PAC
field K is projective.

Also, we have the converse to theorem above. This Theorem is useful for con-
structing PAC fields through groups.

Theorem 2.45. [15, Corollary 23.1.2] Given a projective group G and a field K,
there is an extension F of K which is perfect and PAC with Gal(F ) ∼= G.

Let S be a subset of a profinite group G. Denote the closed subgroup generated
by S as ⟨S⟩. If ⟨S⟩ = G ,we say S generates G. If it has a finite set of generators, G
is said to be finitely generated. The minimal number of generators of G is called
the rank of G.

Notation 2.46. Given a profinite group G, we denote the set of all finite quotients
(up to an isomorphism) of G by Im(G).

Now, if a profinite group G is NOT finitely generated, we need to find topological
condition on the minimal set of generators of G in order to define the rank of G.

Definition 2.47. A subset X of a profinite group G is said to converge to 1 if X \N
is a finite set for every open normal subgroup N of G.

Proposition 2.48. [15, Proposition 17.1.1] Every profinite group G has a set of
generators that converges to 1.

Definition 2.49. The rank of a non-finitely generated profinite group G is defined
as the cardinality of a set of generators of G that converges to 1.

The following proposition shows that this definition is independent of the par-
ticular set of generators.

Proposition 2.50. [15, Proposition 17.1.2] Let G be a non-finitely generated profi-
nite group. Denote the family of all open (resp. open normal) subgroup of G by
M (resp. N ). Suppose X is a set of generator of G that converges to 1. Then
|X| = |M| = |N |.

Remark 2.51. If G is an infinite finitely generated profinite group, then G has
infinitely many open normal subgroups. For example, {2, 3} is a minimal subset of
generators of the Prüfer group Ẑ but rank(Ẑ) = 1. So Proposition 2.50 does not
hold in this case.

The definition of the rank of finitely and non-finitely generated profinite groups
differ from each other. A unified definition of rank(G) in both cases could be taken
as the minimal cardinality of a set of generators that converges to 1.
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Notation 2.52. We denote C as a family of finite groups containing the trivial
group. Each group in C is called C-group.

Definition 2.53. The family C of finite groups is called a formation if C satisfies
the following conditions:

1. (closed under taking quotients) If G ∈ C and Ḡ is a homomorphic image of G,
then Ḡ ∈ C.

2. (closed under fiber products) Let G be an arbitrary finite group and N1, N2

are normal subgroups of G. If G/N1, G/N2 ∈ C and N1 ∩N2 = 1, then G ∈ C.

The family C of finite groups is called a full formation if it is closed under taking
quotients, subgroups, and extensions.

We show that the full formation C is indeed a formation. Under the assumption
of Definition 2.53(2), N2 is isomorphic to N1N2/N1 by isomorphism theorem. Note
that N1N2/N1 is a subgroup of G/N1. Then N2 ∈ C. Since also G/N2 ∈ C, the exact
sequence 1→ N2 → G→ G/N2 → 1 implies G ∈ C. This satisfies the conclusion of
Definition 2.53(2).

Definition 2.54. A pro-C group is an inverse limit G = lim←−Gi of C-groups for which
the connecting homomorphism Gj → Gi are epimorphisms for all i,j.

Remark 2.55. If the formation C contains all finite groups, the pro-C groups are
just profinite groups. Also, the formation which contains all finite groups is clearly
a full formation.

Now, we introduce free pro-C groups arising as completion of free abstract groups.
Let X be a set and G a profinite group. A map φ : X → G is said to be convergent
to 1 if X \ φ−1(H) is a finite set for each open normal subgroup H of G.

Definition 2.56. Let G be a group and N be the directed family of normal sub-
groups of finite index in G so that Ni is subgroup of

∩
j∈J Nj with i ∈ I and finite

subset J of I. The direct limit Ĝ = lim←−G/Ni for all Ni ∈ N with map πi : Ĝ→ G/Ni

defined by restriction of pri :
∏

i∈I G/Ni → Ni to Ĝ is called the profinite com-
pletion of G with respect to N .

Definition 2.57. Let C be a formation of finite groups and X be a subset of F̂
which does not contain 1. A free pro-C group with basis X is a pro-C group F̂ with
a map τ : X → F̂ satisfying :

1. X generates F̂ , and converges to 1
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2. For each map φ of X into a pro-C group G which is convergent to 1 and satisfies
G = ⟨φ(X)⟩ there exists a unique epimorphism φ̂ : F̂ → G with φ̂ ◦ τ = φ.

We refer to Proposition 17.4.2 and Lemma 17.4.3 in [15] for the construction of
free pro-C group from free group uniquely through profinite completion. With these
constructions, we have the following proposition.

Proposition 2.58. Let C be a formation of finite groups and F̂ a free pro-C group
with basis X. Suppose C contains a nontrivial group of rank at most |X|. Then

1. rank(F̂ ) = |X|,

2. Suppose e = |X| < ∞, then every set of generator of F̂ of e elements is a
basis of F̂ ,

3. Let F be the free abstract group on X and N (X) the set of all normal subgroups
N of F with F/N ∈ C and X \ N finite. Then F̂ is the profinite completion
with respect to N (X) and the canonical map θ : F → F̂ maps each x ∈ X to
itself.

Notation 2.59. We denote the unique free pro-C group with basis X by F̂X(C). If
X = ∅, then F̂X(C) = 1. If |X|= m for some cardinal m, we denote F̂m(C) to be the
free pro-C group with basis X. If the formation C is the family of all finite groups,
we simplify F̂m(C) to F̂m (e.g. F̂1 = Ẑ).

Therefore, if the basis is of cardinality ℵ0 and the formation C is the family of
all finite groups, then we denote F̂ω be the free pro-C group of rank ℵ0 which is also
a profinite group. This group will be used in the proofs of main theorems in this
thesis.

