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abstract

The Cartesian product of two-graphs forms a special class of graphs. First, for a
given tree through its Cartesian-products with cycles, we discuss its Hamiltonicity
and edge-Hamiltonicity. Second, for a given tree throughits Cartesian products
with paths, we discuss its Hamiltonicity and even-pancyclicity. We find several
Hamiltonian graphs in the case that the tree has a perfect matching or a path factor.
Some well-known results which have been proved are also given in this thesis with
modified results or new approach of proofs. In particular; we prove that the two
conditions Hamiltonian and. 1-tough are equivalent in those graphs we discussed.

Keywords: Hamiltonicity, edge-Hamiltonicty, even-pancyclicity, Cartesian product, path

factor, graph toughness
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1 Introduction

Verifying the Hamiltonicity of graphs is a classic issue in the field of graph theory. It
is not easy to find the sufficient conditions to ensure the existences of Hamiltonian cycle
in graphs. There were several earlier results such as Dirac’s theorem and Ore theorem,
but the assumptions of these results are still too strong. V. Chavatal[4] introduced a new
invariant for graphs, which measures in a simple way how tightly various pieces of a graph
hold together; called toughness. He proven that every Hamiltonian graph is 1-tough. But
there also exists many 1-tough non-Hamiltonian graphs which told us the two conditions
1-tough and Hamiltonian are not equivalent in general graphs.

In our research we discuss a. special class of graphs called Cartesian product graphs.
Using the Cartesian product to combine two graphs with established properties makes
it possible to construct a new topology with the properties of both worlds, which is of
practical interest for network design[5]. Moreover, there are some reasons that we restrict
our discussion on Cartesian produets B,0T and C,,L0T of a tree T' and a path P, of order
n or a cycle C, of order ns First, the spanning tree structure can describe the macro
structure of a graph. Namely, simplify the graph without losing the backbone structure.
Second, C,, and P, are able to connect those trees layer by layer. There are some results
of Hamiltonicity of the graph class C,,007T given in [2][6].

We will prove that in the two classes P,[JT and C,,J7T, the two conditions 1-tough
and Hamiltonian are equivalent. To the class of C,,[JT, we introduce the idea of edge-
Hamiltonian and edge-1-tough and their equivalence. We divide the case of P,J7T into
two subcases based on the structure of T (Trees with a perfect matching and trees with
a path factor) and construct their own Hamiltonian cycles.

In the view of computational complexity, the problem HC, which checks the Hamil-
tonicity of graph, has been proven to be NP-complete. Hence we want to find another

way to check the Hamiltonicity of certain graphs. In other words, finding the equivalent



conditions to "Hamiltonian” is important. However, to recognize a given graph being
1-tough or not is also an NP-hard problem[3]. To overcome this disadvantage, in all of
our results, we gives one more equivalent statement which is easier to verify, such as the
order of n or the structure of trees.

The remaining part of this paper is organized as follows. Section 2 gives some basic
notations and preliminaries. Section 3 gives the relations between toughness and Hamil-
tonicity, includes an improved result to a theorem in [4]. Section 4 presents our research
results in the class of Cartesian product of cycles and trees. Section 5 gives two Propo-
sitions that will be used in next two sections. Section 6 talks about the Hamiltonian
characterization of trees with perfect matching through its Cartesian products with paths
and Section 7 presents the Hamiltonian characterization of trees with path factor through
its Cartesian products with paths.—Section 8.gives a stronger equivalent condition to

Hamiltonicity of P,LJT called even-pancyclicity. Finally, Section 9 concludes this paper.

2 Notations and preliminaries

Let G be a simple graph with the vertex set V(G) and the edge set E(G). Let ¢(G)
denote the number of connected components of G. We say that G is Hamiltonian if G
has a Hamiltonian cycle, i.e. a cycle of length |V (G)|. A Hamiltonian graph G is said to
be edge-Hamiltonian if every edge e € E(G) lies in a Hamiltonian cycle [5]. We will use
the sequence of passing vertices to represent a cycle, denoted as (vy,vg, -+ , vy, V7).

A vertex is said to be a leaf if and only if it has degree 1. The neighbor set of a vertex
v € V(G) is denoted by N(v). The contraction of G on an edge e is a graph generated
by removing e from G and merging the two end vertices of e simultaneously (also remove
the multiple edge if there exists).

In this thesis, we discuss a type of graphs called Cartesian product which is defined

as follows:



Definition 2.1. The Cartesian product of graphs G and H is a graph, denoted by GUH,
whose vertex set is

V(GOH) ={ay:a € V(G),be V(H)},

and edge set is
E(GOH) ={apa. : be € E(H)} U{apcy : ac € E(G)}.

A spanning subgraph of G is a subgraph of G that uses all the vertices of G. A I-factor
of G is a 1-regular spanning subgraph of G, which is also known as a perfect mathching.
On the other hand, if M is a set of graphs, an M-factor is a spanning subgraph of G
where each component of the subgraph is isomorphic.to an element in M. Following the
definition in [1], a path factor.is an M-factor where M ds a set of paths with order at
least two. In particular, M.= {P», P3} has been used frequently in our research, where P,
is a path with n vertices. "Moreover, we say that a component X is adjacent to another
component Y in a factor.of GG if there exist vertices x € X,y €Y, such that x is adjacent
to y in G.

We say that a graph G is't-tough if ¢ is a real number such that |S| > t-¢(G — 9) for
any vertex subset S whose deletion makes.G-disconnected (¢(G —S) > 1). If G is not
complete, the largest ¢ such that G is t-tough is called the toughness of G, denoted by
t(G). We set t(K,,) = +oo for all n.

3 Toughness and Hamiltonicity

The following result in [4] gives a very important necessary condition for a graph
(especially 2-connected or more) being Hamiltonian.

Proposition 3.1 ([4]). Every Hamiltonian graph is 1-tough.

Next, we give one necessary condition and one sufficient condition to characterize the

edge-Hamiltonian graphs.



First, the sufficient condition is modified from Ore’s theorem. A similar statement is

also mentioned in Problem 4F'. of [§]

Theorem 3.2. Let G be a simple graph of order n such that deg(u) + deg(v) > n for any

nonadjacent vertices u,v. Then G is edge-Hamiltonian.

