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笛 卡 爾 積 圖 之 漢 彌 爾 頓 性 刻 畫

研究生: 高至芃 指導教授: 翁志文 教授

國立交通大學

應用數學系

摘要

本篇論文主要討論一類特別的圖：笛卡爾積圖。首先，對於樹狀圖與圈狀圖的
笛卡爾積，我們討論它的漢彌爾頓性及邊漢彌爾頓性。其次，對於樹狀圖與路徑圖
的笛卡爾積，討論其漢彌爾頓性及偶泛圈性。在第二類圖中，我們將樹狀圖分為可
完美配對或存在路徑因子兩情況討論，並且用系統性的方法建構出此二圖類的漢彌
爾頓圈。論文內亦在已知定理的基礎上補充進一步的結果並且給予新證明方法，尤
其證明了在所有討論的圖類中，圖為漢彌爾頓圖與圖為１堅韌兩條件為等價。

關鍵字: 漢彌爾頓性, 邊漢彌爾頓性, 偶泛圈性, 笛卡爾積, 路徑因子, 圖韌性
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Hamiltonian properties of Cartesian product graphs

Student: Louis Kao Advisor: Chih-Wen Weng

Department of Applied Mathematics

National Chiao Tung University

abstract

The Cartesian product of two graphs forms a special class of graphs. First, for a
given tree through its Cartesian products with cycles, we discuss its Hamiltonicity
and edge-Hamiltonicity. Second, for a given tree through its Cartesian products
with paths, we discuss its Hamiltonicity and even-pancyclicity. We find several
Hamiltonian graphs in the case that the tree has a perfect matching or a path factor.
Some well-known results which have been proved are also given in this thesis with
modified results or new approach of proofs. In particular, we prove that the two
conditions Hamiltonian and 1-tough are equivalent in those graphs we discussed.

Keywords: Hamiltonicity, edge-Hamiltonicty, even-pancyclicity, Cartesian product, path

factor, graph toughness
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1 Introduction

Verifying the Hamiltonicity of graphs is a classic issue in the field of graph theory. It

is not easy to find the sufficient conditions to ensure the existences of Hamiltonian cycle

in graphs. There were several earlier results such as Dirac’s theorem and Ore theorem,

but the assumptions of these results are still too strong. V. Chavatal[4] introduced a new

invariant for graphs, which measures in a simple way how tightly various pieces of a graph

hold together; called toughness. He proven that every Hamiltonian graph is 1-tough. But

there also exists many 1-tough non-Hamiltonian graphs which told us the two conditions

1-tough and Hamiltonian are not equivalent in general graphs.

In our research we discuss a special class of graphs called Cartesian product graphs.

Using the Cartesian product to combine two graphs with established properties makes

it possible to construct a new topology with the properties of both worlds, which is of

practical interest for network design[5]. Moreover, there are some reasons that we restrict

our discussion on Cartesian products Pn�T and Cn�T of a tree T and a path Pn of order

n or a cycle Cn of order n. First, the spanning tree structure can describe the macro

structure of a graph. Namely, simplify the graph without losing the backbone structure.

Second, Cn and Pn are able to connect those trees layer by layer. There are some results

of Hamiltonicity of the graph class Cn�T given in [2][6].

We will prove that in the two classes Pn�T and Cn�T , the two conditions 1-tough

and Hamiltonian are equivalent. To the class of Cn�T , we introduce the idea of edge-

Hamiltonian and edge-1-tough and their equivalence. We divide the case of Pn�T into

two subcases based on the structure of T (Trees with a perfect matching and trees with

a path factor) and construct their own Hamiltonian cycles.

In the view of computational complexity, the problem HC, which checks the Hamil-

tonicity of graph, has been proven to be NP-complete. Hence we want to find another

way to check the Hamiltonicity of certain graphs. In other words, finding the equivalent
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conditions to ”Hamiltonian” is important. However, to recognize a given graph being

1-tough or not is also an NP-hard problem[3]. To overcome this disadvantage, in all of

our results, we gives one more equivalent statement which is easier to verify, such as the

order of n or the structure of trees.

The remaining part of this paper is organized as follows. Section 2 gives some basic

notations and preliminaries. Section 3 gives the relations between toughness and Hamil-

tonicity, includes an improved result to a theorem in [4]. Section 4 presents our research

results in the class of Cartesian product of cycles and trees. Section 5 gives two Propo-

sitions that will be used in next two sections. Section 6 talks about the Hamiltonian

characterization of trees with perfect matching through its Cartesian products with paths

and Section 7 presents the Hamiltonian characterization of trees with path factor through

its Cartesian products with paths. Section 8 gives a stronger equivalent condition to

Hamiltonicity of Pn�T called even-pancyclicity. Finally, Section 9 concludes this paper.

2 Notations and preliminaries

Let G be a simple graph with the vertex set V (G) and the edge set E(G). Let c(G)

denote the number of connected components of G. We say that G is Hamiltonian if G

has a Hamiltonian cycle, i.e. a cycle of length |V (G)|. A Hamiltonian graph G is said to

be edge-Hamiltonian if every edge e ∈ E(G) lies in a Hamiltonian cycle [5]. We will use

the sequence of passing vertices to represent a cycle, denoted as (v1, v2, · · · , vn, v1).

A vertex is said to be a leaf if and only if it has degree 1. The neighbor set of a vertex

v ∈ V (G) is denoted by N(v). The contraction of G on an edge e is a graph generated

by removing e from G and merging the two end vertices of e simultaneously (also remove

the multiple edge if there exists).

In this thesis, we discuss a type of graphs called Cartesian product which is defined

as follows:
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Definition 2.1. The Cartesian product of graphs G and H is a graph, denoted by G�H,

whose vertex set is

V (G�H) = {ab : a ∈ V (G), b ∈ V (H)},

and edge set is

E(G�H) = {abac : bc ∈ E(H)} ∪ {abcb : ac ∈ E(G)}.

A spanning subgraph of G is a subgraph of G that uses all the vertices of G. A 1-factor

of G is a 1-regular spanning subgraph of G, which is also known as a perfect mathching.

On the other hand, if M is a set of graphs, an M -factor is a spanning subgraph of G

where each component of the subgraph is isomorphic to an element in M . Following the

definition in [1], a path factor is an M -factor where M is a set of paths with order at

least two. In particular, M = {P2, P3} has been used frequently in our research, where Pn

is a path with n vertices. Moreover, we say that a component X is adjacent to another

component Y in a factor of G if there exist vertices x ∈ X, y ∈ Y, such that x is adjacent

to y in G.

We say that a graph G is t-tough if t is a real number such that |S| ≥ t · c(G− S) for

any vertex subset S whose deletion makes G disconnected (c(G − S) > 1). If G is not

complete, the largest t such that G is t-tough is called the toughness of G, denoted by

t(G). We set t(Kn) = +∞ for all n.

3 Toughness and Hamiltonicity

The following result in [4] gives a very important necessary condition for a graph

(especially 2-connected or more) being Hamiltonian.

Proposition 3.1 ([4]). Every Hamiltonian graph is 1-tough.