Definition 2.60. An embedding problem for a profinite group G is a pair (φ :

G → A,α : B → A) in which φ and α are continuous epimorphisms of groups.
If B is finite, we call the problem finite. The embedding problem is said to be
solvable (resp. weakly solvable) if there exists a continuous epimorphism (resp.
homomorphism) γ : G→ B with α ◦ γ = φ. The map γ is called a solution (resp.
weak solution) to the embedding problem.

Now, if G is a pro-C group. Then we call the pair (φ : G → A,α : B → A)

in which φ and α are epimorphisms of profinite groups a C-embedding problem
(resp. pro-C embedding problem), if B is a C-group (resp. pro-C group). From
above definition, a profinite group G is projective if every embedding problem for G
is weakly solvable.
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Definition 2.61. A field K is called ω-free if each finite embedding problem for
Gal(K) is solvable.

From P.652 in [15], we know that a field is ω-free if and only if it has a count-
able elementary substructure F0 with Gal(F0) ∼= F̂ω. Therefore, given a countable
Hilbertian field, we can make an ω-free PAC field by taking large algebraic extension
as follows.

Proposition 2.62. [15, Theorem 18.6.1] Let K be a countable Hilbertian field and
Ks is separable closure of K. Let σ ∈ Gal(K)e for some e ∈ N. Then the fix field of
all elements of σ over Ks, denote by Ks(σ) is a PAC field for almost all σ ∈ Gal(K)e.

Take the maximal Galois extension of K in Ks(σ) and denote it by Ks[σ]. Then
we have following Theorem which gives the examples of ω-free PAC fields.

Theorem 2.63. [15, Theorem 27.4.8] For almost all σ ∈ Gal(K)e for some e ∈ N,
the field Ks[σ] is an ω-free PAC field.

Definition 2.64. A profinite group G has the embedding property if each
embedding problem (φ : G→ A,α : B → A) where φ and α are epimorphisms and
B ∈ Im(G) (i.e. B is a finite quotient of G) is solvable. That is, there exists an
epimorphism γ : G→ B with α ◦ γ = φ.

Now we are ready to introduce the Frobenius field which is of the main object
in PAC field.

Definition 2.65. A field K is called a Frobenius field if K is PAC and Gal(K) has
the embedding property.

Example 2.66. 1. From Theorem 24.8.1 in [15], we know that Ks[σ] is a Frobe-
nius field since Gal(Ks[σ]) ∼= F̂ω.

2. The absolute Galois group of E in Example 2.39 is isomorphic to
∏

p ̸=3 Zp

where Zp is p-adic group [15, P.900]. From Proposition 2.2.1 in [?],
∏

p ̸=3 Zp

is a profinite group. With Theorem 4.3.3 in [?], we conclude that
∏

p ̸=3 Zp is
a free profinite abelian group. From [15, Theorem 24.3.3], E is a Frobenius
field.

3. The absolute Galois group of K in Example 2.40 is isomorphic to Ẑ [3]. Since Ẑ
is free profinite group of rank 1 [?, Example 3.3.8], Ẑ has embedding property
by Theorem 24.3.3 in [15]. Then K is also a Frobenius field.
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The problem of finding PAC field which is not Frobenius is raised in [16, Problem
1.9]. We refer to Example 24.6.7 in [15] for field which is PAC but not Frobenius. For
general profinite groups, neither the projective property nor the embedding property
imply each other. See Example 24.6.1 and 24.6.7 in [15].

Definition 2.67. A profinite group is called superprojective if it is both projective
and has the embedding property.

Actually, the absolute Galois group of Frobenius field is superprojective [15,
Proposition 24.1.5]. Since a profinite group is projective if and only if it is isomorphic
to the absolute Galois group of a PAC field [15, Corollary 23.1.3], the key to construct
PAC field but not Frobenius is to find a projective profinite group which is not
superprojecitve. The following class of Frobenius fields is the main object in this
thesis.

Notation 2.68. Consider a fixed superprojective group G and a field K, we de-
note Frob(K,G) as the class of all perfect Frobenius fields M that contain K with
Im(Gal(M))=Im(G)

We will show that the theory of Frob(Q,F̂ω) is decidable in next chapter.
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Chapter 3

Decidability of ∀n∃ theory

In this chapter, we prove the preservation theorem about ∀n∃ theory for arbitrary
n over algebraic number field and discuss the possible development about Hilbert’s
tenth problem. First, we fix the first order language L = Lring, the language of ring
theory introduced in the preliminary. Using Proposition 2.12 and Proposition 2.13
introduced in the preliminary, we have the following preservation theorem about
∀n∃ sentence:

Theorem 3.1. Let K be an algebraic number field contained in a field F. Then F
satisfies all ∀n∃ sentence true in K with all n ∈ N if and only if K is existentially
closed in F.

Proof. For the only if part, suppose that K is not existentially closed in F. Then
there are some existential sentences, say ∃nx̄φ(x̄) with φ(x̄) quantifier-free and some
n ∈ N, which is true in F but false in K. So K|= ∀x̄¬φ(x̄). Since F satisfies all ∀n∃
sentence true in K, F must satisfies ∀x̄¬φ(x̄) which contradicts to our assumption.