Proof. Suppose the theorem failed and G is the counterexample with maximum number
of edges. Then for any given edge e which is not contained in a Hamiltonian cycle, there
exists a Hamiltonian path (uq, ug, - - - , u,) passes through e with nonadjacent end-vertices
uy, u, (otherwise adding an edge can not yield a Hamiltonian cycle that contains e, and
G could not be a counterexample with maximum number of edges).

Now consider the sets
A = {i:u; is adjacent to u; 1}

and

B =i upis-adjacent-to u;}.

Since |A| + |B| > nand AUB C{1,2,3,--- ,n — 1},,we know that |AN B| > 2. Hence

we can find at least one ¢ € AN B such that the edge w;u; 1 # e. However, the cycle

(uh Ui 15 Ui42y 000 5 Un,y Uy Ug—1, "+ 7u1)

is a Hamiltonian cycle that contains e, a contradiction. ]

Notice that the degree bound is sharp, the graph G5 in Figure 1 is a non-edge-
Hamiltonian example whose only pair of nonadjacent vertices satisfies deg(u)+deg(v) = n.

To give the necessary condition, here we define a new property called edge-1-tough.

Definition 3.3. We call a graph G edge-1-tough if the contraction of G on any edge is

1-tough.



The property edge-k-tough can be defined similarly, but we won’t use it in this paper.
Note that the definition of edge-k-tough is different to k-edge-tough (k-line-tough) which
is defined in [4].

Similar to Proposition 3.1, next proposition characterize the relationship between edge-

1-tough and edge-Hamiltonicity.
Proposition 3.4. Every edge-Hamiltonian graph is edge-1-tough.

Proof. For an edge-Hamiltonian graph G and an arbitrary edge e € F(G), there is a
Hamiltonian cycle contain e. Hence the contraction of GG on e still contains a Hamiltonian
cycle. By Proposition 3.1, the contraction of G on‘e is 1-tough. Therefore, G is edge-1-

tough. [

An edge-Hamiltonian graph is apparently Hamiltonian. However, surprisingly an edge-
1-tough graph is not necessarily 1-tough and vice versa. Here we give an example to verify

this argument.

Example 3.5. In Figure 1l the contractions of graph Giron any edge e € E(G) are
all isomorphic to G5 and the contraction-of G5 on é is GG3. Since G5 is 1—tough, the
graph G is edge-1-tough. However G itself is not 1-tough. On the other hand, although
(G5 is 1-tough, but the graph G, its contraction on é, is not 1-tough. Hence G5 is not

edge-1-tough.

Gy Go G3s

Figure 1



In this thesis we focus on a family of Cartesian product of graphs. This is motivated

by Chvatal [4], so let us first generalize one of his result.

Theorem 3.6. For any given graphs G, H, the toughness t(GOH) is less than or equal to
T(V(G)|+|V(H)|)—1 and the equality holds if and only if both of G and H are complete.

Proof. Let |V(G)| = m,|V(H)| = n and the Cartesian product of G and H is the graph
GOH with
V(GOH) ={azla € V(G),z € V(H)},
E(GOH) ={asayla € V(G),zy € E(H)} U{azb,|ab € E(G),z € V(H)}.
For an arbitrary vertex a, in GOH, itsneighbor set will be N(a,) = {a,|zy € E(H)}U
{czlac € E(G)}. Since ¢((GEH)— N(a,)) = 24

|V {az)| ~ deggla) tdogy(r) o (m -1+ (n—1)

HGOH) = Ziamm) ) = 5 5

and the last equality holds if and only if deg.(a) = m — 1,degy,(z) = n — 1 for all
a € V(G),z € V(H). Thatis, both of G and H are complete. n

4 Cartesian product of eycles and trees

It has been proved in [6] that C,,07 is Hamiltonian if and only if n > A(T). Our
approach is different from the former proofs and can also be applied to our main result,

the case of Cartesian product of paths and trees.

For convenience, let V(C,,) = {1,2,--- ,n} and E(C,) = {12,23,--- ,nl}.
Lemma 4.1. For n > 3, if the graph C,0T is Hamiltonian, then n > A(T).

Proof. If n < A(T), then there exists a vertex v € V(T') such that deg(v) = A(T"). Hence

deleting n vertices 1,,2,, -+ ,n, from C,0T yields A(T') components, which means

#(C,OT) < n/A(T) < 1.

6



By Theorem 3.1, the graph C,J7T is not Hamiltonian. ]

In the proof of Theorem 4.2 and the remaining of this thesis, we prefer to write down
the labels continuously even some of them become less than 1 or exceed n. For example,
the labels 4,7+ 1,7+ 2,74+ 3,1+ 4,7+ 5 is actually n — 3,n — 2,n — 1,n, 1, 2 if the value
1+ 3isequal ton and 7,2 — 1,7 — 2,7 —3,i — 4,7 — 5 represent 3,2,1,n,n — 1,n — 2 when

1= 3.

Theorem 4.2. If n > max(A(T),3), then there exists a Hamiltonian cycle of C,0OT
which contains exactly n — 1 of the n edges: {1,24,2¢3¢,- -+ ,n — Lyng,nele}, for any leaf ¢

of T.

Proof. Apply induction on the number of vertices of 7. 'The.induction bases are T' = K,
and star graphs T' = Ky A¢y. The graph C,00K, is actually C,, which is Hamiltonian.
Moreover, K has no leaf, so the statement is correct in this case. Let v be the core vertex
and N(v) = {u,u?, -, udD} are all leaves. We can construet A(T) + 1 cycles, together

contain all vertices of C\,[JKy A(r):
(Loy 20, -+ My Lo)y (Lyay 2005 20 sty dgn)se= o (Lamm, 2,am), -+, Nyam, Lam).
Merge them by replacing edge pairs
{1020, Ln 200}, {2030, 24232}, - -+ {A(T) o Lo, A(T) yaen Lyaen }

into

{1o101,2,20 }, {20242, 30302}, -+, {A(T),A(T) yacry, Lylyam }y

respectively, we can connect those A(T") + 1 cycles into a Hamiltonian cycle of C,O7T.
Since we remove exactly one edge in {1,2¢,2¢3¢,--- ,n — 1y, nel,} for any leaf ¢, the
Hamiltonian cycle contains exactly n — 1 of the n edges: {1,2,,2,34,--- ,n — Ly, nely}

for any leaf /.