Next, we give one necessary condition and one sufficient condition to characterize the

edge-Hamiltonian graphs.
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First, the sufficient condition is modified from Ore’s theorem. A similar statement is

also mentioned in Problem 4F. of [8]

Theorem 3.2. Let G be a simple graph of order n such that deg(u)+ deg(v) > n for any

nonadjacent vertices u, v. Then G is edge-Hamiltonian.

Proof. Suppose the theorem failed and G is the counterexample with maximum number

of edges. Then for any given edge e which is not contained in a Hamiltonian cycle, there

exists a Hamiltonian path (u1, u2, · · · , un) passes through e with nonadjacent end-vertices

u1, un (otherwise adding an edge can not yield a Hamiltonian cycle that contains e, and

G could not be a counterexample with maximum number of edges).

Now consider the sets

A = {i : u1 is adjacent to ui+1}

and

B = {i : un is adjacent to ui}.

Since |A| + |B| > n and A ∪ B ⊆ {1, 2, 3, · · · , n− 1}, we know that |A ∩ B| ≥ 2. Hence

we can find at least one i ∈ A ∩B such that the edge uiui+1 ̸= e. However, the cycle

(u1, ui+1, ui+2, · · · , un, ui, ui−1, · · · , u1)

is a Hamiltonian cycle that contains e, a contradiction.

Notice that the degree bound is sharp, the graph G2 in Figure 1 is a non-edge-

Hamiltonian example whose only pair of nonadjacent vertices satisfies deg(u)+deg(v) = n.

To give the necessary condition, here we define a new property called edge-1-tough.

Definition 3.3. We call a graph G edge-1-tough if the contraction of G on any edge is

1-tough.
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The property edge-k-tough can be defined similarly, but we won’t use it in this paper.

Note that the definition of edge-k-tough is different to k-edge-tough (k-line-tough) which

is defined in [4].

Similar to Proposition 3.1, next proposition characterize the relationship between edge-

1-tough and edge-Hamiltonicity.

Proposition 3.4. Every edge-Hamiltonian graph is edge-1-tough.

Proof. For an edge-Hamiltonian graph G and an arbitrary edge e ∈ E(G), there is a

Hamiltonian cycle contain e. Hence the contraction of G on e still contains a Hamiltonian

cycle. By Proposition 3.1, the contraction of G on e is 1-tough. Therefore, G is edge-1-

tough.

An edge-Hamiltonian graph is apparently Hamiltonian. However, surprisingly an edge-

1-tough graph is not necessarily 1-tough and vice versa. Here we give an example to verify

this argument.

Example 3.5. In Figure 1, the contractions of graph G1 on any edge e ∈ E(G) are

all isomorphic to G2 and the contraction of G2 on ê is G3. Since G2 is 1−tough, the

graph G1 is edge-1-tough. However G1 itself is not 1-tough. On the other hand, although

G2 is 1-tough, but the graph G3, its contraction on ê, is not 1-tough. Hence G2 is not

edge-1-tough.

G1 G2 G3

ê

Figure 1
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In this thesis we focus on a family of Cartesian product of graphs. This is motivated

by Chvátal [4], so let us first generalize one of his result.

Theorem 3.6. For any given graphs G,H, the toughness t(G�H) is less than or equal to
1
2
(|V (G)|+ |V (H)|)−1 and the equality holds if and only if both of G and H are complete.

Proof. Let |V (G)| = m, |V (H)| = n and the Cartesian product of G and H is the graph

G�H with

V (G�H) = {ax|a ∈ V (G), x ∈ V (H)},

E(G�H) = {axay|a ∈ V (G), xy ∈ E(H)} ∪ {axbx|ab ∈ E(G), x ∈ V (H)}.

For an arbitrary vertex ax in G�H, its neighbor set will be N(ax) = {ay|xy ∈ E(H)}∪

{cx|ac ∈ E(G)}. Since c((G�H)−N(ax)) ≥ 2,

t(G�H) ≤ |N(ax)|
c((G�H)−N(ax))

≤ degG(a) + degH(x)

2
≤ (m− 1) + (n− 1)

2
.

and the last equality holds if and only if degG(a) = m − 1, degH(x) = n − 1 for all

a ∈ V (G), x ∈ V (H). That is, both of G and H are complete.

4 Cartesian product of cycles and trees

It has been proved in [6] that Cn�T is Hamiltonian if and only if n ≥ ∆(T ). Our

approach is different from the former proofs and can also be applied to our main result,

the case of Cartesian product of paths and trees.

For convenience, let V (Cn) = {1, 2, · · · , n} and E(Cn) = {12, 23, · · · , n1}.

Lemma 4.1. For n ≥ 3, if the graph Cn�T is Hamiltonian, then n ≥ ∆(T ).

Proof. If n < ∆(T ), then there exists a vertex v ∈ V (T ) such that deg(v) = ∆(T ). Hence

deleting n vertices 1v, 2v, · · · , nv from Cn�T yields ∆(T ) components, which means

t(Cn�T ) ≤ n/∆(T ) < 1.
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By Theorem 3.1, the graph Cn�T is not Hamiltonian.

In the proof of Theorem 4.2 and the remaining of this thesis, we prefer to write down

the labels continuously even some of them become less than 1 or exceed n. For example,

the labels i, i+ 1, i+ 2, i+ 3, i+ 4, i+ 5 is actually n− 3, n− 2, n− 1, n, 1, 2 if the value

i+3 is equal to n and i, i− 1, i− 2, i− 3, i− 4, i− 5 represent 3, 2, 1, n, n− 1, n− 2 when

i = 3.

Theorem 4.2. If n ≥ max(∆(T ), 3), then there exists a Hamiltonian cycle of Cn�T

which contains exactly n− 1 of the n edges: {1ℓ2ℓ, 2ℓ3ℓ, · · · , n− 1ℓnℓ, nℓ1ℓ}, for any leaf ℓ

of T .

Proof. Apply induction on the number of vertices of T . The induction bases are T = K1

and star graphs T = K1,∆(T ). The graph Cn�K1 is actually Cn which is Hamiltonian.

Moreover, K1 has no leaf, so the statement is correct in this case. Let v be the core vertex

and N(v) = {u1, u2, · · · , u∆(T )} are all leaves. We can construct ∆(T )+1 cycles, together

contain all vertices of Cn�K1,∆(T ):

(1v, 2v, · · · , nv, 1v), (1u1 , 2u1 , · · · , nu1 , 1u1), · · · , (1u∆(T ) , 2u∆(T ) , · · · , nu∆(T ) , 1u∆(T )).

Merge them by replacing edge pairs

{1v2v, 1u12u1}, {2v3v, 2u23u2}, · · · , {∆(T )v1v,∆(T )u∆(T )1u∆(T )}

into

{1v1u1 , 2v2u1}, {2v2u2 , 3v3u2}, · · · , {∆(T )v∆(T )u∆(T ) , 1v1u∆(T )},

respectively, we can connect those ∆(T ) + 1 cycles into a Hamiltonian cycle of Cn�T .