Conversely, suppose that there exists a ∀n∃ sentence, say ∀nx̄∃yφ(x̄, y), which is
true in K but false in F. Since K is existentially closed in F, there exist a field K̂ such
that K̂ is elementary extension of K and F is embedded in K̂ by Proposition 2.12.
We claim that F is algebraically closed in K̂. Since K is a number field, K̂ cannot be
algebraically closed (algebraically closed property are elementary statements). So
K̂ ̸= F̄ . Choose a ∈ K̂∩ F̄ . Consider the irreducible polynomial Irr(a,F) of degree n
for some positive integer n and write Irr(a,F) as p(ū, x) where ū ∈ F n is the sequence
of coefficients of Irr(a,F). Apply Proposition 2.13, there exists a field F̂ so that K̂ is
embedded in F̂ and F̂ is an elementary extension of F. Suppose that F |= ∀xp(ū, x) ̸=
0. From the choice of a,K̂ |= ∃xp(ū, x) = 0. Through elementarily equivalence, we
have F̂ |= ∀xp(ū, x) ̸= 0. However, the preservation theorem shows that K̂ |=
∀xp(ū, x) ̸= 0 which is a contradiction. Therefore, F|= ∃xp(ū, x) = 0. Since K̄ is
non-standard number field, the irreducibility of p(ū, x) can also be preserved. The
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irreducibility of f shows that deg(f) = 1. Therefore, a ∈ F and we have F is
algebraically closed in K̂ which proves our claim. From Disjunctive normal form
,φ(x̄, y) ⇐⇒

∨s
i=1[

∧mi

j=1 fi,j(x̄, y) = 0 ∧
∧ni

k=1 gi,k(x̄, y) ̸= 0] for some s,mi, ni ∈ N.
For any ā ∈ F n, we have to find b ∈ F such that F |= φ(ā, b). From the K-embedding
of F to K̂, we may assume that F is a subfield of K̂. Then F n ⊂ K̂n for all n ∈ N.
Given any ā ∈ F n, we can find b ∈ K̂ such that K̂ |= φ(ā, b) since K̂ |= ∀nx̄∃yφ(x̄, y).
Then for some i = 1, . . . , s,K̂ |=

∧mi

j=1 fi,j(ā, b) = 0 ∧
∧ni

k=1 gi,k(ā, b) ̸= 0. We have
following two cases:

1. If some of fi,j(ā, y) has positive degree for some j, b ∈ F since F is algebraically
closed in K̂. Also b ∈ F ⊂ K̂ implies gi,k(ā, b) ̸= 0 for all k = 1, . . . , ni. Then
F |= φ(ā, b).

2. If fi,j(ā, y) ≡ 0 for all j = 1, . . . ,mi, but gi,k(ā, b) ̸= 0 for all k = 1, . . . , ni, we
know gi,k(ā, y) are not identically zero. Since F is infinite and of characteristic
0, we can find c ∈ F so that gi,k(ā, c) ̸= 0 for all k. Note that fi,j(ā, c) = 0 for
all j = 1, . . . ,mi. Then F |= φ(ā, c).

From above argument 1 and 2, we have F |= ∀nx∃yφ(x̄, y) since ā ∈ F n is arbitrary.
Note that we do not fix the value of n in our proof. Therefore, this contradiction
shows that F preserves all ∀n∃ sentences true in K.

On the other hand, we show the following general proposition for models which
is the ”counterpart” of preservation theorem of the existentially closed property.

Proposition 3.2. Let A,B be L-structure. If A is existentially closed in B. then
every ∀n∃m sentence for all m,n ∈ N true in B is also true in A.

Proof. Let ψ = ∀nx̄∃mȳφ(x̄, ȳ) for some fix m,n ∈ N and suppose B |= ψ. Then
given any n-tuples ā of elements of dom(A) ⊆ dom(B), we have B |= ∃mȳφ(ā, ȳ).
Since A is existentially closed in B, A |= φ(ā, ȳ). Therefore, A |= ∀nx̄∃mȳφ(x̄, ȳ)
and hence A |= ψ.

Corollary 3.3. If K is an algebraic number fields contained in some fields F such
that K is existentially closed in F, then the ∀n∃ theory of K is the same as the ∀n∃
theory of F for all n ∈ N.

Proof. We denote ∀n∃ theory of K as Th∀n∃(K) and use the same notation for ∀n∃
theory of F. So Theorem 3.1 shows that Th∀n∃(K) ⊆ Th∀n∃(F ). The Proposition
2.12 implies Th∀n∃(F ) ⊆ Th∀n∃(K). Then we have Th∀n∃(K) = Th∀n∃(F ) for all
n ∈ N
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If we find some fields F as in Corollary 3.3 and F belongs to some elementary
class, we know that the ∀n∃ theory of an algebraic number field is axiomatizable.
From Corollary 2.5 in [43], we know that the ∃n∀ theory for arbitrary n of an
algebraic number field is axiomatizable. Take the union of sets of axioms in these
two set, we may say that the union axioms are ∀n∃-complete. This means that, for
any ∀n∃ sentence φ, φ or ¬φ(which is an ∃n∀ sentence) is deducible from these two
axioms. From Theorem 1 in [32], if a theory T is axiomatizable and complete then
T is decidable. Therefore, we can show that the ∀n∃ theory for arbitrary n of an
algebraic number field is decidable.

A set S is ∀n∃-Diophantine definable if there exists a polynomial

f(a, x, t1, . . . , tn) ∈ Z[a, x, t1, . . . , tn]

such that a ∈ S ⇐⇒ ∀t1 · · · ∀tn∃xf(a, x, t1, . . . , tn) = 0, where the quantified vari-
ables may range over some algebraic number fields. Given a polynomial f(x1, . . . , xn)
the decidability of ∃x1 · · · ∃xnf(x1, . . . , xn) = 0 is equivalent to the decidability of
∀x1 · · · ∀xnf(x1, . . . , xn) ̸= 0. Over a ring if the set of nonzero elements is ∀n∃-
Diophantine definable then the decidability of ∀m+n∃ equations will imply the de-
cidability of ∃m equations. So if we have he ∀n∃ theory for arbitrary n of an algebraic
number field is decidable, then the ∀m+n∃ equations over an algebraic number field
is decidable and hence the ∃m equations over an algebraic number field is decidable.
Since Hilbert’s tenth problem over number fields is still open, this provides another
approach to prove Hilbert’s tenth problem over number fields.
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Chapter 4

Decidability of ∃∀ and ∀∃ theory

4.1 Decidable ∃∀ theory
In this chapter, we investigate the decidability of ∃∀ theory of class of Hilbertian
fields of characteristic 0 and perfect Hilbertian fields. From [43, P.1017], we know
that the decidability of ∃∀ theory of fields for characteristic 0 is still open. Therefore,
we give some counter-example to understand the relation between fields of charac-
teristic 0 and its related models. In model theory, we know that for all fields of
characteristic 0, there exist a ”small” and a ”big” model of field so that each small
model can be embedded in all fields of characteristic 0 and each big model contains
some fields of characteristic 0. This is what the following theorem tells us.