Assume that for all 77 with [V (T")| < |V(T)|, C,,0T" has a Hamiltonian cycle which
contains exactly n — 1 of the n edges: {1,2¢,243¢,- -+ ,n — Lyng,nyle} for any leaf .
To discuss the Hamiltonicity of C,,[JT" where T # K a(), we can choose a vertex v

with exactly one non-leaf neighbor and
N(v) = {u,u*,u? --- ,u® : u is not a leaf and all the other are leaves.}.

Note that d < A(T) and we can find a Hamiltonian cycle of C,,00(7 — (N(v) — u)) which
contains n — 1 edges

11)21;;21)31)7' te 7dvd+ 11); e, N — 1vnv7

up to permutation of labels of C,. Now; replace. i, i+ 1, (1 < i < d) of the above edges
by a path (iy,4yi,7 — Lyi, 7 — 24, <~ -, i+ 1yi, i+ 1) of length n + 1, respectively, where the
internal vertices are along.a direction in the cycle of 'C,[(JT based on u'. After replacing

all the edges, we can extend the cycle into a Hamiltonian cycle of C,lJT". ]

Proposition 3.1 told us that every Hamiltonian graph is 1-tough, but on the other
hand, there also exists many 1-tough non-Hamiltonian /graph. We want to show that in

the class C,[JT, the two conditions are equivalent.
Theorem 4.3. For n > 3, the graph C,L0T is Hamiltonian if and only if it is 1-tough.

Proof. It C\,JT is Hamiltonian, then by Theorem 3.1 it is 1-tough.
If C,,0T is not Hamiltonian, then by Theorem 4.2, n must be less than A(T"). There
exists a vertex v € V(T') such that deg(v) = A(T), hence delete n vertices 1,,2,,--- ,n,

from C, 07T yields A(T') components, so
t(C,OT) <n/A(T) < 1.

In the other words, C,,[JT" is not 1-tough. [ ]



Combining Lemma 4.1, Theorem 4.2 and Theorem 4.3, our first main theorem can be

obtained.

Theorem 4.4. The following three statements:
(i) n>A(T).
(ii) C,OT is Hamiltonian.

(iii) C,OT is 1-tough.

are equivalent for all n not less than 3.

Since "1-tough” and "Hamiltonian” are not always equivalent, we think about a prob-

lem.
Problem 4.5. To what extent will a 1-tough graph become Hamiltonian?

We will provide two more classes of such-graphs in Section 6 and Section 7.
Increasing the value of n by one; wehave an improved result of Theorem 4.2. For
convenience, we just write a label i directly even'if 4 is larger than n (and in fact, it means

i—mn).

Theorem 4.6. If n > max(A(T),2) and e € E(C,OT), then C,OT has a Hamiltonian
cycle contains e and exactly n — 1 of the n edges: {1,2¢,2¢3¢,- -+ ,n — Lyng,ngle} for any

leaf 0 of T.

Proof. Apply induction on the number of vertices of T'. The induction bases are T' = K;
and star graphs T' = K o(7). The graph C,,l1K is actually C,, which forms a Hamiltonian
cycle that contains all the edges. Moreover, K has no leaf, so the statement is correct in
this case. For C,00K; a(7),let v be the core vertex and N(v) = {u!,u?,--- ,u>)} are all

leaves, then we can find A(T') + 1 cycles, together contain all vertices:

(1va2v7"' 7nv71v)7(1u172u17"' 7nu171u1)7"' ,(].uA(T),QuA(T),"' 7nuA(T>>1uA(T))'

9



To show that there is a Hamiltonian cycle containing a chosen edge, we first classify the

chosen edge into two different types:
(1) Edges labelled as i,i + 1, or d,50 + 1.
(2) Edges labelled as ,i,;.

In case (1), replace edge pairs

{i+1i+2,i4+1ai+2,}

{i 4248+ 34,7 + 2,20 + 3,2}

{i+ A1)+ A(T)y+1y,0 + A1) oyt FAT) + Lyam }

into

{i 4+ Lyt + 1158 + 2,40 + 2,1}

{0+ 200+ 22,8 4+ 3,0+ 3,24

{i + A(T)UZ' + A(T)uA(T) , 1+ A(T) + 1,2+ A(T) + 1uA(T)}

respectively. Then we get a Hamiltonian cycle of C,,[JT". The real label of the last replaced
edge is
(i+AM),i+A(T)+1)or (i +A(T) —n,i+A(T)+1—n).

Since n > A(T) + 1, edges i,i + 1, and i,5i + 1,; are in the small cycles initially and
haven’t been replaced. Hence all type (1) edges are lying in some Hamiltonian cycles.

In case (2), replace edge pairs

{Z’UZ + 1y, 20t + 1u3}

10



{i 4+ 1pi+ 2,0+ Lyjr1i + 24541}

{i + A(T) — 1,0+ A(T)U,Z' + A(T) — 1 j+am-11 + A(T)uj+A(T)—1}
into
{iviuj,i + 1,7+ 1uj}

{i+ 10+ L1, i+ 240 + 24541}

{i + A(T) — 1,04+ A(T) ol Fae )t & it A(T)UZ + A(T)uj+A(T)_1}

respectively, then we get a Hamiltonian cycle of C,ldT.= The edge i,7,; are not in the
small cycles but has beensreplaced-into the Hamiltonian ¢ycle. In this way, all type (2)
edges are lying in some Hamiltonian cycles. Combine the two cases, T' = K A1) is edge-
Hamiltonian. On the other hand, it is easy to check that every Hamiltonian cycles we
constructed must satisfy the condition: for any leaf ¢-of 7', the Hamiltonian cycle contains
exactly n — 1 edges of {1,2,5243p;- -+, n — Ly, nels}.

Assume that for all 7" with" |V(Z")|<-|V(T)} We can find a Hamiltonian cycle of

C,,OT" which satisfies the following two conditions simultaneously:
e The Hamiltonian cycle contains an arbitrarily chosen edge e.

o For any leaf ¢ of T', the Hamiltonian cycle contains exactly n — 1 edges of the set

{162¢,243¢,- - ,n — Loy, nely}.

To discuss the edge-Hamiltonicity of C,,[1T', since T' # K a(r), we can choose a vertex

v with exactly one non-leaf neighbor and

N(v) = {u,u*,u? - ,u?: uis not a leaf and all the other are leaves.}.