Since we remove exactly one edge in {1ℓ2ℓ, 2ℓ3ℓ, · · · , n − 1ℓnℓ, nℓ1ℓ} for any leaf ℓ, the

Hamiltonian cycle contains exactly n − 1 of the n edges: {1ℓ2ℓ, 2ℓ3ℓ, · · · , n − 1ℓnℓ, nℓ1ℓ}

for any leaf ℓ.
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Assume that for all T ′ with |V (T ′)| < |V (T )|, Cn�T ′ has a Hamiltonian cycle which

contains exactly n− 1 of the n edges: {1ℓ2ℓ, 2ℓ3ℓ, · · · , n− 1ℓnℓ, nℓ1ℓ} for any leaf ℓ.

To discuss the Hamiltonicity of Cn�T where T ̸= K1,∆(T ), we can choose a vertex v

with exactly one non-leaf neighbor and

N(v) = {u, u1, u2, · · · , ud : u is not a leaf and all the other are leaves.}.

Note that d < ∆(T ) and we can find a Hamiltonian cycle of Cn�(T − (N(v)− u)) which

contains n− 1 edges

1v2v, 2v3v, · · · , dvd+ 1v, · · · , n− 1vnv,

up to permutation of labels of Cn. Now, replace ivi + 1v (1 ≤ i ≤ d) of the above edges

by a path (iv, iui , i− 1ui , i− 2ui , · · · , i+1ui , i+1v) of length n+1, respectively, where the

internal vertices are along a direction in the cycle of Cn�T based on ui. After replacing

all the edges, we can extend the cycle into a Hamiltonian cycle of Cn�T .

Proposition 3.1 told us that every Hamiltonian graph is 1-tough, but on the other

hand, there also exists many 1-tough non-Hamiltonian graph. We want to show that in

the class Cn�T , the two conditions are equivalent.

Theorem 4.3. For n ≥ 3, the graph Cn�T is Hamiltonian if and only if it is 1-tough.

Proof. If Cn�T is Hamiltonian, then by Theorem 3.1 it is 1-tough.

If Cn�T is not Hamiltonian, then by Theorem 4.2, n must be less than ∆(T ). There

exists a vertex v ∈ V (T ) such that deg(v) = ∆(T ), hence delete n vertices 1v, 2v, · · · , nv

from Cn�T yields ∆(T ) components, so

t(Cn�T ) ≤ n/∆(T ) < 1.

In the other words, Cn�T is not 1-tough.

8



Combining Lemma 4.1, Theorem 4.2 and Theorem 4.3, our first main theorem can be

obtained.

Theorem 4.4. The following three statements:

(i) n ≥ ∆(T ).

(ii) Cn�T is Hamiltonian.

(iii) Cn�T is 1-tough.

are equivalent for all n not less than 3.

Since ”1-tough” and ”Hamiltonian” are not always equivalent, we think about a prob-

lem.

Problem 4.5. To what extent will a 1-tough graph become Hamiltonian?

We will provide two more classes of such graphs in Section 6 and Section 7.

Increasing the value of n by one, we have an improved result of Theorem 4.2. For

convenience, we just write a label i directly even if i is larger than n (and in fact, it means

i− n).

Theorem 4.6. If n > max(∆(T ), 2) and e ∈ E(Cn�T ), then Cn�T has a Hamiltonian

cycle contains e and exactly n− 1 of the n edges: {1ℓ2ℓ, 2ℓ3ℓ, · · · , n− 1ℓnℓ, nℓ1ℓ} for any

leaf ℓ of T .

Proof. Apply induction on the number of vertices of T . The induction bases are T = K1

and star graphs T = K1,∆(T ). The graph Cn�K1 is actually Cn which forms a Hamiltonian

cycle that contains all the edges. Moreover, K1 has no leaf, so the statement is correct in

this case. For Cn�K1,∆(T ),let v be the core vertex and N(v) = {u1, u2, · · · , u∆(T )} are all

leaves, then we can find ∆(T ) + 1 cycles, together contain all vertices:

(1v, 2v, · · · , nv, 1v), (1u1 , 2u1 , · · · , nu1 , 1u1), · · · , (1u∆(T ) , 2u∆(T ) , · · · , nu∆(T ) , 1u∆(T )).
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To show that there is a Hamiltonian cycle containing a chosen edge, we first classify the

chosen edge into two different types:

(1) Edges labelled as ivi+ 1v or iuj i+ 1uj .

(2) Edges labelled as iviuj .

In case (1), replace edge pairs

{i+ 1vi+ 2v, i+ 1u1i+ 2u1}

{i+ 2vi+ 3v, i+ 2u2i+ 3u2}

...

{i+∆(T )vi+∆(T ) + 1v, i+∆(T )u∆(T )i+∆(T ) + 1u∆(T )}

into

{i+ 1vi+ 1u1 , i+ 2vi+ 2u1}

{i+ 2vi+ 2u2 , i+ 3vi+ 3u2}

...

{i+∆(T )vi+∆(T )u∆(T ) , i+∆(T ) + 1vi+∆(T ) + 1u∆(T )}

respectively. Then we get a Hamiltonian cycle of Cn�T . The real label of the last replaced

edge is

(i+∆(T ), i+∆(T ) + 1) or (i+∆(T )− n, i+∆(T ) + 1− n).

Since n ≥ ∆(T ) + 1, edges ivi + 1v and iuj i + 1uj are in the small cycles initially and

haven’t been replaced. Hence all type (1) edges are lying in some Hamiltonian cycles.

In case (2), replace edge pairs

{ivi+ 1v, iuj i+ 1uj}
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{i+ 1vi+ 2v, i+ 1uj+1i+ 2uj+1}

...

{i+∆(T )− 1vi+∆(T )v, i+∆(T )− 1uj+∆(T )−1i+∆(T )uj+∆(T )−1}

into

{iviuj , i+ 1vi+ 1uj}

{i+ 1vi+ 1uj+1, i+ 2vi+ 2uj+1}

...

{i+∆(T )− 1vi+∆(T )− 1uj+∆(T )−1 , i+∆(T )vi+∆(T )uj+∆(T )−1}

respectively, then we get a Hamiltonian cycle of Cn�T . The edge iviuj are not in the

small cycles but has been replaced into the Hamiltonian cycle. In this way, all type (2)

edges are lying in some Hamiltonian cycles. Combine the two cases, T = K1,∆(T ) is edge-

Hamiltonian. On the other hand, it is easy to check that every Hamiltonian cycles we

constructed must satisfy the condition: for any leaf ℓ of T , the Hamiltonian cycle contains

exactly n− 1 edges of {1ℓ2ℓ, 2ℓ3ℓ, · · · , n− 1ℓnℓ, nℓ1ℓ}.

Assume that for all T ′ with |V (T ′)| < |V (T )| We can find a Hamiltonian cycle of

Cn�T ′ which satisfies the following two conditions simultaneously:

• The Hamiltonian cycle contains an arbitrarily chosen edge e.