Theorem 4.1. [10, Example 3.5.9 and 3.5.10]

1. The theory of algebraically closed fields of characteristic 0 is a model companion
of the theory of fields of characteristic 0.

2. The field of rational number is an algebraically prime model of the theory of
fields of characteristic 0.

Therefore, for each field F of characteristic 0, we can embed Q in to F and
extend F to its algebraic closure F̄ . Note that Q̄ is elementary submodel of each
algebraically closed field. Then we may ask whether it’s possible to characterize
the ∃∀ theory of fields of characteristic 0 through Theorem 4.1. But we will give a
counterexample to show that the ∃∀ theory of class of fields with characteristic 0 is
strictly contained in the set of ∃∀ sentences true in Q,Q̄, and the class of number
fields.

Example 4.2. Let L be the Euclidean closure of Q,i.e. field obtained from Q by
iteratively adding square roots of all elements as following: Let F0 = Q, Fi+1 =
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Fi({
√
a|a ∈ Fi}). Then L =

∪∞
i=1 Fi. By field theory, there exist an increasing se-

quence of finite-degree extension of Q, denote as {Kj|Kj ⊂ Kj+1 for all j and K0 =

Q} since L is an infinite algebraic extension of Q. So each Kj contains only finitely
many square roots of Kj−1. Let φ(x, y) = ∃x∀y(y2 ̸= x) ∨ (x3 = 2). Since

√
2 /∈ Q,

Q |= φ(x, y). Also, not every element in Kj has square root. Then Kj |= φ(x, y) for
all j. But L ̸|= φ(x, y) because everything in L has square root and 3

√
2 /∈ L. And

3
√
2 ∈ Q̄ shows that Q̄ |= φ(x, y).

The example above tells us that we need to seek more sophisticated field to prove
the decidability of ∃∀ theory of fields of characteristic 0.

From Theorem 1.4 in the Introduction, we know that the elementary theory
of Hilbertian fields and PAC fields are both undecidable. Also, from [36, P. 304-
305], we know that the elementary theory of any class of fields which contains Q
is undecidable. Then the elementary theories of Hilbertian fields of characteristic 0
and perfect Hilbertian fields are both undecidable too.

With undecidable theories above, we want to investigate what fragments of the-
ory Hilbertian fields and PAC fields are decidable ? In the following paragraphs,
we show that the elementary theory of Hilbertian PAC fields of characteristic 0 is
decidable first. Then we use this result to prove that the ∃∀ theory of Hilbertian
fields of characteristic 0 and perfect Hilbertian fields are both decidable. We need
to introduce more facts about free pro-C groups which will be used in the proof of
decidability of the elementary theory of Hilbertian PAC fields with characteristic 0.

Proposition 4.3. [15, Corollary 22.4.5] Let C be a full formation of finite groups
and F a free pro-C group. Then F is projective.

Proposition 4.4. [15, Lemma 24.3.3] Let C be a formations of finite groups and F
is a free pro-C group. Then F has the embedding property.

These two propositions above give us some criterion to check the property of
superprojective in profinite group with the formation C to be all finite groups.

Theorem 4.5. [15, Theorem 24.8.1] Let C be a formation of finite groups and F a
pro-C group of at most countable rank. Then F is isomorphic to F̂ω(C) if and only
if Im(F)= C and F has the embedding property.

Proposition 4.6. [15, Corollary 24.8.3] Let F be a profinite group at most countable
rank. Suppose every finite embedding problem for F is solvable. Then F is isomorphic
to F̂ω.

The following important theorem shows that the elementary theory of the class
Frob(K,G) is decidable.
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Theorem 4.7. [15, Theorem 30.6.2] Let K be a presented field with elimination
theory and G a superprojective group such that Im(G) is primitive recursive. Then
there exists a primitive recursive decision procedure for the theory of Frob(K,G).

In order to use Theorem 4.7, we need to prove that the family of finite groups is
primitive recursive.

Proposition 4.8. The family of all finite groups is a primitive recursive set.

Proof. Denote the family of all finite groups as FGrps. Let X be the set of all
matrices x = (xij)1≤i,j≤n with entries xij such that x11, x12, . . . , x1n are distinct
symbols and for each i between 1 and n, the i’th row is a permutation of the first one
such that x1j = xj1 for j = 1, . . . , n. Since for each set x11, x12, . . . , x1n, there are (n−
1) ·(n−1)! matrices in X, we can effectively produce X through permutation in finite
steps. Therefore, we view x as a multiplication table for the set {x11, x12, . . . , x1n}
under the rule xij = xi1x1j. Since each matrix is of finite order, we can effective
check whether this rule makes x a group. Also, we order X in a sequence such that
a matrix of order n×n precedes each matrix of order n′×n′ if n < n′. Then we can
effectively produce a set FGrps(X) as a subset of X with each elements of FGrps(X)
uniquely corresponding to a finite group in FGrps. From the preliminary, we know
that FGrps is primitive recursive.

We use the propositions above to prove that the decidability of ω−free PAC
fields of characteristic 0.

Theorem 4.9. The elementary theory of ω-free PAC fields of characteristic 0 is
decidable.