11



Note that d < A(T') and we can find d cycles:
(1u17 21, Ny, ]-ul)a T (1ud7 2ydy e My, 1ud)'

and a Hamiltonian cycle of C,,00(T — (N (v) — u)).
To construct a Hamiltonian cycle containing a chosen edge, we need to classify the

chosen edge into three different types:
(1) Edges labelled as i,i+ 1, or 4,50 + 1.
(2) Edges labelled as i,7i,;.
(3) All the other edges.

In case (1), by Theorem4.2, we can find a Hamiltonian cycle of the graph C,,00(T —

(N(v) —u)) that contains.n — 1 edges
124,230 0 — 258 = Lylint + 1y, - - = 1yny, ny 1.
Replace edge pairs
it lyit 2,0 + Lapi 24}

{i4+ 2404+ 30,1 4 2,20 + 3,2}

{i+dyi+d+1,,i+dyi+d+ 1.}
into

{i+10+ 10,0 +2,i+2,}

{i4+ 240+ 22,74 3,0+ 3.2}

{i+dyi+dya,i+d+1i+d+ 1,4}

12



respectively, then we get a Hamiltonian cycle of C,[JT". The real label of the last replaced
edge is

(i+dyi+d+1)or(i+d—n,i+d+1—n).

Since n > A(T) + 1 > d + 1, edges i,i + 1, and 4,57 + 1,5 are in the small cycles initially
and haven’t been replaced. Hence all type (1) edges are lying in some Hamiltonian cycles.
In case (2), by Theorem 4.2, we can find a Hamiltonian cycle of the graph C,,00(T —

(N(v) —u)) that contains n — 1 edges
1020, 2030, - ,1— 240 — Ly, tpt + 1y - - s — Lyny, ny 1y,
Replace edge pairs
{Z'L)Z + 1N et luJ}

{i + 1pi=E2,, ot Lgi+ 10+ 2uj+l}

{i +d - 1,0+ dv,’i 4+ d— 1uj+d—1i =+ duj+d71}

into
{luiy tF Tyt + 1,5}

{i+ 10+ Lysp1, 0+ 200 + 24541}

{i +d—10+d— 1,441,714+ dyt + duj+d71}

respectively, then we get a Hamiltonian cycle of C,,[JT. The edge 7,i,; is not in the small
cycles but has been replaced into the Hamiltonian cycle. In this way, all type (2) edges

are lying in some Hamiltonian cycles.

13



In case (3), by induction hypothesis, any chosen edge e of this type must lie in a
Hamiltonian cycle of C,,00(T — (N (v) —u)), and the Hamiltonian cycle also contains n — 1

edges of {1,2,,2,3,, - ,n — 1,ny,n,1,}. For convenience, let the n — 1 edges
1112117 2v3v7 e 7i - 21)2 - lva ZvZ + 111 e, N — 1vnvanv1v~
Then replace edge pairs
{ivt + Ly, iyt + 145}

{0+ 145+ 24,0+ Lygr1i + 24541}

{i+d=1i4dy,i+d— 1,10 +d,+a1}
into
{ilui, 0 + 10+ 15}

{i 4+ L0+ Joigd, 0+ 250+ 2,1}

{i + d — i+ d=dya=t;i+ dyi + dj+a-1}

respectively, forms a Hamiltonian cycle of C,,[JT". Since the chosen edge e hasn’t been
replaced, we are done.

Combining three cases, we conclude by induction that any edge e in C,,[JT is lying in
a Hamiltonian cycle which satisfies the condition that for any leaf ¢ of T, the Hamiltonian

cycle contains exactly n — 1 edges of {142,243, ,n — Lyng, ngly}. [ |

By the equivalence of edge-1-tough and edge-Hamiltonicity. Our second main result

is the following

Theorem 4.7. The following three statements:

14



(1) n>A(T).

(ii) C,OT is edge-Hamiltonian.

(i) C,OT is edge-1-tough and 1—tough.
(iv) C,OT is edge-1-tough.
are equivalent for all n not less than 3.

Proof. The statement (i) = (ii) has been proved in Theorem 4.6. (ii) = (iii) can be
obtained directly from Proposition 3.4 and Proposition 3.1. (iii) = (iv) is straightforward.
Hence we only need to prove (iv) = (i)

We prove this by contradiction. If n. < A(T), find a vertex v € V(T') such that
deg(v) = A(T). Let G be the contraction of C,,[17" on the edge 1,2,. Delete n —1 vertices

Lo(= 24),30, 40, -,y yields A(T') components. Therefore,
tH(G) <n=1/A(T) < 1.

In the other words, C,,[JT" is not edge-1-tough. ]

5 Cartesian product of paths and trees

Different from C,,JT'; there are some trees 7' making P,[JT non-Hamiltonian for all

Proposition 5.1. Let T be a tree. If there is a vertex v € T with more than two

leaf-neighbors, then P,0T is not Hamiltonian for any n.

Proof. Suppose P,JT is Hamiltonian, and there exists a vertex v € T with 3 leaf-
neighbors a,b and c¢. In P,J7T, all of a,b and ¢ have degree 2, which means that all

of edges va, vb, vc are in the Hamiltonian cycle, a contradiction. [

15



A bipartite graph is called balanced if both of its bipartition have the same size.
Actually, a Hamiltonian bipartite graph must be balanced. An even n makes the bipartite
graph P,[JT balanced no matter 7" is balanced or not. Besides, for an odd n, T" needs to

satisfy some requirements to make P,[JT" Hamiltonian. Here gives a simple proposition.

Proposition 5.2. If n is odd and T is unbalanced, then P,[JT is not Hamiltonian.

6 Cartesian product of path and trees with perfect
matching

In this section, we consider those trees with perfect matching and their Cartesian
products with paths.
For convenience, let V(P,) = {1,2,3,--- ;n} and F(P,) = {12,23,34,--- ,(n — 1)n}

in all remaining parts of this paper.

Lemma 6.1. For n > 3. and a tree T with-a perfect matching, if the graph P,JT is

Hamiltonian then n > A(T).

Proof. If n < A(T), then there exists a vertex v € V (7")sueh that deg(v) = A(T"). Hence

deleting n vertices 1,,2,, -+ ,n, from P,dT yields A(T) components, which means
t(P,OT) <n/A(T) < 1.