• For any leaf ℓ of T , the Hamiltonian cycle contains exactly n − 1 edges of the set

{1ℓ2ℓ, 2ℓ3ℓ, · · · , n− 1ℓnℓ, nℓ1ℓ}.

To discuss the edge-Hamiltonicity of Cn�T , since T ̸= K1,∆(T ), we can choose a vertex

v with exactly one non-leaf neighbor and

N(v) = {u, u1, u2, · · · , ud : u is not a leaf and all the other are leaves.}.

11



Note that d < ∆(T ) and we can find d cycles:

(1u1 , 2u1 , · · · , nu1 , 1u1), · · · , (1ud , 2ud , · · · , nud , 1ud).

and a Hamiltonian cycle of Cn�(T − (N(v)− u)).

To construct a Hamiltonian cycle containing a chosen edge, we need to classify the

chosen edge into three different types:

(1) Edges labelled as ivi+ 1v or iuj i+ 1uj .

(2) Edges labelled as iviuj .

(3) All the other edges.

In case (1), by Theorem 4.2, we can find a Hamiltonian cycle of the graph Cn�(T −

(N(v)− u)) that contains n− 1 edges

1v2v, 2v3v, · · · , i− 2vi− 1v, ivi+ 1v · · · , n− 1vnv, nv1v.

Replace edge pairs

{i+ 1vi+ 2v, i+ 1u1i+ 2u1}

{i+ 2vi+ 3v, i+ 2u2i+ 3u2}

...

{i+ dvi+ d+ 1v, i+ dudi+ d+ 1ud}

into

{i+ 1vi+ 1u1 , i+ 2vi+ 2u1}

{i+ 2vi+ 2u2 , i+ 3vi+ 3u2}

...

{i+ dvi+ dud , i+ d+ 1vi+ d+ 1ud}
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respectively, then we get a Hamiltonian cycle of Cn�T . The real label of the last replaced

edge is

(i+ d, i+ d+ 1) or (i+ d− n, i+ d+ 1− n).

Since n ≥ ∆(T ) + 1 > d+ 1, edges ivi+ 1v and iuj i+ 1uj are in the small cycles initially

and haven’t been replaced. Hence all type (1) edges are lying in some Hamiltonian cycles.

In case (2), by Theorem 4.2, we can find a Hamiltonian cycle of the graph Cn�(T −

(N(v)− u)) that contains n− 1 edges

1v2v, 2v3v, · · · , i− 2vi− 1v, ivi+ 1v · · · , n− 1vnv, nv1v.

Replace edge pairs

{ivi+ 1v, iuj i+ 1uj}

{i+ 1vi+ 2v, i+ 1uj+1i+ 2uj+1}

...

{i+ d− 1vi+ dv, i+ d− 1uj+d−1i+ duj+d−1}

into

{iviuj , i+ 1vi+ 1uj}

{i+ 1vi+ 1uj+1, i+ 2vi+ 2uj+1}

...

{i+ d− 1vi+ d− 1uj+d−1 , i+ dvi+ duj+d−1}

respectively, then we get a Hamiltonian cycle of Cn�T . The edge iviuj is not in the small

cycles but has been replaced into the Hamiltonian cycle. In this way, all type (2) edges

are lying in some Hamiltonian cycles.

13



In case (3), by induction hypothesis, any chosen edge e of this type must lie in a

Hamiltonian cycle of Cn�(T − (N(v)−u)), and the Hamiltonian cycle also contains n−1

edges of {1v2v, 2v3v, · · · , n− 1vnv, nv1v}. For convenience, let the n− 1 edges

1v2v, 2v3v, · · · , i− 2vi− 1v, ivi+ 1v · · · , n− 1vnv, nv1v.

Then replace edge pairs

{ivi+ 1v, iuj i+ 1uj}

{i+ 1vi+ 2v, i+ 1uj+1i+ 2uj+1}

...

{i+ d− 1vi+ dv, i+ d− 1uj+d−1i+ duj+d−1}

into

{iviuj , i+ 1vi+ 1uj}

{i+ 1vi+ 1uj+1, i+ 2vi+ 2uj+1}

...

{i+ d− 1vi+ d− 1uj+d−1 , i+ dvi+ duj+d−1}

respectively, forms a Hamiltonian cycle of Cn�T . Since the chosen edge e hasn’t been

replaced, we are done.

Combining three cases, we conclude by induction that any edge e in Cn�T is lying in

a Hamiltonian cycle which satisfies the condition that for any leaf ℓ of T , the Hamiltonian

cycle contains exactly n− 1 edges of {1ℓ2ℓ, 2ℓ3ℓ, · · · , n− 1ℓnℓ, nℓ1ℓ}.

By the equivalence of edge-1-tough and edge-Hamiltonicity. Our second main result

is the following

Theorem 4.7. The following three statements:
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(i) n > ∆(T ).

(ii) Cn�T is edge-Hamiltonian.

(iii) Cn�T is edge-1-tough and 1−tough.

(iv) Cn�T is edge-1-tough.

are equivalent for all n not less than 3.

Proof. The statement (i) ⇒ (ii) has been proved in Theorem 4.6. (ii) ⇒ (iii) can be

obtained directly from Proposition 3.4 and Proposition 3.1. (iii) ⇒ (iv) is straightforward.

Hence we only need to prove (iv) ⇒ (i).

We prove this by contradiction. If n ≤ ∆(T ), find a vertex v ∈ V (T ) such that

deg(v) = ∆(T ). Let G be the contraction of Cn�T on the edge 1v2v. Delete n−1 vertices

1v(= 2v), 3v, 4v, · · · , nv yields ∆(T ) components. Therefore,

t(G) ≤ n− 1/∆(T ) < 1.

In the other words, Cn�T is not edge-1-tough.

5 Cartesian product of paths and trees

Different from Cn�T , there are some trees T making Pn�T non-Hamiltonian for all

n.

Proposition 5.1. Let T be a tree. If there is a vertex v ∈ T with more than two

leaf-neighbors, then Pn�T is not Hamiltonian for any n.

Proof. Suppose Pn�T is Hamiltonian, and there exists a vertex v ∈ T with 3 leaf-

neighbors a, b and c. In Pn�T , all of a, b and c have degree 2, which means that all

of edges va, vb, vc are in the Hamiltonian cycle, a contradiction.

15



A bipartite graph is called balanced if both of its bipartition have the same size.

Actually, a Hamiltonian bipartite graph must be balanced. An even n makes the bipartite

graph Pn�T balanced no matter T is balanced or not. Besides, for an odd n, T needs to

satisfy some requirements to make Pn�T Hamiltonian. Here gives a simple proposition.

Proposition 5.2. If n is odd and T is unbalanced, then Pn�T is not Hamiltonian.

6 Cartesian product of path and trees with perfect
matching

In this section, we consider those trees with perfect matching and their Cartesian

products with paths.

For convenience, let V (Pn) = {1, 2, 3, · · · , n} and E(Pn) = {12, 23, 34, · · · , (n − 1)n}

in all remaining parts of this paper.

Lemma 6.1. For n ≥ 3 and a tree T with a perfect matching, if the graph Pn�T is

Hamiltonian then n ≥ ∆(T ).