Proof. Denote the elementary theory of ω-free PAC fields of characteristic 0 as Th(ω
-PAC0) We know Q is a presented field with splitting algorithm through Proposi-
tion 2.28 and has elimination theory by Proposition 2.29. From Proposition 4.3
and Proposition 4.4, the free pro-C group of rank ℵ0 with formation C of all finite
groups, F̂ω, is superprojective. Apply Theorem 4.5, we have Im(F̂ω)=C. This set is
primitive recursive by Proposition 4.8. We conclude that the elementary theory of
Frob(Q, F̂ω), denoted as Th(Frob(Q, F̂ω)), is decidable through Theorem 4.7. Now
we need to show Th(ω -PAC0) = Th(Frob(Q, F̂ω)). It sufficient to show that the
class of ω-free PAC fields of characteristic 0 is the same class as Frob(Q, F̂ω). Let
K be an ω-free PAC fields of characteristic 0. By definition, every finite embedding
problem for the absolute Galois group Gal(K) is solvable. From Proposition 4.6,
Gal(K) is isomorphic to F̂ω. Then Theorem 4.5 shows that Im(Gal(K))=C = Im(F̂ω)
where C is the family of all finite groups and Gal(K) has the embedding property.
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Since K is of characteristic 0,K contains Q by Theorem 4.1. Therefore, we have
K ∈ Frob(Q, F̂ω). Conversely, suppose that M is a perfect Frobenius field contain-
ing Q with Im(Gal(M)) = Im(F̂ω). So M is of characteristic 0. By the definition
of Frobenius field, we know that Gal(M) has the embedding property and M is a
PAC field. Using Theorem 4.5, Gal(K) is isomorphic to F̂ω. Note that Im(Gal(M))
consists of all finite groups through the equality setting above. Then every finite
embedding problem for Gal(M) is solvable. Therefore, M is an ω-free PAC field of
characteristic 0 and we finish our proof.

However, the following deep theorem connects the properties of ω-free and Hilber-
tian together.

Theorem 4.10. [18, Theorem 5.10.3] Let K be a PAC field. Then K is ω-free if
and only if K is Hilbertian.

Now we have the corollary as we claim before.

Corollary 4.11. The elementary theory of Hilbertian PAC fields of characteristic
0 is decidable.

Proof. From Theorem 4.10, we know that the class of ω-free PAC fields of char-
acteristic 0 is the same as the class of Hilbertian PAC fields of characteristic 0.
Theorem 4.9 shows that Th(ω -PAC0) is decidable. Then we have the elementary
theory of Hilbertian PAC fields of characteristic 0 is also decidable.

We quote another Theorem which will be used to prove some techniques.

Theorem 4.12. [46, Theorem 3.2] Let K be a Hilbertian fied and φ(x̄, y) be quantifier
free L-formula over K. If ∀x̄∃yφ(x̄, y) is true in K, then ∃yφ̄(y) is true in K(X̄).

Corollary 4.13. Let K be a Hilbertian field and φ(x̄, y) be a formula in disjunctive
normal form, i.e. φ = φ1 ∨ · · · ∨ φs for some s ∈ N and φi =

∧mi

j=1 fi,j(x̄, y) =

0 ∧
∧ni

k=1 gi,k(x̄, y) ̸= 0, where fi,j(x̄, y) and gi,k(x̄, y) are polynomials over K. If
∀x̄∃yφ(x̄, y) is true in K, then there exists an i and polynomial F (x̄) and G(x̄) ̸≡ 0

over K such that in K[x̄, y], G(x̄)y − F (x̄) are irreducible common factor of each
fi,j(x̄, y), 1 ≤ j ≤ mi, but not a factor of any gi,k(x̄, y), 1 ≤ k ≤ ni.

Proof. From Theorem 4.12, we can find p(x̄) ∈K(X̄) such that φ(x̄, p(x̄)) is true
in K(X̄) since φ̄(y) ≡ φ(x̄, y) over K(X̄). Then there exists an 1 ≤ i ≤ s so that∧mi

j=1 fi,j(x̄, p(x̄)) = 0 ∧
∧ni

k=1 gi,k(x̄, p(x̄)) ̸= 0 is true in K(X̄). Write p(x̄) = F (x̄)
G(x̄)

where F(x̄) and G(x̄) are relatively prime and F(x̄),G(x̄)∈ K[x̄] with G(x̄) ̸≡ 0. By
Factor Theorem, y− F (x̄)

G(x̄)
is an irreducible common factor of each fi,j(x̄, y), but not

a factor of any gi,k(x̄, y) for 1 ≤ k ≤ ni. Then Gauss lemma shows that G(x̄)y-F(x̄)
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is an irreducible common factor of each fi,j(x̄, y) but not a factor of any gi,k(x̄, y)

for 1 ≤ k ≤ ni. This finishes our proof.

Then we use this corollary to prove the preservation theorem of ∀∃ sentences
over Hilbertian field which is mentioned in [46, P.800].

Proposition 4.14. Let K be a Hilbertian field contained in a field F. If K is alge-
braically closed in F, then F satisfies all ∀∃ sentences true in K.

Proof. Suppose that there exists an ∀∃ sentence which is true in K but false in
F. Reduce φ(x, y) to disjunctive normal form. Thus, φ(x, y) is logically equiva-
lent to

∨s
i=1[

∧mi

j=1 fi,j(x, y) = 0 ∧
∧ni

k=1 gi,k(x, y) ̸= 0] where fi,j(x, y) and gi,k(x, y)

are polynomials over Z. By Corollary 4.13, there exists an i and polynomials
F(x),G(x)∈K[x], with G(x) ̸≡ 0, such that G(x)y-F(x) is an irreducible common
factor of the polynomials fi,j(x, y) for 1 ≤ j ≤ mi, but not a factor of gi,k(x, y) for
1 ≤ k ≤ ni. Since F|= ∃x∀y¬φ(x, y), choose x′ ∈F so that F|= ∀y¬φ(x′, y). Be-
cause K|= ∀x∃yφ(x, y), x′ ∈F−K by preservation theorem of universal sentence.
Since K is algebraically closed in F, G(x′) ̸= 0. Then fi,j(x,

F (x)
G(x)

) = 0 for ev-
ery 1 ≤ j ≤ mi shows that F|=

∧
j fi,j(x

′, F (x′)
G(x′)

) = 0. Note that G(x)y-F(x)
is not a factor of gi,k(x, y) in K(X)[y] for any 1 ≤ k ≤ ni, so gi,k(x,

F (x)
G(x)

) ̸= 0

in K(X). Since x′ is transcendental over K, we have gi,k(x
′, F (x′)

G(x′)
) ̸= 0. Thus

F|=
∧

j fi,j(x
′, F (x′)

G(x′)
) = 0∧

∧
k gi,k(x

′, F (x′)
G(x′)

) ̸= 0 for some i. Therefore, F|= ∃yφ(x′, y)
with y = F (x)

G(x)
which contradicts to the assumption. This finishes our proof.