By Theorem 3.1, the graph P,[JT" is not Hamiltonian. [

Theorem 6.2. If n > max(A(T),3), then there exists a Hamiltonian cycle of P,OT

which contains exactly n —deg(v) edges of {iyi+1,:1=1,2,--- ;n—1} for any vertex v.

Proof. Apply induction on the number of vertices of T'. The induction base is a single

edge. Let T be the single edge uu,, then P,[JT has a Hamiltonian cycle

(1u72uy"' y Mgy My, T — 1u1>"' alul)
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which contains all the n — 1 edges {i,i + 1, : i = 1,2,--- ,n — 1} and the n — 1 edges
{ini+ Ly, ti=1,2,-,n—1}

Assume that for all 77 with perfect matching and |V (T")| < |V(T)|, the graph P,0T"
has a Hamiltonian cycle which contains exactly n — deg(v) of the edges: {i,i + 1, : i =
1,2,--- ,n— 1} for any vertex v.

To discuss the Hamiltonicity of P,[JT, since T has a perfect matching, we can find a
leaf u and its neighbor u; with N(uy) = {u, us}. The subtree T} induced by V(T') —{u, u, }
is a tree with perfect matching and the tree’s order is less than |V(T')|. By induction
hypothesis, there is a Hamiltonian cycle of P,[077 which contains exactly n— (deg(uz)—1)
of the edges {iu,i + 1y, @ @ = 1,24+ ym— 1} (Here deg(usz) denote the degree of uy in
T). Since n > A(T), n — (deg(us) — 1) > A(T) — (deg(uy) — 1) > 0. This told us the
Hamiltonian cycle must contain an-edge 4,4 +1,, for.some 4.

Together with the cycle

A
<1u72w"' (2% +]-ua ,nuanulan_lula"' 71u1>

» Yu?

and replace edge pair

T il
into

{igiy, i 4+ 14" + 1y, )

We can connect those 2 cycles into a Hamiltonian cycle of P,[JT'.
To check the Hamiltonian cycle containing exactly n — deg(v) edges of {i,i + 1, : i =

1,2,--- ,n— 1} for any vertex v, we can check in three cases:
e vertex uj.
o vertex usg.

o all the other vertices.

17



Before connecting the two cycles, the small cycle contains all n — 1 of the edges
{iu 0+ 1y, :1=1,2,--- ;'n—1}. We replace one of the edges to connect two cycles, so the
resulting Hamiltonian cycle contains n — 2 of the edges {i,,i+ 1,, 14 =1,2,--- ,n— 1}
where n — deg(u;) is exactly n — 2. Similarly, in the beginning there are n — (deg(ug) — 1)
of the edges {i,,i + 1,, : 7 =1,2,--- ,n— 1} in the cycle. After connecting two cycles,
one of them are replaced, so the Hamiltonian cycle contains exactly n — deg(us) of the
edges {iy,i+ 1y, 14 =1,2,--- ,n— 1}. Besides this two vertices, the degree of any other
vertex has not change and edges correspond to them have not been replaced. Hence, by

induction hypothesis, the case of the other vertices can be easily checked. ]

By Lemma 6.1 and Theorem 6.2, we know that the two statements
e n>A(T).
o P.,0J7 is Hamiltonian.

are equivalent if 7" has a perfect matching. Moreover; they are also equivalent to another

statement. The statement is'shown in next theorem.

Theorem 6.3. For n > 3 and a tree T with a perfect matching, the graph P,JT is

Hamiltonian if and only if it is 1-tough.

Proof. 1f P,JT is Hamiltonian, then by Theorem 3.1 it is 1-tough.
If P,0O7T is not Hamiltonian, then by Theorem 6.2, n must be less than A(T"). There
exists a vertex v € V(T') such that deg(v) = A(T), hence delete n vertices 1,,2,,--- ,n,

from P,07T yields A(T) components, so
t(P,OT) <n/A(T) < 1.

In the other words, P,lJT is not 1-tough. ]
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7 Cartesian product of path and trees with path fac-
tor

In the previous section, we discuss the case that 1" has a perfect matching. What about
T has no perfect matching? We will discuss all the remaining cases that P,[J7T is possible
to be Hamiltonian. Here we gives several propositions, constructions and theorems below

to prove the main result.
Proposition 7.1. A graph has a path factor if and only if it has a {Ps, Ps}-factor.

Proof. The sufficient condition is obvious.

To prove the necessary condition, suppose a-tree has a path factor. In other words,
the tree has a {P,, P, - - - }-factor. By an easy induction, we can see that P, itself has a
{ Py, Ps}-factor. For example, we can reduce a P, to two Py’'s.and a Ps to a P, with a Ps.

So in fact, this proposition is trivial. [

Furthermore, the following theorem given-in |1} also characterizes the path factor
property.
Theorem 7.2 ([1]). A graph G has a {Ps, Ps}-factor if and only if

i(G—5) < 2[5

for every S C V(G), where i(G — S) denotes the number of isolated vertices in the graph
G-S.

After adding one more property that we are going to verify later, we will conclude

that :
Theorem 7.3. Let G be a connected graph. Then the following are equivalent:

e G has a path factor.
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e G has a {Ps, P3}-factor.

e i(G—95) <2|5], for every S C V(Q).

e P,UG is Hamiltonian for some n.
for any given G.

To construct a Hamiltonian cycle of P,[0T" where T is a tree with a path factor, we

first construct Hamiltonian cycles of P,[JP, and P,[]Ps, respectively.
Construction 7.4. The Hamiltonian cycles we choose are as follows.

o The graph P,[JP, has two copies of vertices-of V(P,), labelled as {1,,2,, - ,n.}

and {1,,2,, - ,n,}. We can find a Hamiltonian cycle:

(1u,2u,"' 7nu7nva(n_ 1)117"' alvalu)-

e Since P,[1P;5 is unbalanced for-all odd n, we only consider the case that n is even.
Our construction of the Hamiltonian cycle of P,[[1P; is as follows. Let the three
vertices of Ps be a, b, and cfrom left to right;then the union of edge sets {i,(i+1), :
i=0,1,3 (mod 4) and 0 < i < n}, {i( + 1), : i = 0,2 (mod 4) and 0 < i < n},
{ic(t 4+ 1), :i=1,2,3 (mod 4) and 0 < i < n}, {iudp : i = 2,3 (mod 4) and 0 <
i<n}, {ipic:1=0,1 (mod 4) and 0 < i < n}, and {1,1,, 1p1., ngnp, npn.}. forms a

Hamiltonian cycle of P,[1P;.