Proof. If n < ∆(T ), then there exists a vertex v ∈ V (T ) such that deg(v) = ∆(T ). Hence

deleting n vertices 1v, 2v, · · · , nv from Pn�T yields ∆(T ) components, which means

t(Pn�T ) ≤ n/∆(T ) < 1.

By Theorem 3.1, the graph Pn�T is not Hamiltonian.

Theorem 6.2. If n ≥ max(∆(T ), 3), then there exists a Hamiltonian cycle of Pn�T

which contains exactly n−deg(v) edges of {ivi+1v : i = 1, 2, · · · , n− 1} for any vertex v.

Proof. Apply induction on the number of vertices of T . The induction base is a single

edge. Let T be the single edge uu1, then Pn�T has a Hamiltonian cycle

(1u, 2u, · · · , nu, nu1 , n− 1u1 , · · · , 1u1)
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which contains all the n − 1 edges {iui + 1u : i = 1, 2, · · · , n − 1} and the n − 1 edges

{iu1i+ 1u1 : i = 1, 2, · · · , n− 1}.

Assume that for all T ′ with perfect matching and |V (T ′)| < |V (T )|, the graph Pn�T ′

has a Hamiltonian cycle which contains exactly n − deg(v) of the edges: {ivi + 1v : i =

1, 2, · · · , n− 1} for any vertex v.

To discuss the Hamiltonicity of Pn�T , since T has a perfect matching, we can find a

leaf u and its neighbor u1 with N(u1) = {u, u2}. The subtree T1 induced by V (T )−{u, u1}

is a tree with perfect matching and the tree’s order is less than |V (T )|. By induction

hypothesis, there is a Hamiltonian cycle of Pn�T1 which contains exactly n−(deg(u2)−1)

of the edges {iu2i + 1u2 : i = 1, 2, · · · , n − 1} (Here deg(u2) denote the degree of u2 in

T ). Since n ≥ ∆(T ), n − (deg(u2) − 1) ≥ ∆(T ) − (deg(u2) − 1) > 0. This told us the

Hamiltonian cycle must contain an edge i′u2
i′ + 1u2 for some i′.

Together with the cycle

(1u, 2u, · · · , i′u, i′ + 1u, · · · , nu, nu1 , n− 1u1 , · · · , 1u1)

and replace edge pair

{i′ui′ + 1u, i
′
u1
i′ + 1u1}

into

{i′ui′u1
, i′ + 1ui

′ + 1u1}.

We can connect those 2 cycles into a Hamiltonian cycle of Pn�T .

To check the Hamiltonian cycle containing exactly n− deg(v) edges of {ivi+ 1v : i =

1, 2, · · · , n− 1} for any vertex v, we can check in three cases:

• vertex u1.

• vertex u2.

• all the other vertices.
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Before connecting the two cycles, the small cycle contains all n − 1 of the edges

{iu1i+1u1 : i = 1, 2, · · · , n−1}. We replace one of the edges to connect two cycles, so the

resulting Hamiltonian cycle contains n − 2 of the edges {iu1i + 1u1 : i = 1, 2, · · · , n − 1}

where n−deg(u1) is exactly n− 2. Similarly, in the beginning there are n− (deg(u2)− 1)

of the edges {iu2i + 1u2 : i = 1, 2, · · · , n − 1} in the cycle. After connecting two cycles,

one of them are replaced, so the Hamiltonian cycle contains exactly n − deg(u2) of the

edges {iu2i+ 1u2 : i = 1, 2, · · · , n− 1}. Besides this two vertices, the degree of any other

vertex has not change and edges correspond to them have not been replaced. Hence, by

induction hypothesis, the case of the other vertices can be easily checked.

By Lemma 6.1 and Theorem 6.2, we know that the two statements

• n ≥ ∆(T ).

• Pn�T is Hamiltonian.

are equivalent if T has a perfect matching. Moreover, they are also equivalent to another

statement. The statement is shown in next theorem.

Theorem 6.3. For n ≥ 3 and a tree T with a perfect matching, the graph Pn�T is

Hamiltonian if and only if it is 1-tough.

Proof. If Pn�T is Hamiltonian, then by Theorem 3.1 it is 1-tough.

If Pn�T is not Hamiltonian, then by Theorem 6.2, n must be less than ∆(T ). There

exists a vertex v ∈ V (T ) such that deg(v) = ∆(T ), hence delete n vertices 1v, 2v, · · · , nv

from Pn�T yields ∆(T ) components, so

t(Pn�T ) ≤ n/∆(T ) < 1.

In the other words, Pn�T is not 1-tough.
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7 Cartesian product of path and trees with path fac-
tor

In the previous section, we discuss the case that T has a perfect matching. What about

T has no perfect matching? We will discuss all the remaining cases that Pn�T is possible

to be Hamiltonian. Here we gives several propositions, constructions and theorems below

to prove the main result.

Proposition 7.1. A graph has a path factor if and only if it has a {P2, P3}-factor.

Proof. The sufficient condition is obvious.

To prove the necessary condition, suppose a tree has a path factor. In other words,

the tree has a {P2, P3, · · · }-factor. By an easy induction, we can see that Pn itself has a

{P2, P3}-factor. For example, we can reduce a P4 to two P2’s and a P5 to a P2 with a P3.

So in fact, this proposition is trivial.

Furthermore, the following theorem given in [1] also characterizes the path factor

property.

Theorem 7.2 ([1]). A graph G has a {P2, P3}-factor if and only if

i(G− S) ≤ 2|S|

for every S ⊆ V (G), where i(G− S) denotes the number of isolated vertices in the graph

G− S.

After adding one more property that we are going to verify later, we will conclude

that :

Theorem 7.3. Let G be a connected graph. Then the following are equivalent:

• G has a path factor.
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• G has a {P2, P3}-factor.

• i(G− S) ≤ 2|S|, for every S ⊆ V (G).

• Pn�G is Hamiltonian for some n.

for any given G.

To construct a Hamiltonian cycle of Pn�T where T is a tree with a path factor, we

first construct Hamiltonian cycles of Pn�P2 and Pn�P3, respectively.

Construction 7.4. The Hamiltonian cycles we choose are as follows.

• The graph Pn�P2 has two copies of vertices of V (Pn), labelled as {1u, 2u, · · · , nu}

and {1v, 2v, · · · , nv}. We can find a Hamiltonian cycle:

(1u, 2u, · · · , nu, nv, (n− 1)v, · · · , 1v, 1u).

• Since Pn�P3 is unbalanced for all odd n, we only consider the case that n is even.

Our construction of the Hamiltonian cycle of Pn�P3 is as follows. Let the three

vertices of P3 be a, b, and c from left to right, then the union of edge sets {ia(i+1)a :

i ≡ 0, 1, 3 (mod 4) and 0 < i < n}, {ib(i + 1)b : i ≡ 0, 2 (mod 4) and 0 < i < n},

{ic(i + 1)c : i ≡ 1, 2, 3 (mod 4) and 0 < i < n}, {iaib : i ≡ 2, 3 (mod 4) and 0 <

i < n}, {ibic : i ≡ 0, 1 (mod 4) and 0 < i < n}, and {1a1b, 1b1c, nanb, nbnc}. forms a

Hamiltonian cycle of Pn�P3.