The following key theorem connects general fields and Hilbertian PAC fields
together.

Theorem 4.15. [15, Proposition 13.4.6] Every field K has a regular extension F
which is PAC and Hilbertian.

Using Proposition 4.14, Theorem 4.15, and Corollary 4.11, we can get following
series of decidable results about ∀∃ and ∃∀ theories of Hilbertian fields and PAC
fields.

Theorem 4.16. The ∃∀ theory of Hilbertian field of characteristic 0 is the same as
the ∃∀ theory of Hilbertian PAC fields of characteristic 0.

Proof. Since every Hilbertian PAC field of characteristic 0 is a Hilbertian field of
characteristic 0, the ∃∀ theory of Hilbertian fields of characteristic 0 is contained
in the ∃∀ theory of Hilbertian PAC fields of characteristic 0. We want to show
that these two sets are in fact the same. Suppose that there is an ∃∀ sentence
∃x∀yφ(x, y) with φ(x, y) quantifier-free which is true in every Hilbertian PAC fields
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of characteristic 0 but false in a Hilbertian field K of characteristic 0. According
to Theorem 4.15, we can find a Hilbetian PAC field F of characteristic 0 which is
regular extension of K. Using Proposition 4.14, we have F |= ∀x∃y¬φ(x, y) which
contradicts to the assumption.

Corollary 4.17. The ∃∀ theory of Hilbertian fields of characteristic 0 is decidable

Proof. From Corollary 4.11, the ∃∀ theory of Hilbertian PAC fields of characteristic
0 is decidable. Then the Theorem 4.16 tell us the result we want.

Actually, we can extend the result above to perfect Hilbertian fields. We quote
one theorem about decidability of elementary theory of perfect Frobenius fields.

Theorem 4.18. [15, Theorem 31.1.4] Let C be a primitive recursive full family of
finite groups. Then the theory of perfect Frobenius fields M such that each Gal(M)
is a pro-C group is primitive recursive.

We need another proposition about pro-C groups.

Lemma 4.19. [15, Corollary 24.8.2] Let C be a formation of finite groups and G
is a pro-C group of at most countable rank. Then G is isomorphic to F̂ω(C) if and
only if every C-embedding problem for G is solvable.

Then we have the following theorem about decidability of perfect ω-free PAC
fields.

Theorem 4.20. The elementary theory of perfect ω-free PAC fields is decidable.

Proof. K is a perfect ω-free PAC fields ⇐⇒ K is a perfect PAC field and every
finite embedding problem of Gal(K) is solvable ⇐⇒ K is a perfect PAC field where
Gal(K) is isomorphic to F̂ω by taking C as the formation of all finite groups in
Lemma 4.19 ⇐⇒ K is a perfect Frobenius field where Gal(K) is isomorphic to F̂ω.
Proposition 4.8 has shown C is primitive recursive. From Theorem 4.18, we have
the desired result.

Theorem 4.21. The ∃∀ theory of perfect Hilbertian fields is decidable.

Proof. From Theorem 4.10, we know that the perfect Hilbertian PAC field is the
same as the perfect ω-free PAC field. We claim that the ∃∀ theory of perfect Hilber-
tian fields and the ∃∀ theory of perfect Hilbertian PAC fields are identical. Then
the result follows from Theorem 4.20.

Since every perfect Hilbertian PAC fields is a perfect Hilbertian field, the ∃∀
theory of perfect Hilbertian fields is contained in the ∃∀ theory of perfect Hilber-
tian PAC fields. Suppose that there is an ∃∀ sentence ∃x∀yφ(x, y) with φ(x, y)
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quantifier-free which is true in all perfect Hilbertian PAC fields of but false in a per-
fect Hilbertian field K. According to Theorem 4.15, there exists a regular extension
F which is Hilbertain and PAC. Since K is perfect, F is also perfect. But Proposi-
tion 4.14 tells us that F |= ∀x∃y¬φ(x, y) which contradicts to our assumption, This
finishes our proof.

Notice that the elementary theories of most local fields are decidable according
to the Theorem 1.3. Therefore, the ∃∀ theory of real number(and real closed fields
), algebraically closed fields, and p-adic fields are all decidable.

Proposition 4.22. [38, Corollary 2.3] The recursive sets are closed under union,
intersection and complementation.

We ended by proving the following corollary which use all the results we proved
in this chapter.

Corollary 4.23. The ∃∀ theory of local fields and Hilbertian fields of characteristic
0 is decidable

Proof. Apply Proposition 4.22 to 1.3 and Corollary 4.17, we get the corollary.

With interest in algebraic number theroy, the corollary above tells us that the
∃∀ theory of local and global fields is decidable.

4.2 Decidable ∀∃ theory
Using the theorems proved in previous section, we can give a proof of the decidability
of ∀∃ theory of Hilbertian fields of characteristic 0. First, we need the following
lemma about preservation of ∃n∀ sentences over Hilbertian fields.

Lemma 4.24. Let K be a Hilbertian field and F is a regular extension of K. Then
F satisfies all the ∃n∀ sentences true in K for arbitrary n.

Proof. The proof of this lemma is essentially the same as the proof of Proposition
2.4 in [43].