Figure 2 shows a pair of examples in the case that n = 10.

Lemma 7.5. If the graph P,10G is Hamiltonian, then G has a path factor.

Proof. 1f the graph P,1G is Hamiltonian, it has a Hamiltonian cycle. Let H be a Hamil-

tonian cycle of P,00G and H; be the subgraph of H induced by vertices {1, : v € V(G)}.
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Figure 2: Hamiltonian cycles of Pigl1P and PoL1P;

Since H is a cycle, its proper subgraph is a union of paths. In addition, H; has no iso-
lated vertex since |N(1,) — {1, : uvv € E(G)}| =1 for each vertex v € V(G). Hence,
H, = {1}0F where F is a'path factor of G. n

For a given vertex v € V(T'), we can.define
o SA=1{i,(i+1),:i=0,1,3 (mod 4)}
o SP={i,(i+1),:i=0,2 (mod 4)}
o 8¢ ={i,(i+1),:i=1,2,3 (mod 4)}
and base on this notation, we can state a main theorem as follow.

Theorem 7.6. Let T be a tree with a path factor and an even integer n > 4(A(T)—1)+2.
Then there exists a Hamiltonian cycle H of P,OT such that for any vertex v € V(T),
|E(H) NS > [n/4] — deg(v), |E(H) N S]] > [n/4] — deg(v) and |E(H) N S7| >
[n/4] — deg(v).
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Proof. Apply induction on the number of vertices of T'. The induction bases are T' = P,
or T'= P3;. The Hamiltonian cycles are constructed in Construction 7.4. Let V(P,) =
{a1, as}, then the Hamiltonian cycle of P,[0P; contains edges iq, (i + 1), and i, (i + 1),
for every i = 1,2,--- ,n — 1. Hence, the requirement is satisfied. Let V' (P3) = {by, b2, b3},
from Construction 7.4 we know that the vertical edge set correspond vertices by, by, or bs
are Sit, 8P, Sf . respectively. We also know that any of S;', SF, S intersect to each other
by at least 1 edge in every 4 edges. Hence the number of vertical edges we want to count
is at least |n/4| which is larger than [n/4] — deg(v) for any vertex v, so the requirement
is satisfied.

Assume that for all 7" with path factor and |V(7")| < |V(T)|, the graph P,[07" has
a Hamiltonian cycle which contains at least [n/4] ~ deg(v).edges in all of SA, 82, S¢ for
any vertex v.

In the graph P,0T, since T has a path factor, it has a { P, Ps}-factor. Furthermore,

there are two possibilities:
1. One of the leaves of T belongs to a P, in the {P,, Ps}-factor.
2. All leaves of T are belong to Ps in.the { Py Ps}-factor.

If case 1. occur, we can find a leaf u and its neighbor u; with N(u;) = {u,us}. The
subtree T7 induced by V(T') — {u,u,} is a tree with path factor and the tree’s order is
less than |V(T')|. By induction hypothesis, there is a Hamiltonian cycle of P07} which
contains at least [n/4] — (deg(uz) — 1) of the edges in all of S22, 82, 8¢ (Here deg(us)
denote the degree of uy in T'). Since n > 4(A(T) — 1) + 2, [n/4] — (deg(uz) — 1) >
A(T) — (deg(uz) — 1) > 0. This implies that the Hamiltonian cycle must contain an edge
i, 7 + 1y, € SLL.

Together with the cycle

YA
(1u72m"' ? Z+1ua"'7nuanu17n_1u17"'71u1)

Y u)
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and replace edge pair
{ind + 1,0, 7" + 1, }
into
{igty, i+ Lui' 4+ 1y, }.
We can connect those 2 cycles into a Hamiltonian cycle of P,JT.

To check the Hamiltonian cycle containing at least [n/4] — deg(v) of the edges in all

of 84,88, 8¢ for any vertex v, we can check in three cases:
e vertex uj.
o vertex us.
« all the other vertices.

Before connecting the two eycles, the small cycle contains all n — 1 of the edges
{ini+ 1y 7 = 1,2,-20,n — 1}. We only replace one of the edges to connect two
cycles, so the requirement can be satisfied: Similarly; in the beginning there are at least

[n/4] — (deg(uz) — 1) of the edges'in all of 7,82, S8% ‘and also in the cycle. After
connecting two cycles, one of the edges-are.replaced, so the Hamiltonian cycle contains
at least [n/4] — deg(usg) of the edges in all of SS‘Q , 8B 8¢ . Besides this two vertices, the
degree of any other vertex has not change and edges correspond to them have not been
replaced. Hence, by induction hypothesis, the case of the other vertices can be easily

checked. Finally we done the proof of case one.

If case 2. occur, we follow the label of P; in Construction 7.4, there are two sub-cases:

2.i. One of the leaves of T belongs to a Py in the { P», P3}-factor where that Pj is adjacent

to another components in vertex b.

2.ii. All leaves of T are belong to P3 in the { P, P3}-factor and those P3 are not adjacent

to another components in vertex b.
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If case 2.i. occur, we can find a pair of leaves u,, v, and its neighbor u; with N(u;) =
{tq, up, ug}. The subtree T} induced by V(T') — {uq, up, u1 } is a tree with path factor and
the tree’s order is less than |V(T")|. By induction hypothesis, there is a Hamiltonian cycle
of P,00T; which contains at least [n/4] — (deg(us) — 1) of the edges in all of 87,82, S
(Here deg(uz) denote the degree of ug in T'). Since n > 4(A(T)—1)+2, [n/4] — (deg(uz) —
1) > A(T) — (deg(ug) — 1) > 0. This implies that the Hamiltonian cycle must contain an
edge i/, i’ +1,, € 8.

Now consider the P3 with vertex set {u,,u1,u,} and edge set {uqui, uqup}. We have

constructed a Hamiltonian cycle of P,[JP; that contains all the edges of SJ. Hence

together with this Hamiltonian cyele of P,[1P;, and replace edge pair
T e

into

{iglz‘;w i L + 1., )

We can connect those 2 cycles into a Hamiltonian cycle of P,L1T'.
To check the Hamiltonian eycle containing at least'[n/4] — deg(v) of the edges in all

of 84,88, 8¢ for any vertex v, we can-check in three cases:
e vertex uj.
e vertex usg.
« all the other vertices.