Figure 2 shows a pair of examples in the case that n = 10.

Lemma 7.5. If the graph Pn�G is Hamiltonian, then G has a path factor.

Proof. If the graph Pn�G is Hamiltonian, it has a Hamiltonian cycle. Let H be a Hamil-

tonian cycle of Pn�G and H1 be the subgraph of H induced by vertices {1v : v ∈ V (G)}.
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Figure 2: Hamiltonian cycles of P10�P2 and P10�P3

Since H is a cycle, its proper subgraph is a union of paths. In addition, H1 has no iso-

lated vertex since |N(1v) − {1u : uv ∈ E(G)}| = 1 for each vertex v ∈ V (G). Hence,

H1 = {1}�F where F is a path factor of G.

For a given vertex v ∈ V (T ), we can define

• SA
v = {iv(i+ 1)v : i = 0, 1, 3 (mod 4)}

• SB
v = {iv(i+ 1)v : i = 0, 2 (mod 4)}

• SC
v = {iv(i+ 1)v : i = 1, 2, 3 (mod 4)}

and base on this notation, we can state a main theorem as follow.

Theorem 7.6. Let T be a tree with a path factor and an even integer n ≥ 4(∆(T )−1)+2.

Then there exists a Hamiltonian cycle H of Pn�T such that for any vertex v ∈ V (T ),

|E(H) ∩ SA
v | ≥ ⌈n/4⌉ − deg(v), |E(H) ∩ SB

v | ≥ ⌈n/4⌉ − deg(v) and |E(H) ∩ SC
v | ≥

⌈n/4⌉ − deg(v).
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Proof. Apply induction on the number of vertices of T . The induction bases are T = P2

or T = P3. The Hamiltonian cycles are constructed in Construction 7.4. Let V (P2) =

{a1, a2}, then the Hamiltonian cycle of Pn�P2 contains edges ia1(i+ 1)a1 and ia2(i+ 1)a2

for every i = 1, 2, · · · , n− 1. Hence, the requirement is satisfied. Let V (P3) = {b1, b2, b3},

from Construction 7.4 we know that the vertical edge set correspond vertices b1, b2, or b3

are SA
b1
,SB

b2
,SC

b3
, respectively. We also know that any of SA

v ,SB
v ,SC

v intersect to each other

by at least 1 edge in every 4 edges. Hence the number of vertical edges we want to count

is at least ⌊n/4⌋ which is larger than ⌈n/4⌉ − deg(v) for any vertex v, so the requirement

is satisfied.

Assume that for all T ′ with path factor and |V (T ′)| < |V (T )|, the graph Pn�T ′ has

a Hamiltonian cycle which contains at least ⌈n/4⌉ − deg(v) edges in all of SA
v ,SB

v ,SC
v for

any vertex v.

In the graph Pn�T , since T has a path factor, it has a {P2, P3}-factor. Furthermore,

there are two possibilities:

1. One of the leaves of T belongs to a P2 in the {P2, P3}-factor.

2. All leaves of T are belong to P3 in the {P2, P3}-factor.

If case 1. occur, we can find a leaf u and its neighbor u1 with N(u1) = {u, u2}. The

subtree T1 induced by V (T ) − {u, u1} is a tree with path factor and the tree’s order is

less than |V (T )|. By induction hypothesis, there is a Hamiltonian cycle of Pn�T1 which

contains at least ⌈n/4⌉ − (deg(u2) − 1) of the edges in all of SA
u2
,SB

u2
,SC

u2
(Here deg(u2)

denote the degree of u2 in T ). Since n ≥ 4(∆(T ) − 1) + 2, ⌈n/4⌉ − (deg(u2) − 1) ≥

∆(T )− (deg(u2)− 1) > 0. This implies that the Hamiltonian cycle must contain an edge

i′u2
i′ + 1u2 ∈ SA

u2
.

Together with the cycle

(1u, 2u, · · · , i′u, i′ + 1u, · · · , nu, nu1 , n− 1u1 , · · · , 1u1)
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and replace edge pair

{i′ui′ + 1u, i
′
u1
i′ + 1u1}

into

{i′ui′u1
, i′ + 1ui

′ + 1u1}.

We can connect those 2 cycles into a Hamiltonian cycle of Pn�T .

To check the Hamiltonian cycle containing at least ⌈n/4⌉ − deg(v) of the edges in all

of SA
v ,SB

v ,SC
v for any vertex v, we can check in three cases:

• vertex u1.

• vertex u2.

• all the other vertices.

Before connecting the two cycles, the small cycle contains all n − 1 of the edges

{iu1i + 1u1 : i = 1, 2, · · · , n − 1}. We only replace one of the edges to connect two

cycles, so the requirement can be satisfied. Similarly, in the beginning there are at least

⌈n/4⌉ − (deg(u2) − 1) of the edges in all of SA
u2
,SB

u2
,SC

u2
and also in the cycle. After

connecting two cycles, one of the edges are replaced, so the Hamiltonian cycle contains

at least ⌈n/4⌉ − deg(u2) of the edges in all of SA
u2
,SB

u2
,SC

u2
. Besides this two vertices, the

degree of any other vertex has not change and edges correspond to them have not been

replaced. Hence, by induction hypothesis, the case of the other vertices can be easily

checked. Finally we done the proof of case one.

If case 2. occur, we follow the label of P3 in Construction 7.4, there are two sub-cases:

2.i. One of the leaves of T belongs to a P3 in the {P2, P3}-factor where that P3 is adjacent

to another components in vertex b.

2.ii. All leaves of T are belong to P3 in the {P2, P3}-factor and those P3 are not adjacent

to another components in vertex b.
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If case 2.i. occur, we can find a pair of leaves ua, ub and its neighbor u1 with N(u1) =

{ua, ub, u2}. The subtree T1 induced by V (T )−{ua, ub, u1} is a tree with path factor and

the tree’s order is less than |V (T )|. By induction hypothesis, there is a Hamiltonian cycle

of Pn�T1 which contains at least ⌈n/4⌉ − (deg(u2)− 1) of the edges in all of SA
u2
,SB

u2
,SC

u2

(Here deg(u2) denote the degree of u2 in T ). Since n ≥ 4(∆(T )−1)+2, ⌈n/4⌉−(deg(u2)−

1) ≥ ∆(T )− (deg(u2)− 1) > 0. This implies that the Hamiltonian cycle must contain an

edge i′u2
i′ + 1u2 ∈ SB

u2
.

Now consider the P3 with vertex set {ua, u1, ub} and edge set {uau1, u1ub}. We have

constructed a Hamiltonian cycle of Pn�P3 that contains all the edges of SB
u1

. Hence

together with this Hamiltonian cycle of Pn�P3, and replace edge pair

{i′u1
i′ + 1u1 , i

′
u2
i′ + 1u2}

into

{i′u1
i′u2

, i′ + 1u1i
′ + 1u2}.