Theorem 4.25. The ∀∃ theory of Hilbertian fields of characteristic 0 is decidable.

Proof. From Corollary 4.11, the ∀∃ theory of Hilbertian PAC fields of characteristic
0 is decidable. If we shows that the ∀∃ theory of Hilbertian fields of characteristic
0 and the ∀∃ theory of Hilbertian PAC fields of characteristic 0 are identical, then
we get the desired result.
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Since every Hilbertian PAC fields of characteristic 0 is a Hilbertian field of char-
acteristic 0, the ∀∃ theory of Hilbertian fields of characteristic 0 is contained in the
∀∃ theory of Hilbertian PAC fields of characteristic 0. To show that these two sets
are in fact the same, suppose that there exists an ∀∃ sentence ∀x∃yφ(x, y) with
φ(x, y) quantifier-free which is true in every Hilbertian PAC fields of characteristic
0 but false in a Hilbertian field K of characteristic 0. From Theorem 4.15, we can
find a Hilbertian PAC field F which is regular extension of K. Then Lemma 4.24 tell
us that F |= ∃x∀y¬φ(x, y) which contradicts to our assumption.

Remark 4.26. The ∀∃ theory of Hilbertian fields of characteristic 0 is contained in
the ∀∃ theory of number fields and containing the ∀∃ theory of fields of characteristic
0. From Theorem 3.1 in [43], we know that the ∀∃ theory of number fields and the
∀∃ theory of fields of characteristic 0 are equal. So these three ∀∃ theories above
are all equal and we get the decidability result through Theorem 3.3 in [43].

Corollary 4.27. The ∀n∃ theory of Hilbertian fields of characteristic 0 is decidable
for arbitrary positive integer n.

Proof. From Corollary 4.11, the ∀n∃ theory of Hilbertian PAC fields of character-
istic 0 is decidable for arbitrary positive integer n. Since Lemma 4.24 shows the
preservation of ∃n∀ sentences over Hilbertian fields, we can modify the same proof
in Theorem 4.25 to get the ∀n∃ theory of Hilbertian fields of characteristic 0 and
the ∀n∃ theory of Hilbertian PAC fields of characteristic 0 are identical for arbitrary
positive integer n. This proves the result we want.

Next, we prove the decidability of ∀∃ theory of Hilbertian fields. From Proposi-
tion 3.2, we can easily get the following preservation theorem of ∃n∀m sentences for
all m,n ∈ N.

Proposition 4.28. Let A,B be L-structure. If A is existentially closed in B. then
every ∃n∀m sentence for all m,n ∈ N true in A is also true in B.

Proof. If there exist an ∃n∀m sentence which is true in A but false in B for some
m,n ∈ N, then we can find that the negation of ∃n∀m sentence (i.e. ∀n∃m sentence)
is also true in A by Proposition 3.2 and leads to a contradiction.

But in field theories, the existentially closed property can be characterized by
transcendental extension.

Theorem 4.29. [33, Proposition 1] Let K be an infinite field and F is an extension
field of K. If F is purely transcendental extension of K, then K is existentially closed
in F.
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Note that the Theorem above require the fields to be infinite. So we need to
guarantee all the Hilbertian fields and PAC fields are infinite.

Proposition 4.30. [15, P.218] If K is a Hilbertian field, then K must be infinite.

Proposition 4.31. [15, Proposition 11.1.1] If K is a PAC field, then K must be
infinite.

Also, we need the decidability of ∀∃ theory of infinite fields.

Proposition 4.32. The ∀∃ theory of infinite fields is decidable

Proof. Let ∀x∃yφ(x, y) be an ∀∃ sentence. Reduce φ(x, y) to disjunctive normal
form: φ(x, y) ⇐⇒

∨s
i=1[

∧mi

j=1 fi,j(x, y) = 0 ∧
∧ni

k=1 gi,k(x, y) ̸= 0]. Suppose that
∀x∃yφ(x, y) is true in all fields of characteristic 0. Then ∀x∃yφ(x, y) in true in
the rational number. Notice that Q is a Hilbertian field by Hilbert’s irreducibility
theorem. From Corollary 4.13, there exist an i and polynomials F (x), G(x) ∈ Q[x],
with G(x) ̸≡ 0, such that G(x)y−F (x) is an irreducible common factor of fi,j(x, y)
in Q[x, y] for 1 ≤ j ≤ mi but not a factor of gi,k(x, y) for 1 ≤ k ≤ ni. As Proposi-
tion 2.28 says, we have a splitting algorithm to factor fi,j(x, y) and gi,k(x, y) for every
i, j, k over Q and looking for the polynomial G(x)y − F (x) which satisfies our re-
quirement. From Gauss’ lemme, we may assume that F(x) and G(x) are polynomials
over Z. Let m be the maximal degree of y in gi,k(x, y) such that gi,k(x, F (x)

G(x)
) ·G(x)m

are over Z for all 1 ≤ k ≤ ni. Then consider the greatest common divisor of the
contents of G(x) and gi,k(x,

F (x)
G(x)

) ·G(x)m for 1 ≤ k ≤ ni, and denote it by b. From
the proof of Theorem 3.7 in [43], we know that ∀x∃yφ(x, y) is true in all infinite
fields iff ∀x∃yφ(x, y) holds in all fields of characteristic 0 and ∃yφ(t, y) holds in every
rational function field Fp(t), where p is a prime divisor of b. Corollary 3.4 and final
paragraphs of proof of Theorem 3.7 in [43] implies ∀x∃yφ(x, y) is true in all infinite
fields is decidable.

From Theorem 2.35 in the preliminary, we know that every finitely generated
transcendental extension of an arbitrary field is Hilbertian. This gives us a way to
connect infinite fields and Hilbertian fields.

Theorem 4.33. The ∀∃ theory of Hilbertian fields is decidable.