Before connecting the two cycles, the small cycle contains at least [n/4] of the edges in

all of SA,SE  SC . We only replace one of the edges to connect two cycles, and [n/4]—1 >

ul? Tul? Tul

[n/4] — deg(u1) = [n/4] — 3, so the requirement is satisfied. Similarly, in the beginning

there are at least [n/4] — (deg(ug) — 1) of the edges in all of S, S2 S and also in

ug’? ug? u

the cycle. After connecting two cycles, one of the edges are replaced, so the Hamiltonian
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cycle contains at least [n/4] — deg(us) of the edges all of S2 S5

ug? ug?

SC . Besides this two
vertices, the degree of any other vertex has not change and edges correspond to them have
not been replaced. Hence, by induction hypothesis, the case of the other vertices can be
easily checked. The proof of case 2.i. is done.

If case 2.ii. occur, we can find a leaf u and its neighbor u; with N(u;) = {u,us}
and N(uz) = {uy,us}. The subtree T} induced by V(T') — {u,u,us} is a tree with
path factor and the tree’s order is less than |V(7')|. By induction hypothesis, there is a
Hamiltonian cycle of P,,l0T; which contains at least [n/4] — (deg(us) — 1) of the edges in
all of S}, 8B, SC (Here deg(us) denote the degree of ug in T). Since n > 4(A(T) —1)+2,
[n/4] — (deg(ug) — 1) > A(T) — (deg(us) — 1) > 0. This implies that the Hamiltonian
cycle must contain an edge i, 4" +1,, € S{j‘s.

Now consider the Py with vertex set {u, ui;us} and edge set {uuy,ujus}. We have

constructed a Hamiltonian cycle of P,[JP; that contains all the edges of SfQ. Hence

together with this Hamiltonian cycle of P,[JP3, and replace edge pair
i, 3 Lugs gt da,

into

{00000+ Luyd’ + Ly, ).

We can connect those 2 cycles into a Hamiltonian cycle of P,JT'.
To check the Hamiltonian cycle containing at least [n/4] — deg(v) of the edges in all

of 4,88 8¢ for any vertex v, we can check in three cases:
e vertex us.
o vertex us.

o all the other vertices.
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Before connecting the two cycles, the small cycle contains at least [n/4] of the edges in
all of Sqf;, S5, SC . We only replace one of the edges to connect two cycles, and [n/4] -1 >
[n/4] — deg(uz) = [n/4] — 2, so the requirement is satisfied. Similarly, in the beginning
there are at least [n/4] — (deg(uz) — 1) of the edges in all of S, SE,SS and also in
the cycle. After connecting two cycles, one of the edges are replaced, so the Hamiltonian
cycle contains at least [n/4] — deg(us) of the edges all of Sii, 82, SS. Besides this two
vertices, the degree of any other vertex has not change and edges corresponding to them
have not been replaced. Hence, by induction hypothesis, the case of the other vertices

can be easily checked. The proof of case 2.ii. is done.

Combining the above cases completes the proof. [ ]

Now we can fill up the remaining parts of Theorem 7.3.

Proof of Theorem 7.3. We are going to prove that a graph G has a path factor if and
only if P,lJG is Hamiltonian for some n. First, if G has'a path factor, then we can find
a spanning tree T of G with a path factor. By Theorem 7.6, we can find an integer
n to make P,[JT Hamiltonian. «Obviously, the Hamiltonian cycle of P,[1T is also the
Hamiltonian cycle of P,JG.

On the other hand, by Lemma 7.5, if P,lJG is Hamiltonian for some n, G must have

a path factor and this completes the proof. [ ]

Based on Theorem 7.2, we give a related property in the case of trees. Let T" be a tree

with partite sets Ty and Tp.

Proposition 7.7. If there exists a vertex subset S C V(T') such that i(T — S) > 2|9],

then there ezists a vertex subset ' C Ty or S C Ty such that i(T — S") > 2|5].
Proof. Suppose the statement is incorrect, then
VS C T, i(T — 5" <29,
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VS C Ty, i(T — S') < 2|S).

Now, for any given S C V(T), if S is contained in T4 or T, then (7' — 5) < 2|S5].
If not, which means SNTy # 0 and SNTg # 0. Let SNTy =S4, SNTp = Sp then
we have

i(T — S4) < 2|S4] and (T — Sp) < 2|Sp).

Since isolated vertices of T'— Sy, T — Sp must be vertices in B and A, respectively, the
value (T — S) will be the summation of (7" — S4),i(T — Sp) and the number of isolated
vertices of T — S which was not isolated in both of T'— S, and T' — Spg.

Let = be an isolated vertex of T'— S but notran isolated vertex in T'— S4 and T — Spg.
Without loss of generality, let @ € 7%. But this also'told us n(z) C Ts. Hence, if x is
isolated in T"— S, it must be already-isolated in 7" — Sp, a contradiction. We finally know

that there is not any such vertex. So,
(T —8S)=14(l'— Sa) +i(T—Sp) < 2|Sal +2|S5| = 2|5],

a contradiction, and we get the proof: [

Theorem 7.8. A tree T has a path factor-if there exists an integer n such that P,00T is

1-tough.

Proof. Suppose that T" doesn’t have a path factor and T" has partite sets Ty and Tz. By
Theorem 7.2, there exists a vertex subset S such that i(7" — S) > 2|S|. Moreover, by
Proposition 7.7, we can restrict S to be contained in a single partite set, without loss of
generality, say S C Ty.