We can connect those 2 cycles into a Hamiltonian cycle of Pn�T .

To check the Hamiltonian cycle containing at least ⌈n/4⌉ − deg(v) of the edges in all

of SA
v ,SB

v ,SC
v for any vertex v, we can check in three cases:

• vertex u1.

• vertex u2.

• all the other vertices.

Before connecting the two cycles, the small cycle contains at least ⌈n/4⌉ of the edges in

all of SA
u1
,SB

u1
,SC

u1
. We only replace one of the edges to connect two cycles, and ⌈n/4⌉−1 ≥

⌈n/4⌉ − deg(u1) = ⌈n/4⌉ − 3, so the requirement is satisfied. Similarly, in the beginning

there are at least ⌈n/4⌉ − (deg(u2) − 1) of the edges in all of SA
u2
,SB

u2
,SC

u2
and also in

the cycle. After connecting two cycles, one of the edges are replaced, so the Hamiltonian
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cycle contains at least ⌈n/4⌉ − deg(u2) of the edges all of SA
u2
,SB

u2
,SC

u2
. Besides this two

vertices, the degree of any other vertex has not change and edges correspond to them have

not been replaced. Hence, by induction hypothesis, the case of the other vertices can be

easily checked. The proof of case 2.i. is done.

If case 2.ii. occur, we can find a leaf u and its neighbor u1 with N(u1) = {u, u2}

and N(u2) = {u1, u3}. The subtree T1 induced by V (T ) − {u, u1, u2} is a tree with

path factor and the tree’s order is less than |V (T )|. By induction hypothesis, there is a

Hamiltonian cycle of Pn�T1 which contains at least ⌈n/4⌉− (deg(u3)− 1) of the edges in

all of SA
u3
,SB

u3
,SC

u3
(Here deg(u3) denote the degree of u3 in T ). Since n ≥ 4(∆(T )−1)+2,

⌈n/4⌉ − (deg(u3) − 1) ≥ ∆(T ) − (deg(u3) − 1) > 0. This implies that the Hamiltonian

cycle must contain an edge i′u3
i′ + 1u3 ∈ SA

u3
.

Now consider the P3 with vertex set {u, u1, u2} and edge set {uu1, u1u2}. We have

constructed a Hamiltonian cycle of Pn�P3 that contains all the edges of SA
u2

. Hence

together with this Hamiltonian cycle of Pn�P3, and replace edge pair

{i′u2
i′ + 1u2 , i

′
u3
i′ + 1u3}

into

{i′u2
i′u3

, i′ + 1u2i
′ + 1u3}.

We can connect those 2 cycles into a Hamiltonian cycle of Pn�T .

To check the Hamiltonian cycle containing at least ⌈n/4⌉ − deg(v) of the edges in all

of SA
v ,SB

v ,SC
v for any vertex v, we can check in three cases:

• vertex u2.

• vertex u3.

• all the other vertices.
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Before connecting the two cycles, the small cycle contains at least ⌈n/4⌉ of the edges in

all of SA
u2
,SB

u2
,SC

u2
. We only replace one of the edges to connect two cycles, and ⌈n/4⌉−1 ≥

⌈n/4⌉ − deg(u2) = ⌈n/4⌉ − 2, so the requirement is satisfied. Similarly, in the beginning

there are at least ⌈n/4⌉ − (deg(u3) − 1) of the edges in all of SA
u3
,SB

u3
,SC

u3
and also in

the cycle. After connecting two cycles, one of the edges are replaced, so the Hamiltonian

cycle contains at least ⌈n/4⌉ − deg(u3) of the edges all of SA
u3
,SB

u3
,SC

u3
. Besides this two

vertices, the degree of any other vertex has not change and edges corresponding to them

have not been replaced. Hence, by induction hypothesis, the case of the other vertices

can be easily checked. The proof of case 2.ii. is done.

Combining the above cases completes the proof.

Now we can fill up the remaining parts of Theorem 7.3.

Proof of Theorem 7.3. We are going to prove that a graph G has a path factor if and

only if Pn�G is Hamiltonian for some n. First, if G has a path factor, then we can find

a spanning tree T of G with a path factor. By Theorem 7.6, we can find an integer

n to make Pn�T Hamiltonian. Obviously, the Hamiltonian cycle of Pn�T is also the

Hamiltonian cycle of Pn�G.

On the other hand, by Lemma 7.5, if Pn�G is Hamiltonian for some n, G must have

a path factor and this completes the proof.

Based on Theorem 7.2, we give a related property in the case of trees. Let T be a tree

with partite sets TA and TB.

Proposition 7.7. If there exists a vertex subset S ⊆ V (T ) such that i(T − S) > 2|S|,

then there exists a vertex subset S ′ ⊆ TA or S ′ ⊆ TB such that i(T − S ′) > 2|S ′|.

Proof. Suppose the statement is incorrect, then

∀S ′ ⊆ TA, i(T − S ′) ≤ 2|S ′|,
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∀S ′ ⊆ TB, i(T − S ′) ≤ 2|S ′|.

Now, for any given S ⊆ V (T ), if S is contained in TA or TB, then i(T − S) ≤ 2|S|.

If not, which means S ∩ TA ̸= ∅ and S ∩ TB ̸= ∅. Let S ∩ TA = SA, S ∩ TB = SB then

we have

i(T − SA) ≤ 2|SA| and i(T − SB) ≤ 2|SB|.

Since isolated vertices of T −SA, T −SB must be vertices in B and A, respectively, the

value i(T − S) will be the summation of i(T − SA), i(T − SB) and the number of isolated

vertices of T − S which was not isolated in both of T − SA and T − SB.

Let x be an isolated vertex of T −S but not an isolated vertex in T −SA and T −SB.

Without loss of generality, let x ∈ TA. But this also told us n(x) ⊆ TB. Hence, if x is

isolated in T −S, it must be already isolated in T −SB, a contradiction. We finally know

that there is not any such vertex. So,

i(T − S) = i(T − SA) + i(T − SB) ≤ 2|SA|+ 2|SB| = 2|S|,

a contradiction, and we get the proof.

Theorem 7.8. A tree T has a path factor if there exists an integer n such that Pn�T is

1-tough.

Proof. Suppose that T doesn’t have a path factor and T has partite sets TA and TB. By

Theorem 7.2, there exists a vertex subset S such that i(T − S) > 2|S|. Moreover, by

Proposition 7.7, we can restrict S to be contained in a single partite set, without loss of

generality, say S ⊆ TA.

Now we want to prove that for any n, G = Pn�T is not 1-tough, so we need to find

the suitable vertex cutset X. If n is even, consider a way that choose X to be the union

of TA in odd layers and TB in even layers (Actually, this choose a part of the bipartition

of G). But in this way, the cardinality |X| and the number of components c(G−X) will
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both equal to |V (G)|
2

, so we need to do a little modification. Since S ⊆ TA, those isolated

vertices are all in TB. In the last layer, modify X by replacing those isolated vertices

in TB by vertices in S. This makes the size of X change by −i(T − S) + |S|, and the

number of components change by −|S|. Finally, we find a new vertex cutset X ′ such that

|X ′| = |V (G)|
2

− i(T − S) + |S| and c(G−X ′) = |V (G)|
2

− |S|,and

t(G) ≤ |X ′|
c(G−X ′)

=
|V (G)|

2
− i(T − S) + |S|
|V (G)|

2
− |S|

<
|V (G)|

2
− 2|S|+ |S|

|V (G)|
2

− |S|
= 1.