Proof. We claim that the ∀∃ theory of Hilbertian fields and ∀∃ theory of infinite fields
are identical. Then Proposition 4.32 implies the result we want. Proposition 4.30
tells us that all the Hilbertian fields are infinite fields. So the ∀∃ theory of infinite
fields is contained in the ∀∃ theory of Hilbertian fields. Conversely, suppose that
there exists an ∀∃ sentence ∀x∃yφ(x, y) with φ(x, y) quantifier-free which is true in
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every Hilbertian fields but false in a infinite field K. Consider the function field K(t).
According to Theorem 2.35, K(t) is a Hilbertian field. Note that K is existentially
closed in K(t) by Theorem 4.29. Takes m,n = 1 in Proposition 4.28 and we get
K(t) |= ∃x∀y¬φ(x, y) which contradicts to our assumption. This proves our claim.

In the following paragraphs, we prove the decidability of the ∀∃ theory of PAC
fields. The proof is similar to the proof of the decidability of the ∀∃ theory of
Hilbertian fields. First we demonstrate the case in characteristic 0. For PAC fields,
the algebraically closed property implies the existentially closed property as fol-
lowing theorem shows. This gives us a way to use regular extension condition in
Theorem 4.15 and preservation theorem of ∃n∀m sentences for arbitrary m,n under
existential closedness.

Theorem 4.34. [15, Proposition 11.3.5] A field K is PAC if and only if K is
existentially closed in every regular extension.

Theorem 4.35. The ∀∃ theory of PAC fields of characteristic 0 is decidable.

Proof. From Corollary 4.11, the ∀∃ theory of Hilbertian PAC fields of characteristic
0 is decidable. If we shows that the ∀∃ theory of PAC fields of characteristic 0 and
the ∀∃ theory of Hilbertian PAC fields of characteristic 0 are identical, then we get
the desired result.

Since every Hilbertian PAC field of characteristic 0 is a PAC field of characteristic
0, the ∀∃ theory of PAC fields of characteristic 0 is contained in the ∀∃ theory of
Hilbertian PAC fields of characteristic 0. On the other hand, let’s assume that there
exists an ∀∃ sentence ∀x∃yφ(x, y) with φ(x, y) quantifier-free which is true in every
Hilbertian PAC field of characteristic 0 but false in a PAC field P of characteristic 0.
From Theorem 4.15 we can find a Hilbertian PAC field K of characteristic 0 which
is regular extension of P. Then Theorem 4.34 shows that P is existentially closed in
K. Take m,n = 1 in Proposition 4.28 and conclude that K |= ∃x∀y¬φ(x, y) which
contradicts to our assumption.

Corollary 4.36. The ∀m∃n theory of PAC fields of characteristic 0 is decidable for
arbitrary integers m,n.

Proof. From Corollary 4.11, the ∀m∃n theory of Hilbertian PAC fields of character-
istic 0 is decidable for arbitrary integers m,n. Notice that Proposition 4.28 shows
the preservation of ∃n∀m sentences for all m,n ∈ N over any L-structures under
existential closedness. Then we can modify the proof in Theorem 4.35 to show that
the ∀m∃n theory of PAC fields of characteristic 0 and the ∀m∃n theory of Hilbertian
PAC fields of characteristic 0 are identical. This proves the desired result.
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Notice that the Corollary 4.11 does not show the decidability of Hilbertian PAC
field. So we need to seek other ∀∃ theory of some structures to prove the decidability
of ∀∃ theory of PAC fields. Observe that from Theorem 4.25 and Theorem 4.34 that
the ∀∃ theory of Hilbertian fields of characteristic 0 and the ∀∃ theory of PAC fields
of characteristic 0 are identical. Also, the following theorem connects general fields
and PAC fields through totally transcendental extension.

Theorem 4.37. [48, P.209] Every field K has a totally transcendental extension F
which is a PAC field.

Therefore, we may prove the decidability of ∀∃ theory of PAC fields through
Hilbertian fields.

Theorem 4.38. The ∀∃ theory of PAC fields is decidable.

Proof. We claim the the ∀∃ theory of PAC fields and the ∀∃ theory of Hilbertian
fields are identical. Then Theorem 4.33 implies the theorem.

Suppose that there exists an ∀∃ sentence ∀x∃yφ(x, y) with φ(x, y) quantifier-
free which is true in every PAC fields but false in a Hilbertian field H. By Theo-
rem 4.37, we can find a PAC field P which is totally transcendental extension of H.
Using Lemma 4.24, we have P |= ∃x∀y¬φ(x, y) which contradicts to our assump-
tion. Conversely, assume that there exists an ∀∃ sentence ∀x∃yφ(x, y) with φ(x, y)

quantifier-free which is true in every Hilbertian fields but false in a PAC field P. Con-
sider the function field P(t) which is a Hilbertian field by Theorem 2.35. According
to Theorem 4.29, P is existentially closed in P(t). Then take m,n = 1 in Proposi-
tion 4.28 P (t) |= ∃x∀y¬φ(x, y) which contradicts to the assumption. Therefore, we
have proved our claim.
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Chapter 5

Conclusion

In this thesis, we have proved the following results:

1. The ∀n∃ sentence over number field is preserved under the existentially closed-
ness,

2. The ∃∀ theory of Hilbertian fields of characteristic 0 and perfect Hilbertian
fields are decidable,

3. The ∀∃ theory of Hilbertian fields of characteristic 0 and Hilberitan fields are
all decidable,

4. The ∀∃ theory of PAC fields of characteristic 0 and PAC field are decidable.

From [43], we know that there are still no effective methods to solve the decid-
ability of ∃∀ theory of different fields. Also, since Hilbert’s tenth problem over Q
and number fields are still open, we propose the following problems for the future
developments.

Problem 5.1. Are these following theories decidable ?

1. ∀n∃ theory of number fields for arbitrary n,

2. ∃∀ theory of PAC fields,

3. ∃∀ theory of number fields,

4. ∃∀ theory of fields of characteristic 0,

5. ∃∀ theory of fields.
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