Now we want to prove that for any n, G = P,JT is not 1-tough, so we need to find
the suitable vertex cutset X. If n is even, consider a way that choose X to be the union
of T4 in odd layers and T in even layers (Actually, this choose a part of the bipartition

of G). But in this way, the cardinality | X | and the number of components ¢(G — X) will
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both equal to @, so we need to do a little modification. Since S C T4, those isolated

vertices are all in Tg. In the last layer, modify X by replacing those isolated vertices
in Tp by vertices in S. This makes the size of X change by —i(T — S) + |S|, and the
number of components change by —|S|. Finally, we find a new vertex cutset X’ such that
1X/| = X947 — 8) 15| and (G — X') = DL | 5] and

ey < X1 _ER-iT -9 +is| HR -8+

> = <
(G- X") @_Lﬂ |V(2G')| — 1S

If n is odd, the choice of vertex cutset is dependent on T'. First, if T is unbalanced,
then G is unbalanced. Hence we can choose the smaller partite set to be the vertex cutset.
If T is balanced, then similar to the case that n.is even, we choose X to be the union
of T4 in even layers and T in‘edd layers (and this.choose a part of the bipartition of G
again, | X| = ¢(G — X) = @) Modify X in the last layer by replacing those isolated
vertices in Tp by vertices in .S makes-the size-of X change by —i(T" — S5) + |S]|, and the

number of components change by —|S|. Finally, we find a newwvertex cutset X’ such that

/ V(I s V(&lw
w < X1\ PR AT M 21 +1s)

> x <
(G — X7 &f”_w*l |V(2G)| — 1S

This complete the proof. ]

Combining Theorem 7.8 together with Propoesition 3.1, Lemma 7.5 and Theorem 7.6,

we know that for all even integer n > 4A(T) — 2, the following are equivalent:

e T has a path factor.
o P.007T is Hamiltonian.

o P,0J7T is 1-tough.

8 Hamiltonicity and even-pancyclicity

We say that a graph G is pancyclic if for each vertex v € V(G), v is contained in

cycles of length 3 to |V(G)|. Similarly, we say that a graph G is even-pancyclic if for each
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vertex v € V(G), v is contained in cycles of all even length 4 to |[V(G)|. Details of this
definition can be found in [7]. We only discuss the even-pancyclicity of P,[J7 rather than
pancyclicity since P,[JT is a bipartite graph which contains no odd cycles.

If we defined a grid to be a C, induced by vertices {i,,7 + 1,,7 + 1,,4,} for any
i=1,2,--- ,n—1and u € N(v), then P,07T can be stack up grid by grid. To show that
the even-pancyclicity after we constructed a Hamiltonian cycle, we need to classify those

grids.

Definition 8.1. Based on Construction 7.4, we define the word inside as follow. First,
all grids of P,[JP, are on the inside of the Hamiltonian cycle of P,[JP,. Second, grids
{ia,i+ 14,1+ 1,0 : 1 =0,1,3 (mod 4)} and {7p;a+ 1404 1,4 : ¢ = 1,2,3 (mod 4) } are on
the inside of the Hamiltonian.cyele of P,[3Ps. Finally, agrid {i,,i+1,,i+1,,4,} of P,OT
is on the inside of the Hamiltonian-cyele of P11 with respect to the construction given
in the proof of Theorem 6:2 and Theorem 7.6 if and only if one of the three conditions is

satisfied.

o The edge uv forms a P in the path factor (or the perfect matching) and the grid is

on the inside of the Hamiltonian cycle of P,[L1Ps.

o The edge uv belongs to a P in the path factor and the grid is on the inside of the

Hamiltonian cycle of P,[1P;.

o The two vertices u,v € V(T') belong to different components of the path factor (or
the perfect matching) of 7" and edges i,i, and i+ 1,i+ 1, belong to the Hamiltonian

cycle.
Furthermore, for the convenience of proof, here gives one more definition.

Definition 8.2. We define a graph G = (V, E) corresponding to a construction of Hamil-
tonian cycle of P,J7T where V= {g : g is a grid on the inside of the Hamiltonian cycle}

and £ = {9192 : 91,92 € V and the two grids share an edge}.
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Lemma 8.3. When applying our Hamiltonian cycle construction of P,LJT in Theorem 6.2

and Theorem 7.6, the corresponding graph G is a tree.

Proof. Apply induction on |V(T')|, the induction bases are G corresponding to P,00P,
and P,0P; which are clearly trees (Actually, they are paths).

Assume that for any |V(T")| < |V(T)|, the graph correspond to P,07" is a tree. In
the construction of Hamiltonian cycle, we construct the Hamiltonian cycle by connecting
the Hamiltonian cycle of P,0P; and that of P,00(T — Py) where k may be 2 or 3. The
corresponding graph to each of them can be considered as a coalescence of path and tree,

and that is still a tree. ]

Theorem 8.4. In Theorem.6.2 and Theorem 7.6, all those Hamiltonian P,[JT are also

even-pancyclic.

Proof. First, choose a Hamiltonian eycle of the graph. For any given vertex v, we can find
a grid g which contains v Moreover, for any k =1,2;- - -, \V(é)], we can find a connected
sub-tree of G of order k which contains g. In fact; the sub-tree of order k represents a
cycle of length 2k 4 2 in P,[JT sinee adding a vertex into the sub-tree means adding a
grid into the cycle (and this increase the length of cycle by 2). Therefore v is contained

in cycles of every even lengths and hence P,[1T is even-pancyclic. [ ]

9 Conclusion and future works

To conclude our main results and contributions, we list them in Table 1.
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Graph class

Equivalent statements

c,ur

n = A(T) [2][6]
Hamiltonian [2][6]

1-tough

c,ar

n > A(T)
edge-Hamiltonian
edge-1-tough and 1-tough
edge-1-tough

PUT

T has a 1-factor

n > A(T)
Hamiltenian
even-pancyclic

1-tough

PUT
with n > 4A(T) — 2

T has a path factor
Hamiltonian
even-pancyclic

1-tough

Table 1: The equivalence between Hamiltonicity and other conditions

Except the equivalence between Hamiltonicity and degree conditions, all the other

results are found by ourselves. In fact, we characterize all the trees T that makes P,[JT

possible to be Hamiltonian.

This thesis also gives several constructions of Hamiltonian cycle in Cartesian prod-
uct graphs and further generalize the Hamiltonian properties to edge-Hamiltonian and
even-pancyclicity in C,[J7T and P,0T, respectively. More importantly, those ideas we
use, including Hamiltonian cycle, Tree, Cartesian product, path factor, edge-Hamiltonian

graph, even-pancyclicity are all widely applied in network theory and also be expected to
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have more development. Here are some unsolved problems,

o Although we find some n to make P,[J7T" Hamiltonian when 7" has a path factor,

such n are still too large. Is there any other construction with smaller n?

o How if we replace the graph C), into "1-tough graph G”, is there any good results
in GUT?

e In general, the two terms "Hamiltonian” and ”1-tough” are not equivalent but for
those graphs we focus on, they are. Is there any other type of graphs making this

equivalence holds?
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