If n is odd, the choice of vertex cutset is dependent on T . First, if T is unbalanced,

then G is unbalanced. Hence we can choose the smaller partite set to be the vertex cutset.

If T is balanced, then similar to the case that n is even, we choose X to be the union

of TA in even layers and TB in odd layers (and this choose a part of the bipartition of G

again, |X| = c(G −X) = |V (G)|
2

). Modify X in the last layer by replacing those isolated

vertices in TB by vertices in S makes the size of X change by −i(T − S) + |S|, and the

number of components change by −|S|. Finally, we find a new vertex cutset X ′ such that

t(G) ≤ |X ′|
c(G−X ′)

=
|V (G)|

2
− i(T − S) + |S|
|V (G)|

2
− |S|

<
|V (G)|

2
− 2|S|+ |S|

|V (G)|
2

− |S|
= 1.

This complete the proof.

Combining Theorem 7.8 together with Proposition 3.1, Lemma 7.5 and Theorem 7.6,

we know that for all even integer n ≥ 4∆(T )− 2, the following are equivalent:

• T has a path factor.

• Pn�T is Hamiltonian.

• Pn�T is 1-tough.

8 Hamiltonicity and even-pancyclicity

We say that a graph G is pancyclic if for each vertex v ∈ V (G), v is contained in

cycles of length 3 to |V (G)|. Similarly, we say that a graph G is even-pancyclic if for each
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vertex v ∈ V (G), v is contained in cycles of all even length 4 to |V (G)|. Details of this

definition can be found in [7]. We only discuss the even-pancyclicity of Pn�T rather than

pancyclicity since Pn�T is a bipartite graph which contains no odd cycles.

If we defined a grid to be a C4 induced by vertices {iv, i + 1v, i + 1u, iu} for any

i = 1, 2, · · · , n− 1 and u ∈ N(v), then Pn�T can be stack up grid by grid. To show that

the even-pancyclicity after we constructed a Hamiltonian cycle, we need to classify those

grids.

Definition 8.1. Based on Construction 7.4, we define the word inside as follow. First,

all grids of Pn�P2 are on the inside of the Hamiltonian cycle of Pn�P2. Second, grids

{ia, i+1a, i+1b, ib : i ≡ 0, 1, 3 (mod 4)} and {ib, i+1b, i+1c, ic : i ≡ 1, 2, 3 (mod 4)} are on

the inside of the Hamiltonian cycle of Pn�P3. Finally, a grid {iv, i+1v, i+1u, iu} of Pn�T

is on the inside of the Hamiltonian cycle of Pn�T with respect to the construction given

in the proof of Theorem 6.2 and Theorem 7.6 if and only if one of the three conditions is

satisfied.

• The edge uv forms a P2 in the path factor (or the perfect matching) and the grid is

on the inside of the Hamiltonian cycle of Pn�P2.

• The edge uv belongs to a P3 in the path factor and the grid is on the inside of the

Hamiltonian cycle of Pn�P3.

• The two vertices u, v ∈ V (T ) belong to different components of the path factor (or

the perfect matching) of T and edges iviu and i+1vi+1u belong to the Hamiltonian

cycle.

Furthermore, for the convenience of proof, here gives one more definition.

Definition 8.2. We define a graph Ĝ = (V̂ , Ê) corresponding to a construction of Hamil-

tonian cycle of Pn�T where V̂ = {g : g is a grid on the inside of the Hamiltonian cycle}

and Ê = {g1g2 : g1, g2 ∈ V̂ and the two grids share an edge}.

29



Lemma 8.3. When applying our Hamiltonian cycle construction of Pn�T in Theorem 6.2

and Theorem 7.6, the corresponding graph Ĝ is a tree.

Proof. Apply induction on |V (T )|, the induction bases are Ĝ corresponding to Pn�P2

and Pn�P3 which are clearly trees (Actually, they are paths).

Assume that for any |V (T ′)| < |V (T )|, the graph correspond to Pn�T ′ is a tree. In

the construction of Hamiltonian cycle, we construct the Hamiltonian cycle by connecting

the Hamiltonian cycle of Pn�Pk and that of Pn�(T − Pk) where k may be 2 or 3. The

corresponding graph to each of them can be considered as a coalescence of path and tree,

and that is still a tree.

Theorem 8.4. In Theorem 6.2 and Theorem 7.6, all those Hamiltonian Pn�T are also

even-pancyclic.

Proof. First, choose a Hamiltonian cycle of the graph. For any given vertex v, we can find

a grid g which contains v. Moreover, for any k = 1, 2, · · · , |V (Ĝ)|, we can find a connected

sub-tree of Ĝ of order k which contains g. In fact, the sub-tree of order k represents a

cycle of length 2k + 2 in Pn�T since adding a vertex into the sub-tree means adding a

grid into the cycle (and this increase the length of cycle by 2). Therefore v is contained

in cycles of every even lengths and hence Pn�T is even-pancyclic.

9 Conclusion and future works

To conclude our main results and contributions, we list them in Table 1.
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Graph class Equivalent statements

n ≥ ∆(T ) [2][6]

Cn�T Hamiltonian [2][6]

1-tough

n > ∆(T )

Cn�T edge-Hamiltonian

edge-1-tough and 1-tough

edge-1-tough

n ≥ ∆(T )

Pn�T Hamiltonian

T has a 1-factor even-pancyclic

1-tough

T has a path factor

Pn�T Hamiltonian

with n ≥ 4∆(T )− 2 even-pancyclic

1-tough

Table 1: The equivalence between Hamiltonicity and other conditions

Except the equivalence between Hamiltonicity and degree conditions, all the other

results are found by ourselves. In fact, we characterize all the trees T that makes Pn�T

possible to be Hamiltonian.

This thesis also gives several constructions of Hamiltonian cycle in Cartesian prod-

uct graphs and further generalize the Hamiltonian properties to edge-Hamiltonian and

even-pancyclicity in Cn�T and Pn�T , respectively. More importantly, those ideas we

use, including Hamiltonian cycle, Tree, Cartesian product, path factor, edge-Hamiltonian

graph, even-pancyclicity are all widely applied in network theory and also be expected to
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have more development. Here are some unsolved problems,

• Although we find some n to make Pn�T Hamiltonian when T has a path factor,

such n are still too large. Is there any other construction with smaller n?

• How if we replace the graph Cn into ”1-tough graph G”, is there any good results

in G�T?

• In general, the two terms ”Hamiltonian” and ”1-tough” are not equivalent but for

those graphs we focus on, they are. Is there any other type of graphs making this

equivalence holds?
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